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Abstract: The class imbalance problem is a significant challenge in node classification tasks. Since
majority class samples dominate imbalanced data, the model tends to favor the majority class,
resulting in insufficient ability to identify minority classes. Evaluation indicators such as accuracy
may not fully reflect the model’s performance. To solve these undesirable effects, we propose a
framework for synthesizing minority class samples, GraphSHX, to balance the number of samples
of different classes, and integrate the XGBoost model for node classification prediction during the
training process. Conventional graph neural networks (GNNs) yielded unsatisfactory results, possibly
due to the limited number of newly generated nodes. Therefore, we introduce a meta-mechanism to
deal with small-sample problems, and employ the meta-learning approach to enhance performance
on small-sample tasks by learning from a large number of tasks. An empirical evaluation of node
classification on six publicly available datasets demonstrated that our balanced data set method
outperforms existing optimal loss repair methods and synthetic node methods. The addition of the
XGBoost model and meta-learning improves the accuracy by more than 5% to 10%, with the overall
accuracy of the improved model being 15% higher than that of the baseline method.

Keywords: graph neural network; class imbalance node classification; ensemble learning

1. Introduction

Graph data is extensively utilized across various domains. Node classification rep-
resents a crucial task in the realm of graph data applications and constitutes a focal point
within the domain of graph neural networks [1,2]. Nevertheless, prevailing research on
this task often assumes class balance [3], which may lead to practical loopholes due to the
prevalent nature of class imbalance in real-world datasets [4,5]. For instance, in a citation
network [6], articles on machine learning far outnumber those on cryptography. In binary
problems such as anomaly detection tasks encompassing malicious activities like brushing
behavior, equipment failures, or credit card frauds, these instances typically constitute only
a minute fraction of the overall dataset. Training directly on unbalanced class data tends to
bias models towards dominant classes, resulting in overfitting or inadequate recognition of
minority classes while evaluation metrics may not fully reflect model performance [3,6].

Addressing class imbalance has long been an enduring concern within the field of
machine learning [3]. Two primary approaches are employed for mitigating this issue:
one involves adjusting loss functions or sample weights to rectify biases and rebalance
influence across different classes; the other entails synthetic sampling methods that alter
dataset composition by generating additional samples. This paper focuses on synthetic
sampling methods, because topological information can also be synthesized for graph data,
and better performance can be obtained empirically by using the inherent properties of
graph structure.

The class imbalance causes the minor subspace to be squeezed by the major subspace
in the training process. Minor test samples are difficult to include in their correct latent
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subspaces, leading eventually to unsatisfactory classification performance during the
inference phase [7]. The purpose of synthesizing samples is to enlarge the boundary of the
minor class at the class decision boundary. However, simply synthesizing would inevitably
violate the neighbor class subspace since the boundary of the minor class is shared with its
neighbors, thus degrading the neighbor class and causing misclassification. Therefore, we
propose a GraphSHX framework to enlarge the subspace of minor classes while avoiding
the deterioration of neighboring ones. In addition, we integrate the XGBoost [8] model in
the training process for node classification prediction. The XGBoost model can provide
a node classification method different from the neural network model, supplementing
the shortcomings of the neural network model, thereby improving the performance of
the overall model. We incorporate meta-learning into GNNs. When dealing with class
imbalance problems using standard GNNs, there is no inherent mechanism to specifically
address the challenge of insufficient samples of secondary classes, which often results in low
accuracy. However, meta-learning, with its suitability for few-shot learning, can mitigate
the shortcomings of imbalanced data by improving the learning process for minority class
samples. Meta-learning excels at extracting universal patterns and principles from a limited
number of samples. This capability enables the model to discover valuable features within
minority class samples and apply these learned insights to the overall classification task.
This is crucial for handling imbalanced data, as it helps the model better differentiate
between minority and majority classes, thereby enhancing the recognition and classification
performance for minority classes.

2. Related Work
2.1. Class Imbalance Problem

The class imbalance problem is a common issue in various machine learning tasks.
This problem arises when the number of samples in the major class significantly exceeds
that in the minor class within the training set. Generally, there are two main approaches for
handling this issue: one involves modifying the loss function to make the model pay more
attention to the minority class, as discussed in [9–14]; the other involves altering the sample
class distribution by either increasing the number of minority class samples or decreasing
the number of majority class samples, as outlined in [15–19]. However, unlike other forms
of data, directly applying synthetic sample methods to graph data is not feasible due to
the inherent topological structure of graphs. Therefore, when synthesizing nodes, we also
need to generate corresponding connecting edges.

2.1.1. Loss-Modifying Approaches

Cost-sensitive learning is one of the most representative methods for loss repair. Elkan
et al. [9] proposed a cost-sensitive loss function that considers the different costs associated
with misclassifying different classes. This approach uses a cost matrix to represent the
misclassification costs. By assigning higher penalties to misclassifications of the minority
class and lower penalties to those of the majority class, the overall error can be minimized.
The design of such a loss function enables more emphasis on the classification accuracy of
the minority class when training decision trees, thereby improving the overall performance
of the classifier on imbalanced datasets. However, the design of the cost matrix often
relies on domain knowledge and experience, which can be somewhat subjective. Without
accurate prior knowledge, determining an appropriate cost matrix can be challenging,
prompting many researchers to conduct more specific studies. Lin et al. [10] introduced
focal loss, which dynamically adjusts the weight of each sample, making the model focus
more on hard-to-classify samples. Focal loss introduces a modulation factor to the standard
cross-entropy loss, assigning smaller weights to easily classified samples and thus reducing
their impact on the total loss. Zhang et al. [11], proposed rebalanced focal loss based on
focal loss to further correct the class imbalance problem by introducing adaptive balance
factors. This factor can dynamically adjust the degree of attention to each class and improve
the model’s ability to recognize a few classes. Cui et al. [12] proposed a class-balanced loss
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function based on the effective number of samples. By calculating the effective number
of samples for each class, this method determines the loss weights, further improving the
traditional class weight methods and making the weighting of minority class samples in the
loss calculation more reasonable. Liu et al. [13] proposed balanced cross-entropy loss, which
combines cross-entropy loss and class balancing strategies to deal with class imbalances
by adjusting class weights and loss functions. It can effectively improve the classification
performance of a few categories of samples. Li et al. [14] introduced GHM Loss, which
addresses the imbalance of positive and negative samples as well as the difficulty levels of
samples by bucketing and weighting gradients. This loss function is specifically designed
for single-stage object detection tasks, allowing the model to handle samples of varying
difficulty levels in a more balanced way during training.

