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Abstract: Analog design productivity remains a challenge in the digitally driven semiconductor
chip design field. Knowledge-based and simulation-based analog automation approaches have
not achieved widespread acceptance in the analog design community. Systematic analog design
using precomputed lookup tables (LUTs) is a promising approach that can address the design
productivity challenge. Although modern computing systems have powerful memory capabilities,
which make the LUT approach viable, reducing the memory footprint of the LUTs remains a challenge.
A memory-efficient design technique using LUTs is proposed by using an incomplete grid in the
MOSFET degrees-of-freedom (DoFs) space. An efficient indexing technique for the incomplete
grid is also proposed, using a precomputed offset array in various scenarios, such as two-sided
constraints and three-dimensional LUTs. The results show that the proposed technique can achieve
up to a 67% reduction in memory footprint, in addition to improving LUT generation time and
query performance.

Keywords: analog design; analog design automation; precomputed lookup tables (LUTs); gm/ID

methodology; memory efficiency

1. Introduction

The number of transistors that can be integrated into a single chip is still steadily
increasing, as predicted by Moore’s law. The FinFET has powered the industry throughout
the previous decade, and the vertically stacked gate-all-around nanosheets will power
the industry for two more decades. Although CMOS analog/mixed-signal blocks usually
represent a tiny fraction of the billions of transistors on-chip, they are the dominant players
from the perspective of design time and design effort. This can be explained by noting that,
while digital design automation has been the industry standard for decades, analog design
automation is still lagging, and the majority of the analog/mixed-signal circuits are still
hand-crafted at the transistor level [1–3].

Traditionally, analog designers used the concept of overdrive voltage (Vov) to define
the transistor bias point in the strong-inversion region. The overdrive voltage is based on
the long-channel square-law MOSFET model. But as the technology minimum feature size
has steadily scaled down, transistors have deviated from these simple models, and the
designers resorted to lengthy iterations using simulation tools. Not only is this a tedious,
time-consuming process but it also leads to sub-optimal designs. The overdrive voltage has
also gradually been replaced with a simulation-based design knob, the drain saturation
voltage (Vdsat). Since the transition from the triode region to the saturation region is a
gradual process, Vdsat is an ill-defined parameter that mimics the legacy of Vov. With the
increased importance of low-voltage and low-power design, more transistors are now
biased in moderate and weak-inversion regions. Consequently, the overdrive voltage
concept has lost its significance. Other design knobs that describe the MOSFET bias point
across all operating regions, such as the gm/ID and the inversion coefficient, have been
proposed [4,5].
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Analog design automation efforts have been ongoing for more than 30 years. These
efforts can generally be divided into two categories: knowledge-based approaches and
simulation-based approaches [1–3,6]. In the knowledge-based approach, the designer tries
to turn their design procedure into a computer program. This can be useful for “personal”
design automation, where the designer automates some of their own time-consuming
operations. However, it is difficult to generalize and lacks the accuracy of real simulation
models. Moreover, it does not lead to optimal solutions. On the other hand, the simulation-
based approach relies on invoking the simulator in an optimization loop. This has the
advantages of accuracy and optimal solutions, but invoking SPICE in the loop results
in long computation times. Moreover, the resultant point may not make sense from a
designer’s perspective; thus, the optimization sampling process must be guided by detailed
and careful constraints. Hybrid approaches and machine learning/artificial intelligence
approaches have also been proposed, but they suffer from accuracy issues when surrogate
models are used, or from long computation times when the simulator is invoked in the
loop [7–11].

The design of analog circuits using precomputed lookup tables (LUTs) is a promising
approach that bridges the gap between the two distant islands of classical handcrafting and
black-box simulation-based optimization [12–18]. The precomputed LUTs are generated by
a simulator to abstract the complexity of modern device models; thus, simulation accuracy
is preserved. The device data in the LUTs can be manipulated in different scenarios to
enable the seamless integration of different design methodologies, such as the gm/ID
design methodology, which enables intuitive biasing of transistors across all inversion
levels [4,5]. The LUTs can be used in a knowledge-based approach to address the accuracy
problem at the transistor level. The accuracy problem at the circuit level can be addressed
by LUT-based custom solvers in an optimization loop or in a design-space exploration
setting. Compared to SPICE-in-the-loop approaches, this will solve the long computation
time problem.

