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Abstract: The fish detection task is an essential component of marine exploration, which helps
scientists monitor fish population numbers and diversity and understand changes in fish behavior
and habitat. It also plays a significant role in assessing the health of marine ecosystems, formulating
conservation measures, and maintaining biodiversity. However, there are two main issues with
current fish detection algorithms. First, the lighting conditions underwater are significantly different
from those on land. In addition, light scattering and absorption in water trigger uneven illumination,
color distortion, and reduced contrast in images. The accuracy of detection algorithms can be affected
by these lighting variations. Second, the wide variation of fish species in shape, color, and size brings
about some challenges. As some fish have complex textures or camouflage features, it is difficult
to differentiate them using current detection algorithms. To address these issues, we propose a fish
detection algorithm—FishDet-YOLO—through improvement in the YOLOv8 algorithm. To tackle
the complexities of underwater environments, we design an Underwater Enhancement Module
network (UEM) that can be jointly trained with YOLO. The UEM enhances the details of underwater
images via end-to-end training with YOLO. To address the diversity of fish species, we leverage
the Mamba model’s capability for long-distance dependencies without increasing computational
complexity and integrate it with the C2f from YOLOv8 to create the Mamba-C2f. Through this design,
the adaptability in handling complex fish detection tasks is improved. In addition, the RUOD and
DUO public datasets are used to train and evaluate FishDet-YOLO. FishDet-YOLO achieves mAP
scores of 89.5% and 88.8% on the test sets of RUOD and DUO, respectively, marking an improvement
of 8% and 8.2% over YOLOv8. It also surpasses recent state-of-the-art general object detection and
underwater fish detection algorithms.

Keywords: underwater fish detection; underwater image enhancement; YOLO; Mamba; object detection

1. Introduction

Underwater fish detection is indispensable in marine ecological conservation, fisheries
management, and scientific research. Fish play a critical role in marine ecosystems and
make a significant contribution to ecological balance [1–3]. Effective fish detection can
enable researchers to better understand fish population dynamics, migration patterns, and
habitat distribution and to prevent population decline or extinction through the formulation
of effective conservation strategies [1]. Through underwater fish detection, scientists can
gather extensive data on fish behavior, species diversity, and ecosystem health [2]. These
data are vital for advancing marine biology and ecology, understanding the impacts of
climate change on marine life, and providing marine conservation policies with a scientific
foundation [3]. Therefore, the underwater fish detection task is of great significance.
However, current underwater fish detection tasks are difficult to apply in real-world
scenarios due to two main reasons. First, underwater images often suffer from issues
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such as blurriness, noise, and low quality, which result in limited critical information and
interfere with fish detection. Second, the significant differences in morphology, color, and
other characteristics among varIoUs fish species pose a challenge to the performance of
detection systems. Addressing these two issues is crucial for practical applications.

With the widespread adoption of modern information technology and advancements
in computational power, artificial intelligence has rapidly progressed. Computer vision
technology, as a crucial branch of artificial intelligence, has proven highly effective for
fish detection tasks. Several researchers have applied basic computer vision algorithms
to underwater fish detection tasks [4–6]. For example, Minsung Sung et al. [4] applied
YOLO [5] to fish object detection and achieved real-time fish detection. Furthermore, T
Hong Khai et al. [6] categorized image data into three classes based on fish density: low,
medium, and high. Through a parameter calibration strategy, they identified suitable
parameters and employed a Mask R-CNN model with Mask priors [7] for fish detection
and counting. Minsung Sung et al. used an earlier version of the YOLO algorithm with a
lower accuracy. By contrast, T Hong Khai et al.’s Mask-RCNN required Mask annotations,
which are scarce in fish detection tasks. Thus, earlier visual algorithms could not meet the
standards for fish detection tasks.

