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Abstract: As a compression standard, Geometry-based Point Cloud Compression (G-PCC) can
effectively reduce data by compressing both geometric and attribute information. Even so, due to
coding errors and data loss, point clouds (PCs) still face distortion challenges, such as the encoding
of attribute information may lead to spatial detail loss and visible artifacts, which negatively impact
visual quality. To address these challenges, this paper proposes an iterative removal method for
attribute compression artifacts based on a graph neural network. First, the geometric coordinates
of the PCs are used to construct a graph that accurately reflects the spatial structure, with the PC
attributes treated as signals on the graph’s vertices. Adaptive graph convolution is then employed
to dynamically focus on the areas most affected by compression, while a bi-branch attention block
is used to restore high-frequency details. To maintain overall visual quality, a spatial consistency
mechanism is applied to the recovered PCs. Additionally, an iterative strategy is introduced to correct
systematic distortions, such as additive bias, introduced during compression. The experimental
results demonstrate that the proposed method produces finer and more realistic visual details,
compared to state-of-the-art techniques for PC attribute compression artifact removal. Furthermore,
the proposed method significantly reduces the network runtime, enhancing processing efficiency.

Keywords: point clouds; attribute compression; removal of compression artifacts; graph neural network

1. Introduction

A point cloud (PC) is composed of massive irregularly distributed points in 3D space,
with each point owning spatial coordinates and associated attributes, such as RGB color,
normal, and reflectance. By virtue of their strong flexibility and powerful representation,
PCs have been widely implemented in many fields, including autonomous driving [1], 3D
immersive visual communication [2], Augmented Reality/Virtual Reality (AR/VR) [3], and
Geographic Information Systems (GISs) [4], among others. With the rapid development
of 3D sensing and capturing technologies, the volume of PC data has grown in such an
explosive manner that a high-quality PC may contain millions of points, or even more.
Without proper compression, when transmitted at a rate of 30 frames per second, a single
PC containing one million points would take a total bandwidth of 3600 Mbit per second,
thus imposing a challenge both in terms of the storage and transmission of PCs. Therefore,
the research on PC compression is of great practical significance.

To improve the efficiency of PC compression, the Moving Picture Experts Group
(MPEG) has developed two different compression standards [5–9], i.e., Video-based Point
Cloud Compression (V-PCC) and Geometry-based Point Cloud Compression (G-PCC),
which are used for dense and sparse PCs, respectively. Based on 3D-to-2D projection, the
V-PCC [8] standard first divides PCs into multiple 3D blocks, which are then projected
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onto a 2D plane and packaged into 2D geometric videos and textured videos. Subse-
quently, these projected videos are compressed using certain well-established video coding
standards, such as H.265/High-Efficiency Video Coding [10] (HEVC) or H.266/Versatile
Video Coding [11] (VVC). On the other hand, the G-PCC [9] standard compresses PCs
directly in 3D space, while treating geometric and attribute information separately. The
compression of geometric information is usually based on octree [12–14] or mesh/surface
methods [15,16]. For the compression of attribute information, hierarchical neighborhood
prediction algorithms based on Prediction With Lifting Transform (PredLift) [17,18] and
Region-Adaptive Hierarchical Transform (RAHT) [19] have been designed. These compres-
sion standards are designed to efficiently compress different types of PCs, so as to meet the
needs of various applications.

Although the implementation of V-PCC and G-PCC standards has improved the
compression efficiency of PCs, the compression process inevitably introduces a variety
of compression artifacts, thus compromising the quality of PCs to varying degrees and
affecting their fidelity in terms of visual presentation. To further improve the visual
quality of PCs in practical applications, it is also crucial to explore and implement effective
post-processing techniques; in addition to the commitment to developing and designing
more efficient compression methods. Given that the compression artifacts induced by
different compression methods vary in regard to the visual characteristics, this paper
proposes a post-processing method mainly to address the specific problems concerning
attribute compression using the G-PCC standard. Figure 1 demonstrates the PCs after being
processed with different G-PCC attribute compression levels, without losing geometric
information. As shown in the results, with changes in the compression level, the PCs,
to different degrees, present such artifacts as color offset, blurring effect, and striping.
These artifacts stem mainly from the information loss during the quantization process.
Particularly, the color offset phenomenon is remarkable, which leads to an inconsistency
between the color information in the compressed PCs and that of the original PCs. In
addition, the blurring effect and striping have significantly reduced the clarity and detail
representation of the PCs, compromising the overall visual quality. Hence, this paper tries
to explore the method to effectively suppress or repair the above compression artifacts, with
a view to significantly boosting the visual fidelity of PCs, while maintaining an efficient
compression ratio, to meet the needs of a wider range of applications.
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Currently, the problems associated with artifacts generated during image and video
compression is a widely explored topic, covering the evolution from traditional meth-
ods [21–25] to learning-based methods [26–34], the application of which has resulted in
significant progress in recent years due to the use of models constructed by convolutional
operations. However, in nature, convolutional operations rely on spatial continuity be-
tween pixels, a feature that does not exist in PCs composed of discrete point sets. As a result,
the direct application of such methods in PC processing faces some fundamental challenges.
Due to the complexity of PC processing, there is a dearth of post-processing research on
the specific attribute artifact problem. For other PC processing tasks, some studies have
attempted to convert PCs into projected images [35] or voxels [36–38] for representations,
to facilitate handling by convolutional neural networks (CNNs). Nevertheless, such con-
version methods are often accompanied by the loss of spatial information. In addition, the
voxel-based strategy significantly increases the storage and computational burden when
dealing with large-scale, high-dimensional data. As a result, such methods encounter
limitations in their practical application. Therefore, efficient processing of PCs directly in
3D space has become an appealing research direction. Qi et al. proposed PointNet [39],
which can realize end-to-end PC processing, effectively retain the formats of the original
data, and successfully achieve feature representation learning. However, PointNet treats
each point as an independent unit during processing, while ignoring the proximity and
topology between the points, which limits its performance to some extent. For this reason,
Qi et al. subsequently proposed PointNet++ [40], which introduced a hierarchical structure
to capture the local features of PCs at different levels. Moreover, graph neural networks
(GNNs) have achieved impressive results in such tasks as the classification, segmentation,
and reconstruction of PCs [41–47]. By constructing a graph structure, GNNs can effectively
capture the local relationships and topologies between points in a PC, thus demonstrating
its powerful ability to address the disorderedness and irregularity of PCs.