2.1.2. Generative Approaches

Upsampling is a common and straightforward method for handling imbalanced
datasets. It works by increasing the number of samples in the minority class, with primary
techniques including random upsampling and duplication upsampling. While simple,
these methods can introduce redundant data and lead to overfitting. GraphSmote [15]
combines GNNs with the synthetic minority over-sampling technique (SMOTE) [16] for
data augmentation. It preserves the topological features of the graph when generating
new samples to ensure consistency with the original data. Using GNNs, it learns new
node features from neighboring nodes and its own features, generating synthetic samples
through interpolation or other methods. This method improves upon traditional SMOTE
performance on graph data but heavily relies on graph quality. Xu et al. [17] put forward
SMOTE EN based on the traditional SMOTE and introduced the concept of edge-based
neighbors. It enhances the diversity of minority class samples and improves the recognition
ability of the minority class by generating synthetic samples at the edge of sample. Li
et al. [18] proposed AdaSMOTE, which adapts to class imbalances by adaptively adjusting
parameters during synthetic sample generation. The method varies the generation of
synthetic samples based on data distribution density and difficulty. GraphENS [19] is
an ensemble sampling method based on graph structures, aiming to mitigate imbalance
issues by integrating multiple graph sampling strategies. It offers enhanced robustness and
adaptability. In this paper, we compare our proposed GraphSHX method with GraphSmote
and GraphENS, as shown in Figure 1. We observe that neither of the former methods
maximizes the expansion of the minority class subspace, whereas the latter excessively
expands and encroaches into neighboring class spaces.
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2.2. Ensemble Learning

Ensemble learning enhances overall performance by combining multiple models, and
thereby improving the prediction accuracy and stability. A single model may perform



Electronics 2024, 13, 3769 4 of 20

weakly in certain aspects, but ensemble learning enhances prediction accuracy and stability
by aggregating the predictions of multiple models, reducing bias and variance. These base
models can be either homogeneous (i.e., multiple decision trees) or heterogeneous (i.e., a
mix of decision trees, neural networks, and support vector machines). The main methods
of ensemble learning include boosting [20], bagging [21], and stacking [22], with many
variations and improvements based on these three methods. Zhang et al. [23] proposed
gradient boosting with feature subsampling, which introduced the feature subsampling
strategy based on the gradient boosting algorithm. The model is constructed by randomly
selecting a subset of features in each training round, thereby improving the robustness of the
model and reducing overfitting. Wang et al. [24] proposed ensemble learning with stacked
classifiers, an approach that creates a more robust model by stacking different classifiers,
such as decision trees, support vector machines, and neural networks. The basic idea of
stacking is to take the predictions of multiple base models as input features and train a new
model (usually a linear model) to make the final prediction. This method can synthesize
the advantages of the base model and improve the classification performance. In our work,
we utilize XGBoost (eXtreme Gradient Boosting), a gradient boosting method based on the
boosting technique. Boosting is an ensemble learning method that sequentially trains a
series of models, with each model attempting to correct the errors made by the previous one.
Common boosting algorithms include AdaBoost [25] and gradient boosting [26]. Gradient
boosting optimizes the loss function using gradient descent. XGBoost, the enhanced
and optimized implementation used in this paper, is an improvement upon the standard
gradient boosting framework.

2.3. Meta-Learning

Meta-learning is a common framework in deep learning aimed at training a meta-
learner to rapidly adapt to new tasks. Most meta-learning algorithms are “model-agnostic”,
meaning they can be applied to various types of tasks if these tasks can be optimized via
gradient descent [27]. Thus, meta-learning functions more as a framework rather than
a specific deep learning model, providing a method to train base learners effectively. In
meta-learning, nearly all deep learning models can seamlessly integrate as base-learners
within the meta-learning framework. For example, this article applies the model-agnostic
meta-learning (MAML) [28] framework to GNNs. MAML, proposed by Chelsea Finn et al.
in 2017, operates on the principle of a two-level optimization loop, enabling a model to
rapidly adapt to new tasks with minimal gradient updates. When applying the MAML
framework, the initial step involves pre-training to obtain a meta-model Mmeta. While this
meta-model may not necessarily achieve optimal performance on a specific current task,
the key lies in whether it learns weights that exhibit strong adaptability during training.
In essence, MAML aims to train the meta-model to perform well on new tasks with few
gradient updates, rather than achieving optimality on any single task.

L(ϕ) = ∑N
n=1 ln(θ̂n) (1)

here, θ̂n is trained by ϕ.
The main idea of meta-learning is to leverage prior learning experiences to quickly

adapt to new tasks with few samples. During meta-training, the process begins by sampling
from the training set to form a support set. This support set is used to compute the loss for
the meta-learning model, which is then updated via gradient descent. In meta-testing tasks,
gradient descent is similarly applied to the parameters of the meta-learning model, but
instead of evaluating the model’s performance on a query set based on updated parameters,
the focus is on how well the model adapts to new tasks with minimal updates. In the
context of imbalanced data, where there are significantly more samples in the majority class
and relatively fewer in the minority class, the model needs to adjust its parameters swiftly
to handle the uneven distribution among different classes. By enhancing the model’s ability
to adapt quickly to new tasks, applying the MAML framework to GNNs can help the model
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perform more parameter updates on minority class samples during meta-training. This
approach aims to reduce the risk of overfitting and improve the model’s generalization
capabilities.

