A 28/56 Gb/s NRZ/PAM-4 Dual-Mode Transmitter with Eye-Opening Enhancement in 28 nm CMOS
Abstract
:1. Introduction
2. Transmitter with Eye-Opening Enhancement
3. Low-Power NRZ/PAM4 Dual-Mode Data Path
4. Measurement Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ye, B.; Sheng, K.; Gai, W.; Niu, H.; Zhang, B.; He, Y.; Jia, S.; Chen, C.; Yu, J. A 2.29-pJ/b 112-Gb/s Wireline Transceiver With RX Four-Tap FFE for Medium-Reach Applications in 28-nm CMOS. IEEE J. Solid-State Circuits 2023, 58, 19–29. [Google Scholar] [CrossRef]
- Wu, H.; Wu, W.; Zhong, L.; Cheng, X.; Zhang, Y.; Luo, X.; Xu, D.; Yu, X.; Pan, Q. A 128Gb/s PAM-4 Transmitter with Edge-Boosting Pulse Generator and Pre-Emphasis Asymmetric Fractional-Spaced FFE in 28 nm CMOS. In Proceedings of the 2024 IEEE Custom Integrated Circuits Conference (CICC), Denver, CO, USA, 21–24 April 2024. [Google Scholar] [CrossRef]
- Sheng, K.; Gai, W.; Feng, Z.; Niu, H.; Ye, B.; Zhou, H. 6.7 A 128Gb/s PAM-4 Transmitter with Programmable-Width Pulse Generator and Pattern-Dependent Pre-Emphasis in 28 nm CMOS. In Proceedings of the 2023 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 19–23 February 2023. [Google Scholar] [CrossRef]
- Toprak-Deniz, Z.; Proesel, J.E.; Bulzacchelli, J.F.; Ainspan, H.A.; Dickson, T.O.; Beakes, M.P.; Meghelli, M. A 128-Gb/s 1.3-pJ/b PAM-4 Transmitter With Reconfigurable 3-Tap FFE in 14-nm CMOS. IEEE J. Solid-State Circuits 2020, 55, 19–26. [Google Scholar] [CrossRef]
- Kim, J.; Balankutty, A.; Dokania, R.; Elshazly, A.; Kim, H.S.; Kundu, S.; Weaver, S.; Yu, K.; O’MAhony, F. A 112Gb/s PAM-4 transmitter with 3-Tap FFE in 10 nm CMOS. In Proceedings of the 2018 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 11–15 February 2018. [Google Scholar] [CrossRef]
- Depaoli, E.; Zhang, H.; Mazzini, M.; Audoglio, W.; Rossi, A.A.; Albasini, G.; Pozzoni, M.; Erba, S.; Temporiti, E.; Mazzanti, A. A 64 Gb/s Low-Power Transceiver for Short-Reach PAM-4 Electrical Links in 28-nm FDSOI CMOS. IEEE J. Solid-State Circuits 2019, 54, 6–17. [Google Scholar] [CrossRef]
- Wang, Z.; Choi, M.; Lee, K.; Park, K.; Liu, Z.; Biswas, A.; Han, J.; Du, S.; Alon, E. An Output Bandwidth Optimized 200-Gb/s PAM-4 100-Gb/s NRZ Transmitter With 5-Tap FFE in 28-nm CMOS. IEEE J. Solid-State Circuits 2022, 57, 21–31. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Chen, W.-Z. A 50 Gb/s PAM-4 Transmitter with Feedforward Equalizer and Background Phase Error Calibration. In Proceedings of the 2020 IEEE Asian Solid-State Circuits Conference (A-SSCC), Hiroshima, Japan, 9–11 November 2020. [Google Scholar] [CrossRef]
- Frans, Y.; McLeod, S.; Hedayati, H.; Elzeftawi, M.; Namkoong, J.; Lin, W.; Im, J.; Upadhyaya, P.; Chang, K. A 40-to-64 Gb/s NRZ Transmitter With Supply-Regulated Front-End in 16 nm FinFET. IEEE J. Solid-State Circuits 2016, 51, 3167–3177. [Google Scholar] [CrossRef]