Based on the above discussion, to address the artifacts commonly found during the
attribute compression process involving the G-PCC standard, this paper proposes an
iterative removal method for G-PCC attribute artifacts based on a GNN. At the core of
this method, it first constructs a graph to characterize the structure of the PC by using
the geometric coordinates, and the attribute information is regarded as signals on the
vertices of the graph, to realize the deep fusion of spatial and attribute information. Since
points may exhibit different distortion degrees due to the influence of artifacts, we adopt
the adaptive graph convolution, which aims to accurately capture and extract the feature
representation of the attributes of all the points. In particular, more attention is paid to
the areas with significant distortions, so as to enhance the sensitivity and accuracy of
the artifact recognition. Furthermore, since attribute artifacts often lead to the loss of
high-frequency information, a bi-branch attention module is designed, which is capable of
effectively separating and boosting the high-frequency features. And, subsequently, such
critical information is recovered using a fusion strategy, to remedy the information loss
during the compression process. To predict and correct the attribute offsets of PCs more
accurately, a dynamic graph network structure is adopted [41] to capture and analyze the
complex dependencies between the current point and its near and far distance points, so
as to construct a more refined attribute prediction model. In addition, considering that
theoretically, the attribute information between neighboring points in a compressed PC
should maintain a high degree of spatial consistency, we also innovatively integrate the
global features as a spatial consistency constraint, so as to strengthen the coherence of the
overall structure of PCs, while further constraining and optimizing the attribute prediction
results, thus significantly improving the de-artifacting effect. Finally, an iterative strategy is
adopted to estimate the additive offsets of PC attributes, to identify the distortion more
comprehensively.

The contributions by this paper are as follows:

(1) In view of the problem, with the loss of high-frequency information that may be
triggered during attribute compression, a bi-branch attention module is designed
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to capture the basic structural information, while mining and enhancing the high-
frequency features in PCs. By efficiently fusing the features as extracted above, it not
only ensures information complementarity between the features, but also promotes
their synergy, thus further boosting the comprehensiveness and accuracy of feature
expression;

(2) Given that the attributes of neighboring points in a compressed PC should have a
certain level of spatial consistency, an innovative feature constraint mechanism based
on global features is proposed. By regulating local regions through global features, it
can effectively prevent attributes from abrupt changes or inconsistencies during the
reconstruction process, thus significantly enhancing the attribute continuity of PCs;

(3) This paper proposes an iterative removal method for G-PCC attribute artifacts based
on a GNN. This is the first time that the idea of iterative optimization has been
introduced into the field of removing attribute artifacts of PCs. The method not only
boosts the adaptability to complex artifacts, but also significantly improves the visual
rendering quality of compressed PCs.

The rest of this paper is organized as follows. In Section 2, the related work is reviewed.
Section 3 describes in detail the architecture of the proposed GNN-based iterative removal
method for G-PCC attribute artifacts. Section 4 presents the detailed experimental results
and analysis to demonstrate the effectiveness of the proposed method. Finally, Section 5
summarizes the paper as a whole.

2. Related Work

This section provides a brief overview of the development of PC attribute compression,
the removal methods for PC attribute artifacts, and the related research on GNN-based PC
processing methods.

2.1. Point Cloud Attribute Compression

PC attribute compression methods can be grouped into two broad categories: tra-
ditional methods and deep learning-based methods. Traditional methods can be further
subdivided into transform-based methods and prediction-based methods. In transform-
based methods, mathematical transformations are mainly used to effectively compress PC
attributes. Zhang et al. [48] innovatively constructed a graph structure by using the local
neighborhood of PCs and regarded the attributes as graph signals, and then graph trans-
form [49] was implemented to compress the attributes. However, this method is limited by
the high computational complexity of the graph Laplacian eigenvalue decomposition, with
high computational costs incurred. To address this problem, Queiroz and Chou [19] intro-
duced the Region-Adaptive Hierarchical Transform (RAHT) method to compress attributes.
By employing a kind of hierarchical sub-band transform similar to the adaptive variation of
the Haar wavelet [50], this method can significantly reduce the computational complexity,
while maintaining efficient compression performance. RAHT has been adopted by MPEG
as part of the GPCC standard for optimizing the compression of PC attributes. On the
other hand, prediction-based methods mainly draw on mature techniques related to image
and video coding, to deliver attribute compression through predictive coding. Mammou
et al. [17] proposed a distance-based hierarchical coding structure to predict the attributes
of fine-granularity PCs by using coarse-granularity ones, with a performance enhancement
scheme proposed later [18]. This method is particularly suitable for the scenarios involving
sparse PCs and has demonstrated significant compression performance; it is also included
as part of the MPEG PC compression standard [51].

In recent years, researchers have begun to extensively explore the application of deep
learning in the field of PC compression, with some new methods proposed. Unlike tradi-
tional methods, these new methods focus on data-driven learning paradigms, which act
directly on the compression process of PC attributes by introducing nonlinear transforms
and contextual models. Specifically, Sheng et al. [52] pioneered the construction of an
end-to-end deep learning framework designed for PC attribute compression. By utilizing
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the geometric structural information of PCs, this framework enables the encoding and
decoding of PC attributes. Via a set of autoencoder architectures, this framework can
effectively capture the complex spatial correlations between multiple points, as well as the
nonlinear interactions between attribute features, thus delivering a new path for attribute
compression. Subsequently, He et al. [53] further proposed a deep compression framework
for maintaining the density of PCs, which is focused on a point-by-point attribute com-
pression strategy. For the first time, Wang et al. [54] incorporated the sparse convolution
technique into an end-to-end PC attribute compression framework, an innovation that
accelerates the process of feature extraction and aggregation, thus providing a powerful tool
for processing large-scale PCs. In addition, Fang et al. [55] proposed a deep compression
network, called 3DAC, which is designed to explicitly deliver efficient compression of PC
attributes, while drastically slashing the storage requirements.

A summary of the PC attribute compression methods is provided in Table 1, which also
lists the advantages and disadvantages of the different methods. Although the abovemen-
tioned traditional or deep learning-based PC compression methods may render good results
in many cases, compression artifacts are still inevitably introduced during the attribute
compression process. This phenomenon directly affects the visual perception quality of
compressed PC, thus being one of the key challenges that needs to be addressed currently.

Table 1. A summary of PC attribute compression methods.

Categories Method Comments

Traditional
methods

Zhang et al. [48]
Graph transformation applied to attribute
compression; high computational complexity,
high cost

Queiroz et al. [50] Maintains efficient compression performance
and reduces computational complexity

Mammou et al. [17] Predictive coding; applied to sparse PCs;
significant compression performance

Deep
learning-based

methods

Sheng et al. [52] Pioneering an end-to-end learning framework
specifically for PC attribute compression

He et al. [53] Maintaining PC density, point-by-point
property compression

Wang et al. [54] The framework incorporates sparse
convolution, improves efficiency

Fang et al. [55] Efficient compression, reduced
storage requirements

2.2. Point Cloud Attribute Compression Artifact Removal

In the cutting-edge field of PC compression artifact removal, although remarkable
research progress has been made in removing image and video compression artifacts, the
attempt to migrate such progress to PC data has encountered significant challenges. The
fundamental reason lies in that PCs have an unstructured, sparse, and highly irregular
nature, which is in stark contrast with the strictly networked and structured characteristics
of pixel arrangements. To address this issue, Sheng et al. [56] put forward a Multi-Scale
Graph Attention Network (MS-GAT), which smartly utilizes the Chebyshev graph con-
volution to efficiently extract PC attribute features, while comprehensively capturing the
short-range and long-range dependencies between the points using a multi-scale strategy,
thus significantly boosting the effectiveness of removing PC attribute artifacts after G-PCC
compression. This method opens up a new path for PC post-processing. Subsequently,
Ding et al. [57] further proposed an innovative method based on a learning loop filter.
This method can approximate the compression distortion by simulating multiple sample
offsets. In addition, a two-stage network structure was designed for simulating the local
changes and dynamically adjusting the weights based on the errors, to achieve high-fidelity
restoration of the PC content. This method effectively alleviates the artifacts caused by
attribute compression. From another perspective, Xing et al. [58] constructed a graph-based
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PC quality enhancement network, which realizes the extraction and utilization of local
features by using graph convolution and geometric information as the auxiliary input.