3. Method
3.1. Synthetic Minor Class Sample Framework

The overall enhanced balance framework is shown in Figure 2.
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3.1.1. Original Samples

To expand the boundaries of minor classes, we utilize two nodes to determine this
process. The first node, vmin, is the most challenging sample selected from the minor
class. This node should maximize the similarity between positive pairs and minimize the
similarity between negative pairs to achieve the goal of difficult classification. The second
node, vadd, is chosen from the neighbors of vmin in the latent space, assisting vmin to identify
another boundary, thereby expanding the boundary from vmin to vadd.

When selecting nodes, we use node confidence as a measure of the hardness in classi-
fying nodes. Confidence reflects how certain the model is about its predictions, typically
expressed as a probability value. A well-calibrated model not only achieves high accuracy
but also accurately reflects the uncertainty of its predictions. For a node, confidence indi-
cates the probability that the node will be correctly classified; higher confidence means the
model is more certain about its classification, making the node easier to classify. Therefore,
node hardness is derived from confidence, with the node having the higher confidence
score selected as the first auxiliary node vmin. The key question is how to compute the
confidence of the prediction for each node.

Confidence calibration involves adjusting the output (also known as logits) of the
original model, often by employing temperature scaling. Guo et al. [29] proposed a temper-
ature scaling method that adjusts the temperature for calibration, maintaining the accuracy
of the original classification model. In this method, given A and X, for a l-layer model, the
output before the softmax layer is as follows:

V′ = Aσ
(
· · · Aσ

(
AVW(1)

)
W(2) · · ·

)
W(l) =

[
v′1, · · · , v′N ]⊺ (2)
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The logit v′ i and confidence p̂i for node i after calibration are as follows:

Vi =

[
σSM

(
v′ i,1

)
, · · · , σSM

(
v′ i,K

)
]⊺, p̂i = max

k
Vi,k (3)

According to the method distilling the knowledge in a neural network [29], the softmax
operation here applies temperature scaling:

qi =
exp(vi/T)

∑j exp
(
vj/T

) (4)

where T is a temperature that is normally set to 1.
In summary, our confidence-based node hardness is expressed as the following:

hard(i) = 1 − σSM

(
zi,Y(vi)

)
,

σSM(zi,·) =
exp(zi,·/T)

∑C
j=1 exp(zi,j/T)

(5)

where Zi ∈ RC are the logits for node vi, i.e., Zi = fθ(vi).
In practical computation, we calculate node hardness based on the logits Z′ from the

previous period to select vmin. To obtain vadd, we first determine the adjacent class based
on the hardness of vmin in other classes. Then, we sample from the nodes in the adjacent
class according to their difficulty in the minor class, eventually obtaining vadd.

3.1.2. Synthesizing Node

Using two pieces of information from two nodes, vmin and vadd, the synthesis of minor
nodes vmix includes two parts: node feature synthesis and edge synthesis. The raw feature
of vsyn can be generated via a simple mix-up [30] between node embeddings of vmin and
vadd in the raw feature space as

Xmix = δXmin + (1 − δ)Xadd, δ ∈ [0, 1] (6)

Here, random variable δ controls the difficulty of synthesizing samples. We changed the
distribution of beta samples in the actual experiment, and the results are shown in Figure 3.
The higher the beta, the performance of the model decreases, which indicates that the
harder it is to synthesize samples, the more the subspace can be expanded.

When synthesizing edge information, our goal is to propagate information to the
edges of the minor categories while avoiding spread to adjacent categories. We employ a
straightforward strategy: connecting vmix only with its neighbors belonging to the minor
category, rather than all neighboring nodes. Specifically, we limit connections to the 1-hop
subgraph of vmix. This approach is based on the concept of graph homophily [31,32], which
suggests that nodes and their minor-category neighbors within a 1-hop subgraph tend to
share similar labels. By connecting these nodes, messaging in GNNs would propagate the
extended boundary information inside the small class. Additionally, we reference the graph
diffusion convolution (GDC) [33] method, which proposes a smoothing based on graph
diffusion, transforming the unweighted hard graph into a topologically weighted soft
graph S = ∑∞

r=0 θrTr, T = AD−1, θr = a(1 − a)r. This method facilitates the recovery of
meaningful neighborhoods within the graph. Subsequently, we use the weighted adjacency

matrix
∼
Smin as a probability distribution in multinomial sampling to select neighbors

of vmix.
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3.2. Train the XGB Model

XGBoost models are employed to improve the performance of primary classification
models. Alongside training the main model, an extreme gradient boosting (XGB) model is
trained using node features and edge data. This XGB model predicts node classifications,
and the resulting enhanced nodes and augmented edges are then used to train on a balanced
graph. The augmented node features and edge data are treated as inputs to the XGB model,
which produces node classification predictions. Thus, the XGB model leverages node
features and edge data to build a robust learner for node classification tasks.

The XGB model, an advanced version of gradient boosting decision trees (GBDT),
enhances effectiveness through the boosting concept. This method combines multiple
weak learners into a strong learner using specific techniques. Unlike conventional models,
XGB optimizes the enhanced graph by performing regression and minimizing the residual
variance between predicted and actual outcomes. Incremental modeling is achieved by
using the predictions from each tree to fit the residuals from previous tree predictions,
progressively refining the model. Ultimately, by aggregating the predictions from all trees,
we achieve the optimal result.

The XGBoost model optimization process is shown in Figure 4.