The precomputed LUTs are generated once for a given technology; thus, the overhead
of the generation process (a few hours per device) is tolerable. However, the memory
footprint of the LUTs, which can be up to a few GBs per device depending on the LUT
accuracy, is a drawback that the user encounters with every usage. The memory capabilities
of computing devices have significantly improved in recent decades, making the usage
of large LUTs viable. However, it is still desirable to minimize the memory footprint of
the LUTs, especially when designing a circuit that involves a large number of different
device types. In this paper, an incomplete-grid LUT is proposed to reduce the MOSFET
LUT memory footprint by up to 67%.

The rest of this paper is organized as follows. Section 2 presents an overview of
the MOSFET LUTs. Section 3 describes the proposed incomplete-grid memory-reduction
technique. Section 4 presents the results and discussion. Section 5 concludes this paper.

2. The MOSFET Lookup Table (LUT)

Figure 1 shows the testbench used to characterize the MOSFET and build the lookup
tables (LUTs). An N-type MOSFET is used for illustration purposes, but the discussion
applies to P-type MOSFETs as well. The MOSFET has five degrees of freedom (DoFs). The
DoFs are divided into two groups: first, the three terminal voltages VGS, VDS, and VSB,
and second, the sizing parameters, channel width (W), and length (L). To build an LUT
that captures these five DoFs, the LUT would need to be 5D and would have a large size.
Fortunately, the MOSFET parameters are directly proportional to the width regardless of
the inversion level (weak/moderate/strong inversion) or the mode of operation (triode,
pinch-off, velocity saturation). Thus, the LUT can be constructed for a single reference
width

(
Wre f

)
, and linear scaling can be used to calculate the MOSFET parameters at any

other width. This linear scaling may incur errors due to stress and narrow-width effects,
but these errors can be corrected using small auxiliary LUTs [15].
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In the context of the gm/ID design methodology, the VGS DOF can be replaced with
the gm/ID ratio in order to zoom in on the region of interest for analog design and,
consequently, reduce the LUT size. However, the gm/ID vs. VGS characteristics depend on
other variables, such as VSB, and the extreme values of VGS are needed for analog/mixed-
signal design (e.g., sizing a sampling switch). Thus, building the LUT using the full range
of VGS is necessary.

Figure 1. A schematic of the testbench used to build the MOSFET LUT showing the five DOFs of
the MOSFET.

By exploiting the linear scaling property, the LUT is reduced to a 4D array, as depicted
in Figure 2. Each 4D array stores one of the MOSFET parameters, e.g., drain current, small
signal parameters, capacitances, noise parameters, etc. The LUT generation process is
automated using a computer program that generates the testbench netlists, parses the
simulation results, and stores the data in the appropriate structure. The process can be
applied to devices of different types and at multiple temperatures and process corners
to fully characterize a technology node. The LUT generation process can take up to a
few hours per device, but it is carried out only once for a given technology. Thus, it is a
one-time sunk cost to generate the LUTs, which can then be used by multiple designers
across different projects.

Figure 2. A simplified illustration of a device’s LUT structure. The structure contains a 4D LUT for
every MOSFET parameter.

An interpolation operation is required when an off-grid point is queried. This repre-
sents an inherent accuracy limitation. Thus, building the LUTs involves a size–accuracy
trade-off. The step size used for every DoF is the knob that controls this trade-off. Using a
fine step size improves the accuracy but results in a large memory footprint. Although the
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smart interpolation techniques proposed in [14] can relax this trade-off, the overall memory
footprint is still significant, especially when designing a circuit that involves many device
types across different corners.

3. Memory Reduction Using an Incomplete-Grid LUT
3.1. The Incomplete-Grid LUT

The process of building the LUT involves sweeping the four MOSFET DoFs to create
a 4D array for every MOSFET parameter. Each array has gridded data, meaning a value
exists at every grid point, where the grid points are defined by the DoFs’ sweep points,
i.e., the grid vectors. A key observation that can lead to substantial memory savings is
that a full grid is not really required. The full grid may contain many values that are not
practically needed or may violate the MOSFET safe operating region.