Although the abovementioned methods have made some contributions to PC attribute
compression artifact removal, their generalization ability and adaptability are still insuffi-
cient when facing complex and variable PC scenarios and density differences. Therefore,
more end-to-end learning methods need to be explored and the network architecture can be
optimized to better adapt to diverse PC features. In addition, it is necessary to consider the
complex association mechanism between PC attributes, as well as the changing patterns of
attribute artifacts.

2.3. Point Cloud Graph Neural Networks

In recent years, significant progress has been made with GNNs in the field of PC
processing, because their efficient information extraction and characterization capabilities
can significantly advance the developments in this field. Wang et al. [41] innovatively
proposed a new neural network module, called EdgeConv, which can deeply mine and
fuse both global and local features by dynamically constructing the graph structure of
PCs. Zhang et al. [59] further proposed an improved dynamic graph convolutional neural
network, which significantly boosts the performance and efficiency of networks by elimi-
nating unnecessary transformation networks and effectively connecting the hierarchical
features in dynamic graphs. Wang [43] et al. proposed graph attention convolution, which
can dynamically adjust the shape of the convolution kernel to tightly fit the structural
features of target objects, so as to realize fine extraction and fine-grained segmentation
of the structured features of PCs, while effectively avoiding the mutual interference of
feature information between objects. Shi et al. [44] applied GNNs in PC target detection
tasks using LiDAR, proposed an innovative automatic alignment mechanism to reduce
the translation variance, and designed box merge and score operations to precisely fuse
the detection results from multiple vertices, thus significantly improving the accuracy of
target detection. Wei et al. [60] proposed an adaptive graph attention convolution, which is
capable of generating an adaptive convolution kernel based on dynamically learned point
features, so as to accurately capture and model the complex relationships between points
with different semantic parts. Te et al. [45] proposed a Regularized Graph Convolutional
Neural Network (RGCNN), which applies spectral graph theory to PCs and regards point
features as signals on graphs, while defining the convolution operation on graphs through
Chebyshev polynomial approximation. Additionally, Feng et al. [46] proposed a deep
autoencoder architecture that integrates graph topology inference and filtering functions
to deliver compact and expressive representation of unorganized PCs in an unsupervised
learning manner. The encoder borrows the design idea of PointNet, while the decoder can
learn the topological relationships of graph structures in depth through the collaborative
work of multiple modules, thus delivering a more accurate reconstruction of PCs. In view
of the excellent performance and massive potential demonstrated by GNNs in various PC
processing tasks, this paper focuses on implementing a GNN to remove the PC attribute
artifacts after G-PCC compression.

3. Methodology

An iterative removal method for G-PCC attribute compression artifacts is proposed
based on a GNN in this paper, aiming to improve the visual quality of compressed PCs,
with the specific framework shown in Figure 2. In detail, to adapt to a large-scale PC and to
ensure computational efficiency, this paper adopts a non-overlapping block segmentation
strategy to divide the compressed PCs into multiple independent blocks of moderate
size. During the feature extraction stage, a dynamic graph structure is introduced to
construct a graph model that can capture the complex relationships between a point and its
neighboring points, as well as between long-distance points. Given that different points
may suffer from different degrees of information loss due to compression, the adaptive
graph convolution is further implemented to automatically adjust the convolution kernel
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parameters according to the local features of the points, thus enhancing the attention
to important artifact points. To maintain the spatial consistency of the PC attributes, a
feature constraint mechanism is also designed, which extracts and integrates the global
features as spatial constraints to ensure the coherence of PC attributes, while removing
the artifacts. In addition, to compensate for the detail-related information that may be
lost during the compression process, a bi-branch attention module is introduced to fuse
the high-frequency features. By enhancing the ability to capture subtle features, it helps
recover the detail-related features of PCs. Finally, an objective function is established
within the attribute offset estimation module. The accurate estimation of attribute offsets
is delivered by minimizing the squared distance between the model’s predicted sample
offsets and the true offsets. To better estimate the attribute distortion in PCs, iteration is
performed to estimate the additive offset of PC attributes. It is worth emphasizing that
lossless compression is achieved regarding the geometric information, in other words, after
compression and reconstruction, the coordinates of all the points in a PC remain unchanged,
to avoid introducing geometric artifacts.

Electronics 2024, 13, x FOR PEER REVIEW  7  of  23 
 

 

neighboring points, as well as between long-distance points. Given that different points 

may suffer from different degrees of information loss due to compression, the adaptive 

graph convolution is further implemented to automatically adjust the convolution kernel 

parameters according to the local features of the points, thus enhancing the attention to 

important artifact points. To maintain the spatial consistency of the PC attributes, a feature 

constraint mechanism is also designed, which extracts and integrates the global features 

as spatial constraints to ensure the coherence of PC attributes, while removing the arti-

facts. In addition, to compensate for the detail-related information that may be lost during 

the compression process, a bi-branch attention module is introduced to fuse the high-fre-

quency features. By enhancing the ability to capture subtle features, it helps recover the 

detail-related features of PCs. Finally, an objective function is established within the at-

tribute offset estimation module. The accurate estimation of attribute offsets is delivered 

by minimizing the squared distance between the model’s predicted sample offsets and the 

true offsets. To better estimate  the attribute distortion  in PCs,  iteration  is performed  to 

estimate the additive offset of PC attributes. It  is worth emphasizing that  lossless com-

pression is achieved regarding the geometric information, in other words, after compres-

sion and reconstruction, the coordinates of all the points in a PC remain unchanged, to 

avoid introducing geometric artifacts. 

 

Figure 2. Framework of the proposed method. 

3.1. Point Cloud Chunking 

For PCs with millions of points, it is not practical to directly input them into the neu-

ral network at one time, due to the physical constraint of the GPU memory capacity. To 

address this challenge, a chunking strategy is deployed. Specifically, a PC containing N 

points will be divided into many chunks, each of which has a fixed number (n) of points. 

Given that N is usually not divisible by n, a point-filling technique is further implemented, 

i.e., to add a certain number na (na < n) of filler points in the last PC chunk, so as to ensure 

that all the chunks reach the preset number (n) of points. It is worth noting that both the 

geometrical and attribute information of these filler points is replicated from the last valid 

point. In the subsequent processing and recovery phases, the filler points are removed to 

ensure that the PC chunks processed with the neural network can be accurately restored 

to  their original state,  thus excluding  the potential  interference  introduced by  the filler 

points. Through  the  implementation of chunking, massive PC data  that are difficult  to 

directly process can be successfully transformed into a series of smaller-scale and easy-to-

process data chunks, thus enabling neural networks to process these massive datasets in 

an  efficient,  chunk-by-chunk manner,  and  significantly  enhancing  the  processing  effi-

ciency and feasibility. 