F0(x) = argminγ

N

∑
i=1

l(yi, γ) (7)

Fm(x) = Fm−1(x) + argminhϵH

N

∑
i=1

l(yi, Fm−1(xi) + h(xi)) (8)

Here, Fm(x) represents the output of the final strong classifier for the input x at the m-
th iteration. Fm−1(x) denotes the output of the strong classifier for the input x after the
m−1 iteration. h(xi) is the prediction made by the newly added weak learner (typically a
decision tree) in the current iteration.

3.3. Train the Meta Graph Neural Network

We observed that ordinary GNNs underperformed in experiments, with some nodes
still misclassified, possibly due to the limited number of newly generated nodes. There-
fore, we introduced a meta-learning mechanism using Meta-GNN (meta graph neural
network) [34], which updates model parameters to better adapt to new tasks. We then
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employed an ensemble learning approach that incorporates XGBoost. By leveraging XG-
Boost’s predictions and converting them into one-hot encoding, we integrated these outputs
with the main model’s predictions. This strategy aims to capture additional predictive
information that deep learning models might miss, thereby enhancing the main model’s
performance. Ultimately, combining the predictions from both models led to a significant
improvement in overall classification accuracy. The learning process of the meta-neural
network is shown in Figure 5.

XGBoost(MAMLGNN( f eatures)) (9)
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is obtained and subsequently used to fit the residual of previous tree predictions (error1), yielding a
new residual (error3). The ultimate results encompass predictions generated by all trees (predictions
+ error2 + error4), culminating in an optimal outcome.
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In Section 2.3, we introduced the basic principles of meta-learning, which aim to find
“adaptive” weights. Considering a model parameterized by θ, for a new task Ti updated
via gradient descent, this can be formally expressed as

θ′i = θ − α∇θLTi ( fθ) (10)

where α is a tunable hyperparameter.
The meta-objective is defined as

min ∑
Ti∼p(T )

LTi

(
fθ′i

)
= ∑

Ti∼p(T )

LTi

(
fθ − α∇θLTi ( fθ)

)
(11)
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Here, meta-optimization is performed on model parameters θ, while the meta-objective is
computed using the updated θ′i . β is a tunable hyperparameter serving as the meta-step size.

In many supervised classification tasks, common loss functions include cross-entropy
and mean squared error (MSE) [35]. In this paper, MSE is utilized as the evaluation metric

LTi

(
fϕ

)
= ∑

x(j),y(j)∼Ti

∥∥∥ fϕ

(
x(j)

)
− y(j)

∥∥∥2

2
(12)

where x(j), y(j) are input–output pairs sampled from task Ti.
The overall framework is illustrated in Figure 6, and the training algorithm is detailed

in Algorithm 1.

Algorithm 1: Meta-Hybrid algorithm

Input: graph G = {V , E} training set nodes V L and their labels YL, number of classes C
Parameters: The distribution on the task p(T ), the step size hyperparameter α, β
1: Initialize GNN fθ

2: Calculate
∼
S via graph diffusion and sparsification

3: Calculate degree distribution Pdegree for G
4: Calculate the number of samples to synthesize nc for each class c ∈ C
5: while not converge do
6: Calculate comhard for nodes in V L via Equation (5)
7: Sample anchor nodes vmin according to comhard
8: Sample neighbor classes for anchor nodes
9: Sample vadd from instances in neighbor classes for vmin
10: Calculate features for vmix via Equation (6)
11: Connect vmix’s edge via GDC
12: end while
13: Using the criterion function to calculate the loss between the output and the true labels
14: Perform backward propagation based on the loss to optimize model parameters
15: Train using XGBoost model on node features and labels
16: Convert the prediction results into tensors and add them to output as part of meta-learning
17: Create new_data_train_mask
18: randomly initialize θ

19: while not done do
20: Create support_data, query_data
21: for num_steps = 5 do
22: Evaluate ∇θLTi ( fθ) using support set via Equation (8)
23: Calculate adapted parameters with gradient descent via Equation (10)
24: Calculate the cross-entropy loss
25: end for
26: for num_iterations = 100 do
27: for all T i do
28: Multi-step updates on support sets (num_steps = 5)
29: calculate loss of the query set, accumulated into meta_loss.
30: calculate the average meta loss by meta_loss /= len(task_data)
31: using query set update θ via Equation (12)
32: end for
33: end for
34: end while
35: Use the validation set to evaluate the trained model
36: Use the trained model MAML-GNN and XGBoost to combine the loss of the data
37: return acc., bacc., f1.
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4. Experiments
4.1. Experimental Setup
4.1.1. Datasets

We validated our approach on various real-world benchmark datasets and used a
total of six benchmark datasets for all our experiments. The statistical details of these
datasets are shown in Table 1. These include Planetoid citation graphs (Cora, Cite Seer,
PubMed [36]), the Amazon co-purchase graphs [37] (Photo, Computers), academic network
maps with co-authorship relationships based on Microsoft Academic Maps, Coauthor-CS
(CS) [37]. Details of the six datasets are as follows:

Table 1. Statistics of datasets.

Dataset Nodes Edges Features Classes

Cora 2708 10,556 1433 7
CiteSeer 3327 9104 3703 6
PubMed 19,717 88,648 500 3

Photo 7650 119,081 745 8
Computer 13,752 245,861 767 10

CS 18,333 81,894 6805 15

Cora, Cite Seer and PubMed are three bibliographic citation network datasets. Each
dataset is an undirected graph, where nodes represent papers, edges represent citation
relationships, and all articles are classified according to their category. Each Cora paper
is represented by a 1433-dimensional word vector, each element of which has only two
values of 0 or 1. Zero means that the word corresponding to the element is not in the
paper, and one means that it is in the paper. Every paper that cites, or is cited by, at least
one other paper is a connected graph. Cite Seer removes stops and words that occur less
than 10 times in the document, and the term vector is 3703 dimensional, taking the same
value as Cora. Every paper in PubMed is described by a TF/IDF weighted word vector in
a dictionary of 500 unique words. From: Revisiting the Semi-Supervised Learning with
the Graph Embeddings, its access is at http://linqs.cs.umd.edu/projects/projects/lbc/
(accessed on 19 September 2024).