- Chan, K.L.; Tan, K.H.; Frans, Y.; Im, J.; Upadhyaya, P.; Lim, S.W.; Roldan, A.; Narang, N.; Koay, C.Y.; Zhao, H.; et al. A 32.75-Gb/s Voltage-Mode Transmitter With Three-Tap FFE in 16-nm CMOS. IEEE J. Solid-State Circuits 2017, 52, 2663–2678. [Google Scholar] [CrossRef]
- Peng, P.-J.; Chen, Y.-T.; Chen, C.-H.; Lai, S.-T.; Huang, H.-E.; Lu, H.-H.; Yu, T.-C. A 50-Gb/s Quarter-Rate Voltage-Mode Transmitter with Three-Tap FFE in 40-nm CMOS. In Proceedings of the ESSCIRC 2018—IEEE 44th European Solid State Circuits Conference (ESSCIRC), Dresden, Germany, 3–6 September 2018; pp. 174–177. [Google Scholar] [CrossRef]
- Yu, C.; Shim, S.; Oh, T. A 6.4Gbit/s 3-Tap High-Speed IO FIR Driver with LMS Adaptation Algorithm in 65 nm CMOS. J. Integr. Circ. Syst. 2024, 10, 23–29. [Google Scholar] [CrossRef]
- Zheng, X.; Ding, H.; Zhao, F.; Wu, D.; Zhou, L.; Wu, J.; Lv, F.; Wang, J.; Liu, X. A 50–112-Gb/s PAM-4 Transmitter With a Fractional-Spaced FFE in 65-nm CMOS. IEEE J. Solid-State Circuits 2020, 55, 1864–1876. [Google Scholar] [CrossRef]
- Using a Wideband AWG to Optimize Data Throughput With Multi-Level Signaling Techniques-Application Note. Available online: http://axiestandard.org/files/Keysight%20AXIe%20application%20brief%205992-0020EN.pdf (accessed on 12 September 2024).
- Jin, J.; Lee, S.-M.; Min, K.; Ju, S.; Lim, J.; Yook, J.; Lee, J.; Chae, H.; Kang, K.; Hong, Y.; et al. A 4-nm 16-Gb/s/pin Single-Ended PAM-4 Parallel Transceiver With Switching-Jitter Compensation and Transmitter Optimization. IEEE J. Solid-State Circuits 2024, 59, 184–195. [Google Scholar] [CrossRef]
- Bassi, M.; Radice, F.; Bruccoleri, M.; Erba, S.; Mazzanti, A. A High-Swing 45 Gb/s Hybrid Voltage and Current-Mode PAM-4 Transmitter in 28 nm CMOS FDSOI. IEEE J. Solid-State Circuits 2016, 51, 2702–2715. [Google Scholar] [CrossRef]
- Kim, J.; Balankutty, A.; Elshazly, A.; Huang, Y.-Y.; Song, H.; Yu, K.; O’MAhony, F. 3.5 A 16-to-40Gb/s quarter-rate NRZ/PAM4 dual-mode transmitter in 14 nm CMOS. In Proceedings of the 2015 IEEE International Solid-State Circuits Conference—(ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 22–26 February 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Komatsu, Y.; Shinmyo, A.; Funabashi, M.; Kato, S.; Hatooka, K.; Tanaka, K.; Fujita, M.; Fukuda, K. A 0.25–27Gb/s Wideband PAM4/NRZ Transceiver with Adaptive Power CDR for 8K System. In Proceedings of the 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC), Tainan, Taiwan, 5–7 November 2018; pp. 63–66. [Google Scholar] [CrossRef]
- Roshan-Zamir, A.; Elhadidy, O.; Yang, H.-W.; Palermo, S. A Reconfigurable 16/32 Gb/s Dual-Mode NRZ/PAM4 SerDes in 65-nm CMOS. IEEE J. Solid-State Circuits 2017, 52, 2430–2447. [Google Scholar] [CrossRef]
- Data Pattern Generation. Available online: https://www.intel.com/content/www/us/en/docs/programmable/683723/current/data-pattern-generation.html (accessed on 20 October 2022).