3.2. Feature Extraction Module 

The feature extraction module covers dynamic graph structure modeling, adaptive 

graph convolution, feature constraints, and bi-branch attention. Specifically, to focus on 

global and local contexts, the module dynamically captures the complex short- and long-

range  correlations  between  a  current point  and  its neighboring  and distant points  by 

means  of  the  dynamic  graph  structure.  Subsequently,  adaptive  graph  convolution  is 

Figure 2. Framework of the proposed method.

3.1. Point Cloud Chunking

For PCs with millions of points, it is not practical to directly input them into the neural
network at one time, due to the physical constraint of the GPU memory capacity. To address
this challenge, a chunking strategy is deployed. Specifically, a PC containing N points will
be divided into many chunks, each of which has a fixed number (n) of points. Given that N
is usually not divisible by n, a point-filling technique is further implemented, i.e., to add a
certain number na (na < n) of filler points in the last PC chunk, so as to ensure that all the
chunks reach the preset number (n) of points. It is worth noting that both the geometrical
and attribute information of these filler points is replicated from the last valid point. In the
subsequent processing and recovery phases, the filler points are removed to ensure that the
PC chunks processed with the neural network can be accurately restored to their original
state, thus excluding the potential interference introduced by the filler points. Through the
implementation of chunking, massive PC data that are difficult to directly process can be
successfully transformed into a series of smaller-scale and easy-to-process data chunks, thus
enabling neural networks to process these massive datasets in an efficient, chunk-by-chunk
manner, and significantly enhancing the processing efficiency and feasibility.

3.2. Feature Extraction Module

The feature extraction module covers dynamic graph structure modeling, adaptive
graph convolution, feature constraints, and bi-branch attention. Specifically, to focus on
global and local contexts, the module dynamically captures the complex short- and long-
range correlations between a current point and its neighboring and distant points by means
of the dynamic graph structure. Subsequently, adaptive graph convolution is introduced to
focus on the points with a higher degree of artifacts, to extract and enhance their attribute
features. Moreover, a feature constraint mechanism and a bi-branch attention mechanism
are designed. The former is to maintain the spatial consistency of neighboring points at
the attribute feature level during the PC recovery process, while the latter is to merge
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the high-frequency information and contextual information to effectively restore the fine
features and texture details. Figure 3 intuitively showcases the architecture of the entire
feature extraction module.
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Dynamic graph construction. For a given compressed PC P = {G,A}, where
G = {Gi = (xi, yi, zi), i ∈ [0, N − 1]} represents its geometric coordinate information and
A = {Ai = (Ri, Gi, Bi), i ∈ [0, N − 1]} represents its color attribute. Here, i denotes the
index of the points in a PC and N is the number of points. First, a directed self-loop
graph G = (V ,E) is constructed based on the coordinates of P to capture its intrinsic spatial
structure, where V = {vi|i = 1, . . ., N} represents the node set, which accurately maps each
point in P, and E ⊆ V × V defines the edge set, which obtains the connectivity relation-
ships among the nodes based on a specific proximity criterion (e.g., K-nearest neighbor
algorithm), so as to ensure that each node vi ∈ V is connected to its K nearest neighbors,
including itself. Subsequently, to enhance the information representation of the graph, the
edge eigenvectors eij =

[
Gj − Gi, dis(Gj, Gi), Ai, Aj − Ai

]
are defined, where j denotes the

index of neighboring points in the neighborhood of i-th center point, j = 1, 2, . . ., K, and,
in particular, when j = 1, it denotes the connection of a node to itself. Specifically, any eij
integrates the geometric coordinates Gi and the color attributes Ai of node vi, as well as
the relative geometric features Gj-Gi and color features Aj − Ai between that node and its
j-th neighboring point. In the above formula, dis(·) denotes the Euclidean distance metric
function, which reflects the spatial proximity between the nodes and in turn enhances the
differentiation of the features. It is worth noting that when j = 1, G1 and A1 are set to be the
information of the node itself, ensuring that the self-connecting edges carry the complete
information of the node, thus avoiding the loss of information, while maintaining the
integrity of the graph structure. The concatenation operation [·,·] effectively merges spatial
location and color attribute features into a unified eigenvector, capturing comprehensive
node information.

Subsequently, a dynamic graph structure updating strategy based on feature similarity
is used in the graph construction process, discarding the traditional method that relies on
fixed spatial locations. Specifically, node similarity is evaluated in the feature dimension, al-
lowing nodes with similar features to be grouped together, which dynamically reshapes the
graph topology. This strategy enables the graph structure to capture intrinsic connections
between a current point in the PC and distant points that share closely related features.

Overall, the dynamic graph construction strategy significantly broadens the receptive
field of individual nodes within the network, while also enriching the feature input space
for subsequent dynamic graph convolution operations. This mechanism enhances the
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network’s ability to capture and utilize both local and global dependencies, resulting in
more accurate and insightful feature representations.

Adaptive graph convolution. To focus further on the points with a high amount of
artifacts, adaptive graph convolution is introduced for feature extraction, with its structure
shown in Figure 4. Specifically, an adaptive kernel is designed to capture the complex and
unique geometric and contextual relationships in PCs. For each channel in terms of the
M-dimensional output features, adaptive graph convolution dynamically generates the
kernel using the point features:

sm
ij = gm( fij

)
, j ∈ N(i) (1)

where m = 1, 2, . . ., M denotes one of the output dimensions corresponding to a single filter
defined in adaptive graph convolution and N(i) is the set of neighborhood points associated
with node vi. To combine the global and local features, we define the edge feature eij as
the input feature fij for the first adaptive kernel layer. Moreover, g(·) is a feature mapping
function, consisting of a 1 × 1 convolutional layer, a BatchNorm layer, and a LeakyReLu
activation layer.
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Similar to 2D convolution, the M output dimension is obtained by computing the
convolution of the input features with the corresponding filter weights, i.e., the convolution
of the adaptive kernel with the corresponding edges:

Sm
ij = σ

〈
eij, sm

ij

〉
(2)

where ⟨·, ·⟩ denotes the inner product of two vectors outputting Sm
ij ∈ R and σ(·) denotes the

nonlinear activation function. The Sm
ij stacking of each channel generates the edge feature

Sij = [S1
ij, S2

ij, . . ., SM
ij ] ∈ RM between the connection points. Finally, the output feature f ′ i

of the central point vi is defined by applying the aggregation to all the edge features in
the neighborhood.

f ′ i = max
j∈N(i)

(
σ
(

fij ⊕ Sij
))

(3)

where max(·) denotes the maximum pooling function and ⊕ represents an element-wise addition.
Additionally, fast and robust aggregation of the output features can be delivered by

introducing a residual connection mechanism.
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In general, the dynamic graph convolution achieves fine-grained extraction and char-
acterization of PC data attributes. The core advantage lies in its ability to pay significant
attention to and enhance the processing of distortion-significant regions in PC data, enabling
the network model to more acutely identify and focus on these potentially challenging
regions. In addition, it also facilitates the design and implementation of a feature constraint
mechanism, making the feature regulation process more flexible and efficient.