Amazon-photo and Amazon-computers are extracted from the Amazon co-purchase
map, where nodes represent products, edges indicate whether two products are often
co-purchased, features represent product reviews encoded in bag-of-words, and labels are
predefined product categories. From: Pitfalls of Graph Neural Network Evaluation, its ac-

http://linqs.cs.umd.edu/projects/projects/lbc/
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cess is at https://github.com/rusty1s/pytorch_geometric/blob/master/torch_geometric/
datasets/amazon.py (accessed on 19 September 2024).

Coauthor-CS is an academic network with co-authorship relationships based on
Microsoft Academic Maps. Nodes in the diagram represent authors, and edges represent
co-authorship. In each dataset, authors are grouped into 15 categories based on their field
of research, and node features are bag-of-words representations of paper keywords. From:
Pitfalls of Graph Neural Network Evaluation, its access is at https://github.com/shchur/
gnnbenchmark/raw/master/data/npz/ (accessed on 19 September 2024).

4.1.2. Compared Baselines

We compared GraphSHX with various imbalance handling methods, including both
loss correction and generation methods. For loss correction methods, we compared
Reweight, PC SoftMax [38], Class Balanced Loss (CB Loss) [12], Focal Loss [10], and
ReNode [4]. For generation methods, we compared Upsample, GraphSmote, GraphENS,
and TAM [39].

We employed four GNNs: GCN [40], GAT [41], and GraphSAGE [42] as the backbone
models for our study and baseline models. Their hidden layers are set to 2 with a default
dimension of 64. For GAT, the multi-head number is set to 8. For GraphSHX, the δ used
for node feature synthesis was sampled from a beta distribution δ ∼ beta(b1, b2). For the
diffusion matrix S, we used the PPR version with α= 0.05 [33].

The XGBoost model is configured with tree_method set to “gpu_hist” to accelerate
tree construction using GPU. N_estimators = 100, specifying 100 decision trees per round
of training, totaling 100 weak learners in the model. Max_depth = 3 to limit the maximum
depth of each decision tree, preventing overfitting by restricting the model’s complexity and
focusing on broader sample characteristics. Nthread was set to −1 to utilize all available
threads for parallel computation, thereby speeding up training. To ensure the stability
of the experimental results, we used five different random seeds (100, 101, 102, 103, 104)
for model training. We evaluated our models using accuracy (Acc.), balanced accuracy
(bAcc.), and macro F1 score (F1.) [5,39] as performance metrics, where bAcc. is defined as
the average recall rate per class.

4.2. Analysis of Experimental Results
4.2.1. Results on Imbalanced Datasets

We conducted experiments considering long-tail class imbalance setting [5] on Cora,
CiteSeer, and PubMed, as well as step class imbalance [3,4] setting on Photo, Computer,
and CS.

For the long-tail settings, we performed a full-data split on the three datasets, and
manually removing labeled nodes from the training set until they followed a long-tail
distribution. We set the imbalance ratio ρ to 100, which means that the number of major
class samples is 100 times the number of minor class samples, which indicates that the data
is heavily skewed. Figure 7 shows the classification results of various unbalanced data
processing methods for long-tail datasets in the GCN backbone network. Table 2 shows the
specific results.

For the step classification settings, we split the data set into training/validation/test
sets at a ratio of 10%/10%/80%, with half belonging to the primary class sharing the
same number of training samples nmaj, and the other half belonging to the secondary class
sharing the same number of training samples nmin = nmaj/ρ. In this setup, the imbalance
ratio ρ is set to 20, and the sample size of the primary class is 20 times that of the secondary
class. Figure 8 shows the classification results of various unbalanced data processing
methods for the datasets set by step classification in the GCN backbone. Table 3 shows the
specific results.

https://github.com/rusty1s/pytorch_geometric/blob/master/torch_geometric/datasets/amazon.py
https://github.com/rusty1s/pytorch_geometric/blob/master/torch_geometric/datasets/amazon.py
https://github.com/shchur/gnnbenchmark/raw/master/data/npz/
https://github.com/shchur/gnnbenchmark/raw/master/data/npz/
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Figure 7. Results of long-tail setting: (a) Cora dataset in long-tail setting; (b) CiteSeer dataset in
long-tail setting; (c) PubMed dataset in long-tail setting.

Table 2. Classification of long-tail setting unbalanced data on GCN.

Dataset Cora-LT Cite Seer-LT PubMed-LT

ρ = 100 Acc. bAcc. F1 Acc. bAcc. F1 Acc. bAcc. F1

(GCN)
Vanilla

72.02 ± 0.50 59.42 ± 0.74 59.23 ± 1.02 51.40 ± 0.44 44.64 ± 0.42 37.82 ± 0.67 51.58 ± 0.60 42.11 ± 0.48 34.73 ± 0.71

Reweight 78.42 ± 0.10 72.66 ± 0.17 73.75 ± 0.15 63.61 ± 0.22 56.80 ± 0.20 55.18 ± 0.18 77.02 ± 0.14 72.45 ± 0.17 72.12 ± 0.15
PC Softmax 77.30 ± 0.13 72.08 ± 0.30 71.65 ± 0.34 62.15 ± 0.45 59.08 ± 0.28 58.13 ± 0.31 74.36 ± 0.62 72.59 ± 0.34 71.79 ± 0.50

CB Loss 77.97 ± 0.19 72.70 ± 0.28 73.17 ± 0.22 61.47 ± 0.51 55.18 ± 0.52 53.47 ± 0.65 76.57 ± 0.19 72.16 ± 0.18 72.84 ± 0.19
Focal Loss 78.43 ± 0.19 73.17 ± 0.73 73.76 ± 0.20 59.66 ± 0.38 53.39 ± 0.33 51.80 ± 0.39 75.67 ± 0.20 71.34 ± 0.24 72.03 ± 0.21
ReNode 78.93 ± 0.13 73.13 ± 0.17 74.46 ± 0.16 62.39 ± 0.31 55.62 ± 0.27 54.25 ± 0.24 76.00 ± 0.16 70.68 ± 0.15 71.41 ± 0.15