Over nearly a decade, deep learning-based object detection technology has evolved,
which is broadly categorized into two-stage algorithms [8–10] and single-stage algo-
rithms [11–16]. The two-stage algorithms provide higher accuracy but poorer real-time
performance. For instance, R Girshick et al. [8] proposed the R-CNN algorithm, which
generated candidate regions through selective search, extracted features from these regions
using convolutional neural networks, and employed classifiers for object classification and
regressors for precise boundary localization. Later, Fast R-CNN [9] and Faster R-CNN [10]
were introduced. Moreover, Faster R-CNN was incorporated with Region Proposal Net-
works (RPNs) to generate candidate regions on shared feature maps. While enhancing the
efficiency of object detection, this achieves faster and more accurate results. Single-stage
algorithms offer better real-time performance. The SSD algorithm proposed by W Liu
et al. [11] generates predefined anchor boxes on multi-scale feature maps and performs
object classification and location regression in a single forward pass. YOLOv1, introduced
by Redmon et al. [5], reformulates object detection as a single neural network inference
and predicts object classes and locations directly from images with significantly improved
detection speed. Subsequent versions of YOLO, including YOLOv3 [12], further improve
network structure with the deeper Darknet-53 and three detection heads for better perfor-
mance in complex scenes and small objects. Later updates to YOLO include advancements
in training strategies, such as mosaic data augmentation [13], self-adversarial training, and
automated searches for efficient network modules using techniques such as NASNet [14].
The latest versions, YOLOv9 [15] and YOLOv10 [16], achieve state-of-the-art performance
in both accuracy and real-time capability. Despite these advancements, YOLO and other
convolutional neural network-based methods still have difficulty handling long-distance
dependencies. This limitation affects their ability to differentiate complex fish shapes
and textures and to address challenges such as murky water, low resolution, and shape
deformations. Furthermore, it is still challenging for convolutional neural networks to
distinguish subtle differences between some fish species. Hence, the current classical object
detection algorithms have yet to provide an outstanding solution specifically suitable for
fish detection.

In recent years, self-attention [17]-based network architectures have addressed the is-
sue of long-distance dependencies that convolutional neural networks cannot handle. With
the introduction of algorithms such as Vision Transformer [18] and Swin Transformer [19],
Yi Xiao et al. [20] introduced the Top-k Token Selective Transformer (TTST), which opti-
mizes self-attention by removing redundant tokens and using a multi-scale feed-forward
layer. The TTST dynamically selects key tokens with a Residual Token Selective Group
(RTSG) and enhances accuracy with Global Context Attention (GCA). In the object detec-
tion field, Transformers have been applied to detection algorithms to capture long-range
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dependencies. For example, N Carion et al. [21] proposed DETR, a Transformer-based
object detection algorithm modeling set predictions directly, enabling end-to-end object
detection without the need for anchor boxes and non-maximum suppression. Furthermore,
X Zhu et al. [22] improved DETR with Deformable DETR, which focuses only on a few
key sampling points around the target boxes and triggers better performance. However,
Transformers have a computational complexity of O