Feature constraint mechanism. After compression, the attribute information of neigh-
boring points in a PC should theoretically be spatially consistent, so as to ensure the visual
effect of content rendering. Global features can capture the overall statistical information
and structure of a PC, so that the neural network can deeply understand the attribute
distribution and geometry. So, it is confirmed that global features can play a key role in
the artifact removal process, guiding the network to adjust and optimize the extracted
graph features at the macro level, thus improving the overall recovery effect. Therefore, a
global feature-based constraint mechanism is designed and implemented to ensure that the
recovery process strictly follows the principle of spatial consistency.

The core of the feature constraint mechanism designed as mentioned above consists in
the scaling adjustment to the graph features of PCs. Specifically, its expression is:

Fi = GFC
(

f ′ i
)
= α ∗ f ′ i + f ′ i (4)

where α denotes the global eigenvector of P and GFC(·) is the feature constraint function,
which adjusts the graph feature f ′ i according to α.

This process not only strengthens the correlation between the graph features and the
global context, but also effectively promotes the maintenance of spatial consistency in the
restoration process, resulting in a more visually coherent and natural PC.

By implementing the feature constraint mechanism, it can effectively mitigate abrupt
changes during the recovery process, ensuring the continuity and smoothness of PC
attribute information.

Bi-branch Attention Module. To address the problem that high-frequency information
may get lost during the compression process, a bi-branch attention module is proposed,
as shown in Figure 5. It is designed to deeply integrate the high-frequency features of
PCs to accurately recover detailed information and improve the overall quality. In the
bi-branch attention module, input features F are processed in parallel. One branch uses
CNNs to directly represent feature mapping and transformations, in order to capture the
basic structural information. Another branch performs high-frequency feature extraction,
dedicated to mining and enhancing the high-frequency information in PCs. Specifically,
the branch for high-frequency feature extraction first selects the significant maxima from
the input features through a max-pooling operation, thus initially retaining the key texture
information. Subsequently, this branch deeply processes the selected features through four
consecutive unit layers (the first three unit layers consist of a 1 × 1 convolutional layer,
a BatchNorm layer, and an ReLu layer, while the last omits the ReLu layer, to maintain
feature flexibility) and then extracts the feature FH, which is rich in high-frequency details.
Meanwhile, another branch applies the same sequence of the four unit layers directly to
the input feature F to acquire a more general and optimized feature representation. Then,
the output features from the two branches are preliminarily fused by element-by-element
summation and further normalized in a Softmax layer to adjust the weights of each feature
element, in order to ensure the rationality and effectiveness of the fusion process. Finally,
the normalized result is multiplied with the input feature F in an element-by-element
manner, in order to enhance the contribution of the high-frequency features in terms of the
overall features and deliver the seamless fusion of the high-frequency features with the
base features.
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The expression for this process can be demonstrated as:

F′
µ = S

(
FH

µ + Unit(Fi)
)
⊙ Fi, µ = 1, 2, 3, 4 (5)

where Unit(·) denotes the processing function for the unit layer sequence, ⊙ denotes the
element-by-element multiplication, and S(·) denotes the Softmax normalization function.

By introducing the innovative bi-branch attention module, it enables the deep ex-
traction and efficient utilization of high-frequency features in PCs. This module not only
compensates for the loss of high-frequency information during compression, but also en-
hances the complementarity and fusion between low- and high-frequency features. As a
result, the recovered PC can accurately reproduce the detailed features of the original data,
while preserving global structural integrity.

Layered feature concatenation. To address the problem of gradient vanishing or
gradient explosion that may be encountered during the neural network backpropagation
process, we adopt the strategy of layered feature concatenation. This strategy directs the
output features of each bi-branch attention block to the terminal of the feature extraction
architecture and integrates these features through the concatenation operation to form the
final output feature F′

concat, which is expressed as:

F′
concat = concat

(
F′

1, F′
2, F′

3, F′
4
)

(6)

where concat(·) denotes the feature concatenation operation and F′
1, F′

2, F′
3, F′

4 denote the
output features from the first to the fourth bi-branch attention blocks, respectively.

Such a layered feature concatenation strategy not only effectively maintains the fine-
grained information independently extracted from each branch and avoids the loss of
key information during the transmission process, but also captures the features more
comprehensively by integrating multi-level feature representations.

3.3. Point Cloud Attribute Offset Estimation Module

This module takes F′
concat as the input parameter to estimate the offsets of the at-

tributes. The structure is shown in Figure 6. Specifically, it takes an entire PC chunk as the
input. Then, for any given 3D coordinates Gi, its K nearest neighbors are extracted as a
sample set. Further, the attribute relative feature Aj − Ai and F′

concat are utilized to learn
the PC attribute’s offset, denoted as Foffset. Formally, the module can be represented as:

Fi
o f f set = Estj∈N(i)(Aj − Ai, F′

concat) (7)

where Fi
o f f set denotes the attribute offset of point Pi, Est(·) is a composite function consisting

of a Multi-Layer Perceptron (MLP), and j ∈ N(i) are the neighboring points distributed in
the attribute space of point Pi.
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Training objective. A training objective function is constructed, which aims to min-
imize the L2 norm squared distance between the predicted attribute offset and its true
offsets. The original PC is defined as Pori =

{
G, A

}
, which is used to compute the attribute

offset of point Pi:
Fo f f set = A − A, A ∈ R3 (8)

where A − A is the difference vector in the attribute space between the original and
compressed PCs, for this difference vector, Fo f f set can also be expressed as the displacement
vector from the processed attribute state A to the original attribute state A.

The training objective is to align the predictions of the module with the prede-
fined offsets of the real attributes, so that the module can learn and predict the attribute
offsets accurately:

L(i) = Ej∈N(i)

(∥∥∥Fi
o f f set − Fo f f set

∥∥∥2

2

)
(9)

where ∥·∥2
2 denotes the square of the L2 norm and E(·) denotes the expectation function;

weighted averaging of the offset of the point properties occurs in the local neighborhood to
reduce the overall error.

For a PC, the attribute information exhibits spatial consistency in space, i.e., neigh-
boring points tend to have similar attribute characteristics, a phenomenon that does not
exist in geometric coordinates. For this reason, we not only focus on the attribute offset
prediction of point Pi at its own location, but also explore in-depth the attribute offset
prediction in terms of its spatial neighborhood. This consideration aims to fully explore
and utilize the rich attribute information within the local neighborhood of point Pi, so as to
enhance the accuracy and robustness of attribute prediction.