Upsample 75.52 ± 0.11 66.68 ± 0.14 68.35 ± 0.15 55.05 ± 0.11 48.41 ± 0.11 45.22 ± 0.14 71.58 ± 0.06 63.79 ± 0.06 64.62 ± 0.07
GraphSmote 75.44 ± 0.43 68.99 ± 0.51 70.41 ± 0.52 56.58 ± 0.29 50.39 ± 0.28 47.96 ± 0.33 74.63 ± 0.08 69.53 ± 0.10 71.18 ± 0.09
GraphENS 76.15 ± 0.24 71.16 ± 0.40 70.85 ± 0.49 63.14 ± 0.35 56.92 ± 0.37 55.54 ± 0.41 77.11 ± 0.11 71.89 ± 0.15 72.71 ± 0.14

TAM(G-
ENS)

77.30 ± 0.23 72.10 ± 0.29 72.25 ± 0.29 63.40 ± 0.34 57.15 ± 0.35 55.68 ± 0.39 79.97 ± 0.15 72.63 ± 0.24 72.96 ± 0.22

GraphSHA 79.90 ± 0.29 74.62 ± 0.35 75.74 ± 0.32 64.50 ± 0.41 59.04 ± 0.34 59.16 ± 0.21 79.20 ± 0.13 74.46 ± 0.17 75.24 ± 0.27
GraphSHX 84.80 ± 0.23 80.58 ± 0.19 81.92 ± 0.17 80.20 ± 0.20 76.61 ± 0.22 77.51 ± 0.19 90.70 ± 0.22 90.66 ± 0.17 90.57 ± 0.13

Table 3. Classification of step setting unbalanced data on GCN.

Dataset Photo-ST Computer-ST CS-ST

ρ = 20 Acc. bAcc. F1 Acc. bAcc. F1 Acc. bAcc. F1

(GCN)
Vanilla 37.79 ± 0.22 46.77 ± 0.11 27.45 ± 0.43 51.40 ± 0.44 44.64 ± 0.42 37.82 ± 0.67 37.36 ± 0.97 54.35 ± 0.72 30.47 ± 1.19

Reweight 85.81 ± 0.13 88.66 ± 0.07 83.30 ± 0.14 78.77 ± 0.25 85.30 ± 0.20 74.31 ± 0.18 91.86 ± 0.14 91.62 ± 0.17 82.46 ± 0.15
PC Softmax 64.66 ± 1.73 71.08 ± 1.16 61.31 ± 1.25 73.33 ± 1.22 60.07 ± 0.28 55.09 ± 0.31 87.38 ± 0.42 87.46 ± 0.34 74.24 ± 0.50

CB Loss 86.85 ± 0.05 88.70 ± 0.05 84.78 ± 0.12 82.22 ± 0.13 86.18 ± 0.52 75.80 ± 0.65 91.43 ± 0.19 91.25 ± 0.18 77.72 ± 0.19
Focal Loss 86.14 ± 0.17 88.47 ± 0.11 84.12 ± 0.23 81.01 ± 0.19 86.89 ± 0.33 75.50 ± 0.39 91.01 ± 0.20 90.72 ± 0.24 79.80 ± 0.21
ReNode 86.08 ± 0.18 87.34 ± 0.34 82.51 ± 0.29 72.92 ± 0.97 73.12 ± 0.27 67.04 ± 0.24 92.02 ± 0.16 91.08 ± 0.15 82.87 ± 0.15

Upsample 85.52 ± 0.11 87.32 ± 0.15 82.79 ± 0.22 80.07 ± 0.21 85.41 ± 0.11 74.85 ± 0.21 86.11 ± 0.06 76.82 ± 0.06 75.55 ± 0.07
GraphSmote 84.44 ± 0.20 86.53 ± 0.19 81.86 ± 0.21 76.76 ± 0.18 84.39 ± 0.28 69.40 ± 0.33 86.20 ± 0.18 85.44 ± 0.10 69.04 ± 0.09
GraphENS 87.00 ± 0.04 89.19 ± 0.06 84.66 ± 0.09 79.71 ± 0.08 86.52 ± 0.09 74.55 ± 0.41 92.17 ± 0.11 91.94 ± 0.15 82.71 ± 0.14

TAM(G-
ENS) 84.37 ± 0.11 86.41 ± 0.09 81.91 ± 0.10 76.26 ± 0.23 83.35 ± 0.26 73.85 ± 0.22 92.15 ± 0.25 91.92 ± 0.24 83.16 ± 0.22

GraphSHA 87.40 ± 0.09 88.92 ± 0.09 85.74 ± 0.11 81.75 ± 0.14 86.75 ± 0.26 76.86 ± 0.31 92.38 ± 0.03 92.01 ± 0.17 83.34 ± 0.27
GraphSHX 94.95 ± 0.13 93.92 ± 0.15 92.89 ± 0.17 88.23 ± 0.21 89.54 ± 0.23 83.22 ± 0.29 95.27 ± 0.12 94.35 ± 0.17 81.67 ± 0.23
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Figure 8. Results of step setting. (a) Photo dataset in step setting; (b) CS dataset in step setting;
(c) Computer dataset in step setting.

We can observe from Figures 7 and 8 that the generation method is generally superior
to the loss correction method. This is because the generation method improves the represen-
tativeness of the data by enhancing the topology of the graph. It provides richer contextual
information by creating additional composite nodes or edges, enabling the model to better
capture and learn potential patterns in the data. In contrast, loss correction methods are
mainly adjustments to the loss function or weight of the existing data, which may not be
enough to change the basic structure of the data, thus limiting its effectiveness. According
to the experimental results, our data processing method GraphSHX has higher precision
than other methods. This improvement highlights GraphSHX’s effectiveness and reliability
in handling long-tail unbalanced data.