As an example, assume that a MOSFET has the voltage ratings given in Table 1. It
is important to note that the sweep variables used to build the LUT are VGS, VDS, and
VSB. Thus, the information given for VGB and VDB in Table 1 is not utilized in the case of
a full-grid LUT. Figure 3 shows an illustration of a 2D grid using the VGS and VSB grid
vectors, with a coarse step of 0.3V for illustration purposes. The grid points that do not
satisfy the condition of VGB ≤ 1.2V are marked in red, where VGB = VGS + VSB. It is clear
that filtering out these invalid points will result in a substantial saving in the LUT memory
footprint. While the observation that an incomplete grid should be used may seem obvious,
it has not been reported in previous works discussing LUT-based analog design [12,14,17].

Table 1. Example of a MOSFET device’s voltage ratings.

Minimum (V) Maximum (V)

VGS 0 1.2

VDS 0 1.2

VSB 0 1.2

VGB 0 1.2

VDB 0 1.2

Figure 3. A 2D full grid using VGS and VSB grid vectors. The value of VGB is shown at every grid
point. The green and red colors show the valid and invalid points, respectively.

3.2. Indexing the Incomplete-Grid LUT

The process of evaluating the LUT output at a given query point involves querying the
surrounding grid points and then performing an interpolation operation. The query of a
value in an N-dimensional full grid requires defining the index of each grid vector, i.e., the
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index is an N-dimensional vector. For the 2D example shown in Figure 3, it is necessary to
define the VGS index (column index) and the VSB index (row index) to identify the query
grid point. When the invalid points are removed from the array, it is no longer possible to
use the full-grid indexing methodology.

To address this problem, the full-grid array is unrolled into a 1D vector, as shown in
Figure 4. The full-grid 1D index (FGi) can be calculated as follows:

FGi = VGSi + (VSBi − 1)× FGS (1)

where VGSi and VSBi are the indices in the VGS and VSB grid vectors, and the full-grid stride
(FGS) is the number of columns per row, i.e., the length of the VGS grid vector. Note that it
is assumed that the first index is equal to 1.

Figure 4. The 2D array in Figure 3 unrolled into a 1D vector. The full-grid index (FGi) is shown for
each grid point.

Next, the incomplete grid is unrolled into a 1D vector, as shown in Figure 5. The cells
marked in red are shown for clarity, but they do not exist in the incomplete grid. Thus,
their index is represented by a dash (-), i.e., they do not have an index. The incomplete-grid
1D index (IGi) cannot be calculated using (1). The stride in this case is not constant and
depends on the number of points discarded in each row. The IGi can be expressed as

IGi = VGSi +
j−1

∑
i=1

IGSi (2)

where IGSi is the incomplete-grid stride of rowi, i.e., the number of valid points in rowi.
The IGS vector, as illustrated in Figure 6, is an additional overhead vector that is crucial for
correctly mapping elements from the original array to the incomplete-grid 1D vector.

Figure 5. The 2D array in Figure 3 unrolled into a 1D vector. The incomplete-grid index (IGi) is
shown for each grid point.

Figure 6. Two examples of the incomplete-grid stride vector (IGS).
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3.3. Incomplete Grid with Two-Sided Constraints

The previous incomplete-grid example considered a one-sided constraint, e.g.,
VGB ≤ VGBmax. In some practical scenarios, it is necessary to apply a two-sided constraint,
e.g., VGBmin ≤ VGB ≤ VGBmax. For example, it may be necessary to extend the characteriza-
tion range of the device to include negative values of VGS and VSB. Negative values of VGS
may occur naturally in stacked devices and can be used to decrease the leakage current if
the device does not suffer from gate-induced drain leakage (GIDL). Negative values of VSB
may be also used in a body biasing scheme to tune the MOSFET’s behavior.