The final training objective is to aggregate the predicted offsets of the local attributes
about each point Pi and compute their mean values using the following expression:

L = mean

(
N

∑
i=1

L(i)

)
(10)

where mean(·) denotes the average of the local attribute offsets of all the points in a PC.
This training objective can effectively balance the local prediction bias and promote

equal consideration of the prediction contributions among different points. Furthermore, it
includes a strong emphasis on the spatial consistency of attributes between the recovered
PCs and the original PCs. By minimizing the mean value of the predicted offsets, the
network can learn and simulate the spatial variation patterns of the original attributes of
PCs, thereby reducing the impact of texture artifacts during the recovery process.
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3.4. Iterative Removal of Artifacts

To reduce artifacts and optimize the texture quality of PCs, the attribute offsets of
each point are first calculated, and this process is further extended to the K-nearest neigh-
bors of each point. By calculating the weighted average of the attribute offsets of the
neighboring points, the attribute offset information of the local region where point Pi is
located is considered comprehensively, so as to improve the accuracy of capturing the
attribute changes:

g(Pi) =
1
K ∑

Pj∈KNN(Pi)

Fj
o f f set (11)

where KNN(Pi) denotes the neighborhood points of Pi.
After the abovemetioned calculation has been performed, an iterative updating

method is further used to gradually adjust and optimize the attribute information of
each point. And the iterative process is shown as follows:

A(0)
i = Ai, Ai ∈ A,

A(t) = A(t−1)
i + λtg

(
A(t−1)

i

)
, t = 1, 2, . . . T

(12)

where λt denotes the step size of the t-th iteration and its design follows two main guide-
lines: (1) λt gradually decreases and approaches 0 with the increase in the iteration number
to ensure the convergence and stability of the iterative algorithm. (2) The value of λ1 is in
the range of less than 1, but cannot be too close to 0, as according to Equation (5), too small
a step size may lead to such an overly conservative estimation of the attribute offsets that
the differences in the attribute values between the compressed PC and the original PC may
not be adequately revealed.

Therefore, after an appropriate number of iterations for processing the compressed
PC, the attribute compression artifacts can be effectively removed, and a better recovered
PC P̂ =

{
Ĝ, Â

}
can finally be acquired.

By implementing a well-designed iterative strategy, we effectively correct the additive
bias in PC properties. The core strength of this strategy lies in its ability to incrementally
approximate and compensate for the complex distortions introduced by systematic factors
during compression, thereby significantly enhancing the visual quality and fidelity of the
recovered PC.

4. Experiments

In this section, a series of experiments are carried out to quantitatively and qualitatively
evaluate the performance of the proposed method in removing the texture artifacts in
compressed PCs. In addition, some ablation experiments are also conducted to verify
the effectiveness of the feature constraint mechanism and the high-frequency feature
fusion. These experiments are conducive to comprehensively evaluating the robustness
and performance of the proposed method.

4.1. Experiment Setup

(1) Dataset. To train the proposed network model, we select five static PCs defined
within the MPEG PC common test conditions [20,61,62], as original samples for generating a
training set. The five static PCs are as follows, i.e., “basketball_player_vox11”, “loot_vox10”,
“exerciser_vox11”, “queen”, and “boxer_vox10”, which present rich color and texture
information, as shown in Figure 7. To generate the training samples, the latest G-PCC
reference software TMC13v14 is used to compress these PCs, four differentiated attribute
compression levels (i.e., R01, R02, R03, and R04) are set, and the default PredLift criterion
is adopted to process the color attributes. It is worth noting that each attribute compression
level trains a model independently.
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To validate the effectiveness of the proposed method, the same test samples provided
by MS-GAT [56] are used in this paper. These samples include “Andrew”, “David”, “Phil”,
“Ricardo”, “Sarah”, “Model”, “Longdress”, ”Red and black”, “Soldier”, and “Dancer”. It is
worth noting that, unlike MS-GAT, the proposed method skips the step of transforming the
RGB color space into the YUV color space during the processing, but directly uses the RGB
attribute information as the input for the model. It simplifies the processing workflow and
makes complete use of the color information in the PCs, without the need to train the three
independent channels of Y, U, and V separately, thus improving the overall performance
and efficiency of the model.

(2) Training and Testing Setup. We adopt NVIDIA GeForce RTX 3090 GPU (Nvidia,
Santa Clara, CA, USA) for network model training. During the training process, the Adam
optimization algorithm is used, for which the β1 and β2 parameters are set to 0.9 and 0.999,
respectively, the learning rate is set to 10−4, and the batch size is set to 8. For the specific
implementation, n, the point number in each patch, is set to 2048. In the feature extraction
module, when the graph is constructed, K, the number of neighborhood points, is set to 16,
and the dimension of the output feature for all layers is set to 64. For the artifact removal
task, the iteration number is set to 2, aiming to effectively reduce the artifacts introduced
during the compression process by a limited number of iterations and optimizations. Each
network model is trained on the training dataset for 300 epochs.

(3) Performance Metrics. Two evaluation metrics are adopted to comprehensively and
objectively measure the quality of the compressed PC after recovery. Firstly, since the color
information in the PC is important for visual quality and the RGB peak signal-to-noise ratio
(RGB-PSNR) is suitable for assessing the color fidelity of the compressed PC restoration
task, we adopt the RGB-PSNR as the basic criterion for revealing the fidelity of PCs in terms
of color, which can be calculated as follows:

RGB − PSNR = 10 lg
(

MAX2

MSE

)
(13)

where MAX is the maximum of the RGB color values and MSE is the mean square error
between the recovered PC and the original PC in terms of the RGB color values.

Secondly, to better align with human visual perception, we also utilized the full-
reference quality evaluation metric PCQM [63], which integrates both geometric and color
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information, offering high consistency in terms of subjective human perception. The smaller
the PCQM [63] score, the better the quality of the PCs. It can be calculated as follows:

fG =
1
N

N
∑

i=1
disG

(
Gi, Ĝi

)
,

fA =
1
N

N
∑

i=1
disA

(
Ai, Âi

)
,

PCQM = ωG fG + ωA fA

(14)

where ωG and ωA are the weights, the geometric feature fG is used to measure the difference
in geometric structure between the two sets of PCs, and the color feature fA is used to
measure the color difference between the original and recovered PCs.

4.2. Quantitative Quality Evaluation

To verify the performance of the proposed method in removing the attribute compres-
sion artifacts of PCs, it is compared with G-PCC [9] and MS-GAT [56]. For fairness, the data
for training and testing are consistent across all methods. Table 2 presents the comparison
results on the PredLift training and testing, and the optimal experimental results when
compared to G-PCC are marked in bold, respectively. As found in Table 2, compared to
G-PCC, the proposed method delivers good results for attribute recovery of the compressed
PCs, with an average improvement of 3.40% for PCQM [63] and 0.34 dB for RGB-PSNR,
indicating a significant quality improvement. As to the comparison with the MS-GAT [56]
method, although it performs better for certain compressed PCs, there still exist some PCs
with un-improved or even deteriorated quality. In contrast, the proposed method achieves
positive quality gains on all the test samples, demonstrating its advantages in removing
the attribute compression artifacts of PCs. Additionally, we have published the training
curve of the network model, as shown in Figure 8. In the first 100 epochs, the training
loss decreases relatively fast and eventually stabilizes with subsequent training rounds,
indicating that the model exhibits good convergence using the dataset.

Table 2. The objective quality metrics for attributes tested using the PredLift algorithm.