Figure 9 shows the classification results of each data set of GCN, GAT and GraphSAGE
models under the same balanced category method (GraphSHX). We can see that the
performance of different data-balancing methods is comparable across different GNN
backbones, suggesting that the observed performance gap is influenced by the inherent
characteristics of each GNN model, not just the data-balancing methods themselves.

4.2.2. Results of the XGBoost Classifier

To validate the classification performance of the XGBoost algorithm on imbalanced
data, we compared it with other ensemble learning methods, and Table 4 shows the
prediction results of each ensemble learning method as a classifier. We find that random
forests perform well in this, but it takes too long. Compared to other algorithms, it often
takes more than double the time, giving slow efficiency when dealing with large datasets.
XGBoost has the best overall performance in classifying imbalanced data, because it uses
gradient-enhanced trees, which can effectively reduce bias and improve model accuracy,
and its efficiency is superior to that of random forests. It improves overall prediction
performance by gradually correcting the errors of previous models. This incremental
learning approach generally makes XGBoost perform better at handling unbalanced data
than methods like random forests and support vector machines. In addition, we found
that AdaBoost took longer to perform the same task in the experiment, which is attributed
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to AdaBoost recalculating the sample weights in each iteration and adjusting the model
according to these weights. Dynamic adjustment increases the computational complexity,
especially when the sample size is large.
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Figure 9. Node classification results on Cora, CiteSeer, and PubMed (in long-tail class-imbalanced
settings), as well as Photo, Computer, and CS (in step class-imbalanced settings) with GCN, GAT,
and GraphSAGE backbones.

Table 4. XGBoost alone is used as a classifier to train accuracy.

Dataset Cora CiteSeer PubMed Photo Computer CS

Random Forest 85.16 ± 0.32 81.76 ± 0.23 92.33 ± 0.16 96.25 ± 0.45 96.25 ± 0.45 98.30 ± 0.50

SVM 71.64 ± 0.28 67.56± 0.18 70.32± 0.25 85.65± 0.36 73.24± 0.42 77.25± 0.35

AdaBoost 75.35 ± 0.34 72.71± 0.52 76.55± 0.72 80.78± 0.45 79.64± 0.82 86.37± 0.22

XGBoost 82.31 ± 0.32 79.60 ± 0.27 89.31 ± 0.15 94.90 ± 0.11 88.37 ± 0.21 94.43 ± 0.53

In this experiment, using the Cora dataset as an example, we calculate the confusion
matrix based on the results of XGBoost training the Cora dataset. The confusion matrix
provides a detailed statistical view of the correspondence between model predictions
and true labels, helping us analyze classification accuracy and common misclassification
scenarios. To better display the effect, we choose the categories with larger cardinality (the
third class) to visualize the classification results, as shown in Figure 10a, thus explaining
the confusion matrix in Figure 10b. Detailed classification information for other categories
can be viewed in the confusion matrix, as shown in Figure 11. Analyzing this data allows
us to identify category combinations where the model frequently makes errors during
classification. Such analysis helps us optimize the model specifically for these categories,
thereby improving overall classification accuracy.
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model and baseline model backbones. As shown in Figure 9, the GNN model has a certain 
impact on experimental performance, while the GNN baseline has a poor impact on 

Figure 10. (a) Classification of Class 3. In Class 3, a total of 72.30% of the samples were correctly
classified. Of the Class 3 samples, 7.40% were misclassified into Class 4 samples, which accounted
for the largest proportion of misclassification; 5.22% of Class 3 samples were misclassified as Class
0 samples; 3.51% of Class 3 samples were misclassified as Class 1 samples...; (b) details of the
distribution of the results of the Cora dataset; marks correspond to the maximum proportion of
misclassification in (a).
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4.2.3. Results of MAMLGNN

We employed various GNNs, including GCN, GAT, GraphSAGE, with MAML as
our model and baseline model backbones. As shown in Figure 9, the GNN model has a
certain impact on experimental performance, while the GNN baseline has a poor impact
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on performance. Therefore, we introduced the MAML algorithm to enhance conventional
GNNs. In unbalanced datasets, the samples of minor categories are usually very limited.
The MAML training mode enables the model to learn effectively from a small number
of training samples, because the MAML-optimized model can be quickly adjusted and
optimized with a limited number of samples. In this way, even with a small amount of
labeled data from a few categories, the model can effectively use this data for training.

By comparing traditional GNNs with GNNs enhanced by the MAML algorithm, we
find in Figure 12 that GNNs enhanced by MAML perform better than ordinary GNNs
on the Cora, CiteSeer, and Computer datasets. However, on the Photo and CS datasets,
regular GNNs perform slightly better than the enhanced GNNs. This may be because the
Photo and CS datasets contain less noise or have simpler characteristics, so the additional
complexity of the enhanced GNN method may not result in significant performance gains.
MAML is often used to improve the adaptability of models to new tasks, but on these
datasets, regular GNNs may already handle the data effectively. The PubMed dataset
has a complex graph structure and rich node features, requiring the model to manage
large-scale graph data effectively. Regular GNNs are designed with mechanisms such
as attention mechanisms between nodes, convolution operations, or neighbor sampling
to handle these features, which may lead to better performance on the PubMed dataset.
MAMLGNN, on the other hand, may struggle with the dataset’s characteristics under
certain task settings, especially if the meta-learning steps are not well optimized, leading to
performance shortfalls. Tables 5 and 6 show the accuracy of ordinary GNN and ML-GNN
models on different datasets under our GraphSHX method.
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Table 5. Node classification results on Cora, CiteSeer, and PubMed using MAMLGNN and GNN.