Figure 7 shows an example of a 2D (VGS, VSB) array with a two-sided constraint
applied to VGB. It is assumed that both VGS and VSB can be negative, but VGB is always
positive. The solution given by (2) will not work for this case since there can be invalid
elements at the beginning of every row; thus, another solution has to be developed.

Figure 7. A 2D full grid using VGS and VSB grid vectors. The value of VGB is shown at every grid point.
The green and red colors show the valid and invalid points, respectively. A two-sided constraint is
applied to VGB.

An effective solution to this problem is to use an offset vector to replace the IGS vector.
The offset vector will simply store the difference between the FGi and the IGi. In this case,
the IGi can be expressed as

IGi = FGi + OSi (3)

where FGi is given by (1) and OSi is the offset of rowi. Figure 8 shows the offset vector,
where an offset value is calculated and stored for every row in the array depicted in
Figure 7. The offset vector is calculated during the LUT generation process and represents
an additional overhead vector that is crucial for correctly indexing the incomplete-grid
1D vector.
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Figure 8. The 2D array in Figure 7 with the additional offset vector (OS), which stores the cumulative
offset at every row.

3.4. Three-Dimensional Incomplete Grid

The previous sections considered the case of a 2D grid. Practically, the constraint
applied to VGB in the VGS vs. VSB space can be similarly applied to VDB in the VDS vs. VSB
space, as shown in Figure 9. Thus, by combining the two spaces, a 3D (VGS, VDS, VSB) array
is formed. The unrolled 1D full-grid index (FGi) for the 3D array is given by

FGi = VGSi + (VDSi − 1)× SVDS + (VSBi − 1)× SVSB (4)

where (VGSi, VDSi, VSBi) are the indices of the (VGS, VDS, VSB) grid vectors, SVDS is the
VDS stride, defined as

SVDS = length(VGS) (5)

and SVSB is the VSB stride, defined as

SVSB = length(VGS)× length(VDS) (6)

Figure 9. A 2D full grid using VDS and VSB grid vectors. The value of VDB is shown at every grid
point. The green and red colors show the valid and invalid points, respectively.
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One important point to consider is that the VGB and VDB constraints must be applied
concurrently to check the valid points. Thus, the condition of the valid points is given by
ANDing all the following constraints:

VGS(VGSi) + VSB(VSBi) ≤ VGBmax (7)

VGS(VGSi) + VSB(VSBi) ≥ VGBmin (8)

VDS(VDSi) + VSB(VSBi) ≤ VDBmax (9)

VDS(VDSi) + VSB(VSBi) ≥ VDBmin (10)

These conditions are also used when a query point is requested from the LUTs to ensure
that the eliminated points are not included in the automated design flow.

For every VGS row, the incomplete-grid offset is calculated and stored in the offset
array (OS). Thus, the offset becomes a 2D array with a total number of elements equal to

numel(OS) = length(VDS)× length(VSB) (11)

The incomplete-grid index (IGi) for the query point (VGSi, VDSi, VSBi) is now given by

IGi = FGi(VGSi, VDSi, VSBi) + OS(VDSi, VSBi) (12)

which can be used to access the unrolled 1D incomplete grid.

4. Results and Discussion

The proposed incomplete-grid implementation for the LUT can result in significant
savings in the LUT memory footprint. An overhead exists due to the offset array (OS), but
this overhead is negligible, especially when the length of the VGS grid vector is large. The
offset array overhead, expressed as a percentage of the device LUT size, is given by

OS overhead (%) =
1

N × C × length(L)× length(VGS)
× 100 (13)

where N is the number of LUTs, i.e., the number of parameters stored for a given device,
e.g., ID, gm, gds, etc., and C is the number of process and temperature corners. Practically, if
it is assumed that N > 10 and the length of the L and VGS grid vectors > 10, the overhead
will be less than 0.1%. Note that the offset array is shared among all the LUTs of a given
device because all the LUTs use the same grid vectors and the same constraints to filter the
full grid and create the incomplete grid. It should be noted that the offset array does not
add a performance overhead because it is precomputed during the LUT generation process
and stored with the LUT structure.