- Cheng, J. A Delay-Locked Loop for Multiple Clock Phases/Delays Generation. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 22 August 2005. [Google Scholar]
- Lee, M.-J.; Dally, W.; Greer, T.; Ng, H.-T.; Farjad-Rad, R.; Poulton, J.; Senthinathan, R. Jitter transfer characteristics of delay-locked loops—Theories and design techniques. IEEE J. Solid-State Circuits 2003, 38, 614–621. [Google Scholar] [CrossRef]
- Koh, B.J.; Bae, H.M. Multimodal Portable Functional Brain Imaging Chip. J. Integr. Circ. Syst. 2022, 8, 2022. [Google Scholar] [CrossRef]
- Abdulrazzaq, B.I.; Halin, I.A.; Kawahito, S.; Sidek, R.M.; Shafie, S.; Yunus, N.A.M. A review on high-resolution CMOS delay lines: Towards sub-picosecond jitter performance. SpringerPlus 2016, 5, 434. [Google Scholar] [CrossRef]
- Kim, J.; Balankutty, A.; Dokania, R.K.; Elshazly, A.; Kim, H.S.; Kundu, S.; Shi, D.; Weaver, S.; Yu, K.; O’MAhony, F. A 112 Gb/s PAM-4 56 Gb/s NRZ Reconfigurable Transmitter With Three-Tap FFE in 10-nm FinFET. IEEE J. Solid-State Circuits 2019, 54, 29–42. [Google Scholar] [CrossRef]
- Park, S.E.; Kim, J.Y.; Park, H.G.; Bang, J.E.; Shin, Y.H.; Choi, J.H. Frequency Discriminator for the Fine Dust Sensor. J. Integr. Circ. Syst. 2021, 7, 26–31. [Google Scholar] [CrossRef]
- Hafez, A.A.; Chen, M.-S.; Yang, C.-K.K. A 32-to-48Gb/s serializing transmitter using multiphase sampling in 65 nm CMOS. In Proceedings of the 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 17–21 February 2013; pp. 38–39. [Google Scholar] [CrossRef]
- Kok, C.L.; Tang, H.; Teo, T.H.; Koh, Y.Y. A DC-DC Converter with Switched-Capacitor Delay Deadtime Controller and Enhanced Unbalanced-Input Pair Zero-Current Detector to Boost Power Efficiency. Electronics 2024, 13, 1237. [Google Scholar] [CrossRef]
- Kim, S.-H.; Cho, B.; Jin, J.; Song, Y.H.; Chun, J.-H. A 16/32 Gb/s Dual-Mode NRZ/PAM4 Voltage-Mode Transmitter With 2-Tap FFE. IEEE Access 2022, 10, 119140–119149. [Google Scholar] [CrossRef]
This Work | JSSC’19 [6] | ASSCC’20 [8] | ISSCC’23 [3] | CICC’24 [2] | JSSC’20 [4] | ISSCC’18 [5] | ||||
---|---|---|---|---|---|---|---|---|---|---|
Data Rate (Gb/s) | 56 | 28 | 64 | 50 | 128 | 128 | 128 | 64 | 112 | 56 |
Process (nm) | 28 | 28 (FDSOI) | 28 | 28 | 28 | 14 | 10 | |||
Modulation | PAM-4 | NRZ | PAM-4 | PAM-4 | PAM-4 | PAM-4 | PAM-4 | NRZ | PAM-4 | NRZ |
Supply (V) | 1.1/1.4 | 1/1.2 | 1 | N/A | N/A | N/A | 0.95/1.2 | N/A | ||
Driver | Tail-less CML (w/Aux.device) | SST | CML | CML | Tail-less CML | Tail-less CML | CML | |||
RLM (%) | 97 | N/A | >96 | >94 | N/A | 99 | 98.6 | N/A | 98.5 | N/A |
Area (mm2) | 0.0344 | 0.12 | 0.214 | 0.137 | 0.18 | 0.048 | 0.0302 | |||
Efficiency (pJ/bit) | 1.4 | 1.84 | 2.1 | 2.87 | 1.4 * | 1.5 | 1.3 | 2.7 | 2.07 | 4.14 |
Efficiency (pJ/bit) (w/o clocking) | 1.1 | 1.3 | N/A | N/A | 0.9 | N/A | N/A | 1.72 ** | 3.44 ** | |
Min.Eye Width (UI) | 0.56 (56Gb/s) | 0.45 (64Gb/s) | 0.22 (50Gb/s) | 0.18 (128Gb/s) | 0.34 (128Gb/s) | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Won, J.; Kim, J. A 28/56 Gb/s NRZ/PAM-4 Dual-Mode Transmitter with Eye-Opening Enhancement in 28 nm CMOS. Electronics 2024, 13, 3774. https://doi.org/10.3390/electronics13183774
Won J, Kim J. A 28/56 Gb/s NRZ/PAM-4 Dual-Mode Transmitter with Eye-Opening Enhancement in 28 nm CMOS. Electronics. 2024; 13(18):3774. https://doi.org/10.3390/electronics13183774
Chicago/Turabian StyleWon, Jonghyeok, and Jintae Kim. 2024. "A 28/56 Gb/s NRZ/PAM-4 Dual-Mode Transmitter with Eye-Opening Enhancement in 28 nm CMOS" Electronics 13, no. 18: 3774. https://doi.org/10.3390/electronics13183774
APA StyleWon, J., & Kim, J. (2024). A 28/56 Gb/s NRZ/PAM-4 Dual-Mode Transmitter with Eye-Opening Enhancement in 28 nm CMOS. Electronics, 13(18), 3774. https://doi.org/10.3390/electronics13183774