Dataset Cora-LT Cite Seer-LT PubMed-LT

ρ = 100 Acc. bAcc. F1 Acc. bAcc. F1 Acc. bAcc. F1

GCN 84.80 ±0.23 80.58 ±0.19 81.92 ±0.17 80.20 ±0.20 76.61 ±0.22 77.51 ±0.19 90.70 ±0.22 90.66 ±0.17 90.57 ±0.13
MAML-

GCN
93.30 ±0.15 92.61 ±019 92.45 ±0.20 89.00 ±0.35 86.43 ±0.32 87.27 ±0.19 86.40 ±0.16 86.25 ±0.32 85.49 ±0.26

GAT 86.30 ±0.20 82.35 ±0.25 84.23 ±0.23 80.30 ±0.20 76.70 ±0.19 77.59 ±0.16 90.50 ±0.13 90.29 ±0.54 90.29 ±0.31
MAML-

GAT 94.60 ±0.16 94.42 ±0.44 94.06 ±0.28 91.10 ±0.22 89.26 ±0.33 89.90 ±0.09 85.00 ±0.24 83.44 ±010 83.82 ±0.22

SAGE 84.10 ±0.21 79.08 ±0.15 80.79 ±0.26 78.90 ±0.13 75.42 ±0.43 76.20 ±0.12 90.50 ±0.23 90.29 ±0.31 90.29 ±0.16
MAML-
SAGE

99.00 ±0.05 98.77 ±0.13 98.92 ±0.21 99.20 ±0.03 99.11 ±0.10 99.20 ±0.35 89.10 ±0.21 88.13 ±0.24 88.61 ±0.13

Table 6. Node classification results on Photo, Computer, and CS using MAMLGNN and GNN.

Dataset Photo-ST Computer-ST CS-ST

ρ = 20 Acc. bAcc. F1 Acc. bAcc. F1 Acc. bAcc. F1
GCN 94.95 ± 0.13 93.92 ± 0.15 92.89 ± 0.17 88.23 ± 0.21 89.54 ± 0.23 83.22 ± 0.29 95.27 ± 0.12 94.35 ± 0.17 81.67 ± 0.23

MAML-
GCN 93.20 ± 0.21 92.49 ± 0.10 92.55 ± 0.18 89.63 ± 0.25 87.59 ± 0.23 88.31 ± 0.13 94.90 ± 0.18 93.11 ± 0.24 89.29 ± 0.14

GAT 91.42 ± 0.22 92.61 ± 0.25 91.07 ± 0.24 81.99 ± 0.25 86.42 ± 0.22 72.23 ± 0.11 94.51 ± 0.15 94.26 ± 0.24 80.39 ± 0.31
MAML-GAT 94.30 ± 0.13 93.50 ± 0.36 95.66 ± 0.25 91.40 ± 0.26 89.18 ± 0.29 88.10 ± 0.12 95.20 ± 0.26 92.11 ± 0.15 91.49 ± 0.31

SAGE 95.11 ± 0.13 94.13 ± 0.15 93.54 ± 0.26 86.70 ± 0.15 89.79 ± 0.33 82.03 ± 0.13 94.62 ± 0.23 94.30 ± 0.31 80.80 ± 0.16
MAML-
SAGE 96.22 ± 0.25 95.92 ± 0.20 95.30 ± 0.27 92.31 ± 0.25 93.77 ± 0.32 88.03 ± 0.36 97.40 ± 0.17 97.18 ± 0.28 96.99 ± 0.12

4.2.4. Comparison of Results after Integration

We used the method we proposed to deal with the class imbalance problem, training
using synthetic node framework (GraphSHX), integrating XGBoost and MAMLGNN re-
sults, and GNN training using the current optimal method (GraphSHA). The comparison
of the final experimental results is shown in Figure 13. We can see that the overall improve-
ment effect is 10% to 20%. According to the experimental results in Section 4.2.1, we find
that the GraphSHX framework, a balancing method integrated with XGBoost, can improve
the overall experimental performance by 6% to 15%. According to the experimental re-
sults in Section 4.2.3, GNN enhanced with the MAML algorithm can improve the overall
experimental performance by 5%~10%.
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Over the whole experiment, we separately verified the influence of each enhancement
method on the class imbalance data, the influence of GNNs on the classification of the model,
the feasibility of the XGBoost integration method on the model, and the enhancement of the
model by the meta-learning method. Ultimately, we proved that our experimental accuracy
and efficiency are superior to all current baseline methods in the entire large model.

5. Conclusions

In practical applications, we are often faced with many imperfect data, which lead to
imbalance problems due to various objective factors. In this paper, we propose a solution
to the class imbalance problem by using the XGBoost integration method and meta graph
neural network (Meta GNN). Major challenges include preventing synthetic minority sam-
ples from intruding into adjacent subspaces and ensuring high classification performance.
In this paper, we propose using XGBoost iteration to improve model performance, and
introduce a meta-learning mechanism to enhance small sample learning. Major contribu-
tions include developing GraphSHX based on GraphSHA to deal with more challenging
minority samples and combining the MAML algorithm with GNN to improve general-
ization ability. The combination of these methods with XGBoost significantly improves
classification accuracy and outperforms existing advanced techniques on various bench-
mark datasets. In future studies, we will further improve the meta-learning-based model
to reduce experiment time and increase efficiency. Specifically, we plan to optimize the
experimental process based on meta-learning, reduce computational costs, and improve
the training and testing efficiency of the model. In addition, we will work to extend the
model to the study of topological imbalance problems to address more complex graph
structures and unbalanced data challenges. By designing new algorithms and strategies
for topological imbalance problems, we hope to further improve the performance and
application ability of the model in different scenarios. These efforts will help to promote
the research of class imbalance to a deeper level and make the model more efficient and
reliable in practical applications.
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