(
N2), slower convergence, and higher

computational resource requirements compared with the linear computational complexity
of convolutional neural networks. Over the past few years, several researchers have ap-
plied the latest object detection algorithms and advanced Transformer technologies to fish
detection in underwater environments [23–27]. For instance, Abdullah Al Muksit et al. [23]
proposed YOLO-Fish, enhancing the model’s ability to detect fish in dynamic environments
through the incorporation of Spatial Pyramid Pooling into the network architecture. In
order to improve fish species recognition, Chiranjibi Shah et al. [24] modified the depth
scales of different layers in the backbone network of YOLOv5. In addition, they introduced
Transformer Blocks in the backbone network to enhance long-range dependency perception
and incorporated a class-balanced loss function to address class imbalance issues, so as to
improve performance. DP-FishNet, a dual-path Pyramid Vision Transformer [27] (PVT)
feature extraction network, was proposed by Yang Liu et al. [25]. The backbone network
of DP-FishNet, DP-PVT, consists of PVT networks with two feature extraction paths, in
which one Vision Transformer path is to extract global features to enhance the distinction
between foreground and background in underwater images and the other convolutional
neural network path is to extract local features to improve small object detection accuracy,
so as to strengthen the ability to extract both global and local features from underwater
images. Z Wang et al. [26] introduced DyFish-DET, an underwater object detection method.
In DyFish-DET, a new backbone network, DyFishNet, was designed to better extract fish
texture features. In addition, a streamlined hybrid encoder was developed to integrate
fish body feature information. However, these works are confronted with two main is-
sues. Firstly, the computational complexity of Transformers is still unresolved. Secondly,
these studies primarily enhance accuracy by adding improved modules to the network
structure, but they fail to address underwater image enhancement for complex underwater
environments. Simple modification of the network structure is not enough to tackle the
challenges posed by complex marine underwater environments and achieve ideal accuracy.
In the design of YOLOv9, the gradient flow information in images is a crucial component
of object detection. Thus, the latest version of YOLO incorporates new modules into the
network architecture, in order to pass rich gradient flow information to the detection heads
and allow them to determine the position and class of objects based on this information.
However, when the gradient flow information in the original input images is sparse (e.g., in
complex marine underwater images), this information is severely deficient. Thus, mere
modification of the YOLO internal network structure does not generate richer gradient flow
information and essentially fails to address the complexities of input marine environments.

Images consist of high-frequency and low-frequency components. Furthermore, high-
frequency information includes details and edges, whereas low-frequency information
represents smooth areas and coarse structures. Together, they determine the clarity and
overall contour of the image, with gradient flow information primarily concentrated in the
high-frequency part [28–30]. In order to enhance gradient flow information in underwater
images, it is essential to improve the high-frequency components of the image. C. Huo
et al. [28] proposed HHDNet, which uses dual-branch network architecture to handle high-
frequency and low-frequency information. For the high-frequency component, HHDNet
designs specialized attention modules for enhancement, while the basic convolutional mod-
ules are used for the low-frequency component, which successfully improves the quality
of underwater images. Xin Liu et al. [29] introduced the Frequency Domain Enhance-
ment Attention Network (FEAN), which decomposes features into high-frequency and
low-frequency components through Laplacian decomposition and processes these features
via Frequency Domain Enhancement Attention Modules (FEAMs). In the high-frequency
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path, the FEAN incorporates Multi-scale Attention Enhancement Blocks (MAEBs) to extract
rich image textures and gradient flow information, while the low-frequency path employs
simple convolution operations to adjust image brightness and contrast. K Jiang et al. [30]
introduced the Mutual Retinex framework, which combines self-attention (SA) and convo-
lutional neural networks (CNNs) to enhance low-light and underwater images. It uses a
dual-branch structure to separate and optimize reflectance and illumination and a mutual
learning mechanism with a Mutual Representation Module (MRM) to improve color con-
sistency and naturalness. Experiments show that Mutual Retinex significantly outperforms
existing methods in both low-light and underwater image enhancement. Although these
methods effectively enrich gradient flow information for underwater image enhancement,
they are separately trained underwater image network structures and require annotated
information for supervised training, making them incompatible with joint training for
fish detection.

Due to their strong capability in modeling long-range dependencies as well as their
superior performance with linear time complexity, the state space model (SSM) methods
like Mamba [31] can provide a new approach to address the computational and time
complexity issues found in Transformer models. Researchers have successfully applied the
Mamba architecture to the computer vision field and achieved promising results in image
classification tasks [32,33]. Y Xiao et al. [34] applied the Vision State Space Model (Mamba)
to super-resolution for remote sensing images, using linear complexity to manage large-
scale RSI. They introduced an enhanced frequency-assisted Mamba framework (FMSR) that
integrates spatial frequency fusion with a multi-level architecture, significantly improving
super-resolution performance. Zhaohu Xing et al. [35] proposed SegMamba, a novel
3D medical image segmentation model based on SSM. SegMamba effectively captures
long-range dependencies in volumetric features and outperforms Transformer methods in
processing speed, maintaining high efficiency even at high resolutions. However, to date,
there has still been no research applying the Mamba model to underwater fish detection
tasks. Based on this, the following question is proposed: Can we introduce SSM structures
into the object detection domain and leverage their advantages to enhance the performance
of fish detection tasks?