Point
Cloud

PCQM (×102)↓ RGB-PSNR (dB)↑

G-PCC [9] MS-GAT
[56] Ours G-PCC [9] MS-GAT

[56] Ours

Andrew 1.3638 1.3337 1.3264 24.6359 24.7908 24.8025

David 1.0940 1.1285 1.0889 30.6753 31.0564 31.0753

Phil 1.4518 1.4269 1.3811 25.4156 25.5728 25.6495

Ricardo 0.5745 0.6167 0.5694 32.1032 32.5871 32.7163

Sarah 0.5901 0.5570 0.5560 32.1174 32.4206 32.4897

Longdress 0.9948 0.9350 0.9361 24.2499 24.4443 24.4359

Red and
black 0.9398 0.8994 0.9231 28.2514 28.5280 28.4774

Soldier 1.0493 0.9885 1.0085 27.5076 27.8499 27.7555

Dancer 0.6532 0.6221 0.6391 30.8330 31.5893 31.3574

Model 0.5469 0.5001 0.5213 29.1102 29.6597 29.4921

Average 0.9265 0.9008 0.8950 28.4899 28.8089 28.8252
Note: Optimal performance results are shown in bold
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4.3. Qualitative Quality Evaluation

To demonstrate the performance of the proposed method in terms of the subjective
visual quality, we visually present the recovered PCs, as shown in Figure 9. First, four
samples compressed by G-PCC are showcased. As observed, the compressed PC illustrates
obvious blurring and blocky features, especially the facial region in the human sample PC
demonstrates obvious deformation and blurriness. For e.g., the face of “Phil” is severely
blurred, while delivering remarkable blocky effects. After being optimized by the MS-
GAT [56] method, the compressed PC is improved in terms of its visual quality, with a less
blurred appearance generated. However, there is over-smoothing, which results in some
details not being clearly rendered, for example, as seen in the faces of “Longdress”, “Phil”,
and “Rachel”. In the case of “Longdress”, the facial details are not sufficiently restored,
appearing to be excessively smooth and failing to effectively reproduce the fine structure of
the original PC. This indicates that the MS-GAT [56] method is still yet to be optimized in
terms of handling artifacts and retaining details.

In contrast, the proposed method performs better in restoring the visual quality of
the PCs. It can be found that, for the four samples, the proposed method delivers more
natural restoration results, especially in the facial areas and in for some details, such as
the nuances at the nose edge of “Ricardo”. These outcomes benefit mainly from the fact
that the proposed method focuses on and incorporates high-frequency information. These
visualization results further confirm the superiority of the proposed method. In particular,
in recovering the detailed information of PCs, the proposed method showcases remarkable
advantages and provides reliable visual evidence for the improvement of the PC quality.

4.4. Extended Application in Terms of RAHT

In order to further verify the generalization performance of the proposed method, a
cross-configuration migration test is implemented. Specifically, the network model trained
in regard to the G-PCC PredLift configuration is directly applied to the compressed PCs in
the G-PCC RAHT configuration. The experimental results are shown in Table 3.
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Figure 9. Schematic diagram of the qualitative quality assessment results. Notes: ”ori” denotes
the original PC [64]; “G-PCC” denotes the PC reconstructed using G-PCC TMC13v14; “MS-GAT”
denotes the PC reconstructed using the MS-GAT [56] method; “Ours” denotes the PC reconstructed
using the proposed method.

Table 3. Quantitative comparison of the quality achieved with G-PCC on RAHT.

Point Cloud
PCQM (×102)↓ RGB-PSNR (dB)↑

G-PCC [9] Ours G-PCC [9] Ours

Andrew 2.0138 2.0114 23.6869 23.7308

David 1.5752 1.5562 28.8023 28.9123

Phil 2.3690 2.3358 23.8219 23.9428

Ricardo 0.9131 0.9101 30.1297 30.1850

Sarah 0.9536 0.9258 29.6014 29.7508

Longdress 1.7362 1.7273 22.4465 22.5071

Red and black 1.5020 1.5095 26.4601 26.4987

Soldier 1.8023 1.7938 25.7579 25.7886

Dancer 0.9789 0.9767 29.1226 29.1746

Model 0.8411 0.8408 27.2609 27.3099

Average 1.4685 1.4587 26.7090 26.7801
Note: Optimal performance results are shown in bold
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As clearly observed in Table 3, compared to G-PCC, the proposed method demon-
strates a significant quality improvement in regard to the highest attribute compression
level (i.e., R01). Specifically, the proposed method gains 0.07 dB in terms of the RGB-PSNR
over G-PCC, while rendering a 0.67% gain in the PCQM [63] metric, thus further validating
the effectiveness of the proposed method in boosting the quality of PCs. In particular,
this performance improvement is delivered without any additional training for the spe-
cific configuration of G-PCC RAHT, therefore fully demonstrating the cross-configuration
adaptability and generalizability of the proposed method.

4.5. Spatial, Temporal, and Computational Complexity

To quantitatively analyze the spatial and temporal complexity of the proposed method,
the processing time for a compressed PC is calculated, and the spatial complexity is
evaluated using the number of learnable parameters of a network model. A comparison
between the MS-GAT [56] method and the proposed method is given and analyzed, and
the results are shown in Table 4. For the MS-GAT [56] method, the following factors are
comprehensively considered, i.e., block chunking for Y, U, and V components, thee block
combination time, and the artifact removal time. It is worth noting that the processing
time does not include the time for compressing and reading/writing files, to ensure a
fair comparison. As can be found in Table 4, on average, the proposed method takes
about 1/10 of the requirements needed by the MS-GAT method in terms of time for
processing the compressed PCs, thus clearly illustrating the advantage of the proposed
method in providing a processing speed that is 10-fold faster. In terms of the network model
parameters, the scale of each separate color component in regard to the MS-GAT method is
about 1.8 M, with a total of about 5.4 M learning parameters required. For the proposed
method, the parameter scale of the whole network model is about 3.6M, meaning that 33%
of the parameter space is saved. These results fully manifest the outstanding advantages
of the proposed method in terms of performance and resource utilization. Moreover,
to develop a more comprehensive performance evaluation framework, we additionally
provide an analysis of the computational complexity of the network model. Given the
MS-GAT [56] method does not cover the complete implementation code, our analysis of
the computational complexity focuses on the elaboration of the self-methodology and is
intended to provide a benchmark for subsequent studies. Specifically, as shown in Table 4,
depending on the different sizes of the PCs, the required FLOPs for the proposed method
range from 1.82 T to 21.19 T. Finally, we achieve an average of 7.65 T FLOPs.

Table 4. Analysis and comparison of running time (in seconds) and computational complexity. The
MS-GAT method and the proposed method are both run on the same GPU platform to process the
compressed PCs. “Part” and “Comb” stand for the “Partition” and “Combination” of the block patch.

Model
MS-GAT [56] Ours

Part Y U V Comb Overall Part RGB Comb Overall FLOPs

David 0.19 22.38 21.87 22.22 0.03 66.69 0.14 6.20 0.05 6.38 2.81T

Phil 0.25 25.01 24.48 24.70 0.03 74.47 0.25 5.29 0.13 5.66 3.16T

Ricar 0.07 14.90 14.15 14.49 0.02 43.63 0.07 3.39 0.04 3.51 1.82T

Sara 0.14 20.53 19.90 20.05 0.02 60.64 0.15 4.73 0.03 4.92 2.57T

Longdress 1.75 50.51 50.16 50.13 0.05 152.6 1.87 10.89 0.09 12.84 6.50T

Dance 23.46 162.96 162.85 163.02 0.18 512.47 23.88 33.77 0.24 57.89 21.19T

Andrew 0.12 19.05 18.51 18.55 0.02 56.25 0.14 5.21 0.02 5.36 2.40T

Model 23.36 162.21 164.22 161.53 0.18 511.5 23.27 42.83 0.15 66.25 20.86T

Red and black 1.56 48.00 48.12 47.96 0.05 145.69 1.60 10.12 0.11 11.84 6.20T

Soldier 3.76 70.06 69.32 69.36 0.07 212.57 3.94 14.47 0.12 18.54 9.00T

Average 5.47 59.56 59.36 59.20 0.07 183.65 5.53 13.69 0.10 19.32 7.65T

Note: Optimal performance results are shown in bold
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4.6. Ablation Experiments

The ablation experiments in this section are used to verify the effectiveness of the
feature constraint mechanism and the bi-branch attention module, and further experimental
analysis is conducted for the K number of neighboring points in the constructed graph.