Figure 10 compares the sizes of the full-grid LUT and the incomplete-grid LUT. The
number of points of the three grid vectors (VGS, VDS, VSB) is assumed to be the same, i.e., a
3D square array. The figure clearly shows that the incomplete grid can result in significant
memory savings. The percentage of memory saving can be calculated as

Memory Saving (%) =
Full Grid Size − Incomplete Grid Size

Full Grid Size
× 100 (14)

and is plotted in Figure 11. As the number of grid vector points increases, the memory
saving approaches 67%, which means reducing two-thirds of the full-grid LUT size.

The previous results assume that the grid vectors have a uniform step. Practically,
the step may be variable, with a small step used at the beginning and then an increased
step afterward. The justification for the variable step is that, for analog circuits, the devices
are usually biased with low to moderate values of (VGS, VDS, VSB); thus, more accuracy is
needed in this region. Consider the case where the number of points used in the 0 → Vmax/2
range is double the number of points used in the Vmax/2 → Vmax range. The memory
savings in this case are plotted in Figure 12. As expected, the memory savings are less
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than in the uniform step case, but a significant memory saving (around 50%) can still
be achieved.

Figure 10. The number of points per LUT vs. the number of points per grid vector. The incomplete-
grid LUT can achieve significant memory savings.

Figure 11. The percentage of memory saving due to using the incomplete grid vs. the number of
points per grid vector for grid vectors with a uniform step.

Figure 12. The percentage of memory saving due to using the incomplete grid vs. the number of
points per grid vector for grid vectors with a non-uniform step.
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For rectangular arrays, the incomplete grid may suffer from data loss at the array edges.
For example, consider the case shown in Figure 13, where the number of points in the VSB
vector is less than the number of points in the VGS vector. Assume it is necessary to query
a point that has VGS = 0.85 and VSB = 0.3. This point is valid because VGB = 1.15 < 1.2.
However, since the neighboring point from the right (VGS = 1, VSB = 0.3) has been re-
moved, the interpolation process will fail to obtain the grid points that surround the query
point. The same problem applies to the case of VGS = 0.8 and VSB = 0.35 but in the
downward direction. A simple solution to this problem is to always add one extra point
after the last valid point. This will reduce memory savings, especially when the grid vector
is small. However, the memory footprint is problematic when the grid vectors are large,
and in this case, the extra grid point will not add significant overhead.

Figure 13. An example of a rectangular array showing loss of data at the edges.

It is worth noting that the advantage of using the incomplete-grid LUT is not only the
memory savings. The device characterization testbenches can also utilize only the valid
points; thus, the LUT generation time will be reduced by the same memory-saving factor.
Another advantage is that the time to query data from the LUT will also be reduced due to
the smaller LUT size.

In order to demonstrate a design example using the incomplete-grid LUTs, we consider
the two-stage CMOS Miller amplifier shown in Figure 14. The design space of the circuit is
generated by substituting the device parameters from the LUTs into symbolic expressions
for the circuit’s performance metrics. A database containing 100k design points is generated
in 24 s using a standard machine with a quad-core processor and 8 GB of RAM. Figure 15
illustrates the circuit design space showing the gain-bandwidth product (GBW) vs. the total
bias current while applying constraints on the circuit’s DC gain and phase margin (PM).
Such a design chart can be used to evaluate the feasibility limits of a given circuit in a given
technology and to obtain the Pareto optimal fronts for the design performance metrics.

Figure 14. Schematic of the two-stage CMOS Miller amplifier used as a design example.
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Figure 15. Design space of the two-stage Miller amplifier showing the GBW vs. the total bias current
under DC gain and PM constraints.

5. Conclusions

This paper presented a technique to reduce the memory footprint of lookup tables
(LUTs) used in CMOS analog design by using an incomplete grid. The one-dimensional
unrolled grid can be indexed using a precomputed offset array that typically represents less
than 0.1% overhead. The proposed technique supports one-sided/two-sided constraints
and 2D/3D arrays. A 67% reduction in the LUT size can be achieved, along with a similar
speedup in LUT generation time. Handling the loss of information at the valid/invalid
boundary of the incomplete grid was also discussed.
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