The bi-branch attention block and the feature constraint mechanism. In this paper,
the contribution of the bi-branch attention block and the feature constraint mechanism to
the proposed method is investigated and the results are shown in Table 5. In this table, I
denotes the baseline network model, which contains the complete implementation of all
the modules, II represents the network without the bi-branch attention module, and III
refers to the network without the feature constraint mechanism. By comparing models
I and II, it can be observed that the baseline model outperforms the version without
the bi-branch attention module. This result strongly demonstrates the key role of the
bi-branch attention module in efficiently fusing the high-frequency features of PCs and
also highlights its importance in accurately recovering fine texture details. The unique
design of the bi-branch attention block effectively facilitates multi-level interaction and
information enhancement, thereby improving the overall network’s ability to capture and
recover intricate scene details. Furthermore, the comparison between models I and III
demonstrates the positive impact of the feature constraint mechanism on the overall model
performance. This mechanism significantly optimizes the quality of reconstructed PCs by
enforcing spatial consistency during the recovery of PC attributes.

Table 5. Analysis of the contribution of the feature constraint mechanism and the bi-branch attention
module in the proposed method. The test is carried out on the G-PCC PredLift dataset at compression
level R04.

Point Cloud
PCQM (×102)↓ RGB-PSNR (dB)↑

I II III I II III

David 0.3997 0.4008 0.4012 37.2630 37.2494 37.2468

Phil 0.2214 0.2221 0.2219 32.1643 32.1614 32.1631

Ricardo 0.2021 0.2031 0.2038 39.2426 39.2188 39.2093

Sarah 0.1443 0.1447 0.1454 39.2129 39.1802 39.1735

Longdress 0.1344 0.1346 0.1347 31.8037 31.7999 31.7973

Dance 0.1795 0.1807 0.1804 37.6484 37.5588 37.5884

Andrew 0.2807 0.2813 0.2819 30.6925 30.6884 30.6735

Model 0.1543 0.1560 0.1557 36.1274 35.9864 36.0986

Red and black 0.2023 0.2037 0.2043 35.0430 34.9648 34.8639

Soldier 0.1338 0.1350 0.1343 35.1473 35.1202 35.1364

Average 0.2053 0.2062 0.2064 35.4345 35.3928 35.3951
Note: Optimal performance results are shown in bold

The number (K) of the neighboring points in the constructed graph. To explore the
optimal configuration for the number of neighboring points (K) used in graph construction,
a series of ablation experiments are designed and implemented, with the results shown in
Table 6. In this experiment, the values of K are set to 8, 12, 16, and 20, aiming to explore their
effects on the removal of PC attribute compression artifacts. The results clearly showcase
a significant statistical correlation between the value of K and the effectiveness of artifact
removal. Overall, the performance of the proposed method shows a gradual enhancement
trend with the gradual increase in the K value. This improvement can mainly be attributed
to the fact that a larger K value can capture richer local neighborhood information, which
helps to identify and remove attribute artifacts more accurately. However, when the
K value is too large, feature redundancy may arise. While this increases the richness
of the information, it also introduces a significant amount of weakly correlated or non-
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essential data. This can increase computational complexity, introduce noise, and reduce the
model’s ability to discriminate between relevant features, ultimately degrading the overall
performance. After considering all the factors and making careful analysis, we select the
neighboring point number K = 16 as the optimal configuration. This selection strategy aims
to achieve a delicate balance between maximizing the artifact removal effect and effectively
controlling the computational overhead, achieving an optimal trade-off between efficiency
and accuracy.

Table 6. The effect on the network performance of the number (K) of neighboring points in the
constructed graph. The test is carried out on the G-PCC PredLift dataset at compression level R04.

Point
Cloud

PCQM (×102)↓ RGB-PSNR (dB)↑
K = 8 K = 12 K = 16 K = 20 K = 8 K = 12 K = 16 K = 20

David 1.0797 1.0852 1.0889 1.0758 31.0714 31.0623 31.0753 31.0723

Phil 1.3734 1.3897 1.3811 1.3812 25.6354 25.6528 25.6495 25.6459

Ricardo 0.5553 0.5651 0.5694 0.5580 32.6992 32.7124 32.7163 32.6945

Sarah 0.5645 0.5686 0.5560 0.5649 32.3384 32.3559 32.4897 32.3547

Longdress 0.9380 0.9490 0.9361 0.9397 24.4270 24.4421 24.4359 24.4511

Dance 0.6340 0.6243 0.6391 0.6252 31.3192 31.3833 31.3574 31.3495

Andrew 1.3271 1.3293 1.3264 1.3319 24.7983 24.8188 24.8025 24.8132

Model 0.5165 0.5087 0.5213 0.5127 29.4699 29.5164 29.4921 29.4921

Red and
black 0.9179 0.9244 0.9231 0.9061 28.5342 28.5148 28.4774 28.5174

Soldier 1.0034 1.0034 1.0085 0.9983 27.7540 27.7813 27.7555 27.7802

Average 0.8910 0.8948 0.8950 0.8894 28.8047 28.8240 28.8252 28.8171

Note: Optimal performance results are shown in bold

5. Conclusions

This paper develops an iterative removal method for attribute compression artifacts
based on a graph neural network, with the aim of enhancing the visual quality of G-PCC
compressed point clouds (PCs). It first takes the geometric coordinates of a compressed PC
as the cornerstone for constructing the graph, while the attribute information is regarded as
the vertex signals in the graph, so as to construct a graph that can reflect the properties of
the PC. Given that different points may suffer from different degrees of artifacts during the
compression process, adaptive graph convolution is introduced to dynamically adjust the
parameters of the convolution kernel, thus extracting the attribute features in the severely
damaged regions more effectively. Further, given that each point in the compressed
PC may be correlated with its near- and far-distance points, a dynamic graph network
structure is adopted to capture the correlation between a current point and its near- and
far-distance points. Moreover, to ensure that the attribute information of neighboring points
retains a certain level of spatial consistency, a feature constraint mechanism is designed.
To address the problem of high-frequency information loss during the PC compression
process, a bi-branch attention module is designed to fuse the high-frequency features of the
compressed PC and effectively remedy the detail-recovery capability. The experimental
results demonstrate that compared with the state-of-the-art methods, the proposed method
has advantages in terms of improving the quality of G-PCC compressed PC attributes.
The ablation experiments verified the key role of each module in the proposed method in
boosting the overall performance.
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