Given the complexity of underwater environments and the importance of gradient
flow information in object detection algorithms, this study aims to adopt design principles
from underwater image enhancement algorithms to construct a new image enhancement
subnetwork. This subnetwork is intended to enhance the high-frequency components of
the image, enrich gradient flow information, and thus enable end-to-end joint training with
object detection algorithms without the need for additional supervisory information. Due to
the complexity of different fish species, this study seeks to incorporate the SSM model, such
as Mamba, into fish detection tasks to improve detection accuracy without significantly
increasing computational complexity. Thus, in combination with the advanced YOLOv8
algorithm, the FishDet-YOLO algorithm has been proposed. The main contributions are
as follows:

(1) To address the complexities of underwater environments and the diversity of fish species,
and to improve detection performance, we propose the FishDet-YOLO algorithm.

(2) To address issues of uneven lighting, color distortion, and reduced contrast in under-
water environments and to improve gradient flow information in images, we design
the Underwater Enhancement Module (UEM). The UEM uses Laplacian pyramids for
image decomposition and applies multi-scale fusion methods. Additionally, we design
the Underwater Detail-Aware Block (UDAB). The UDAB processes the high-frequency
and low-frequency components of the image at each scale separately. During training,
high-frequency information is reinforced at each fusion stage. The UEM significantly
enhances the details and gradient flow information in underwater images. Compared
to other algorithms that use a two-stage approach, the UEM supports end-to-end joint
training with object detection algorithms, improving application efficiency.
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(3) Given the complexity of different fish species, we leverage the Mamba model’s ca-
pability to enhance long-distance dependencies without increasing computational
complexity. By integrating the C2f from YOLO with the Mamba, we design the
Mamba-C2f, which replaces all C2f in YOLOv8. Compared to existing methods, our
approach not only enhances long-distance dependency capabilities but also main-
tains the inductive bias of convolution, thereby improving adaptability and detection
accuracy for complex fish species.

The rest of this paper can be organized as follows. Section 2 comprehensively describes
FishDet-YOLO and its improvements, including the UEM network structure, the UDAB
module within the UEM, and the newly improved Mamba-C2f feature extraction module.
Furthermore, Section 3 presents experimental results and analysis, including a systematic
analysis of the dataset, data preprocessing steps, evaluation metrics used, as well as the
hardware and software configurations of the experiments. It also comprehensively evalu-
ates FishDet-YOLO, covering comparative experiments, ablation studies, and visualization
results. Section 4 discusses the research findings, limitations, and future work. Finally,
Section 5 is the research summary.

2. Methods

Figure 1 shows the overall architecture of the FishDet-YOLO, which consists of two
main components. The first component is the Underwater Enhancement Module (UEM),
which takes the raw image as input and enhances the underwater image to improve the
gradient flow information. The UEM is built on a multi-scale fusion approach, where the
input image is decomposed into four components using the Laplacian pyramid [36], and
each component is processed by the Underwater Detail-Aware Block (UDAB). The UDAB
consists of two branches: the high-frequency branch and the low-frequency branch, which
handle the high-frequency and low-frequency information of the components, respectively.
In the high-frequency branch, the Sobel operator is used to enhance edge information
and enrich the gradient flow. In the low-frequency branch, the designed module mainly
preserves low-frequency characteristics.

The second component of FishDet-YOLO is the object detection network. It is built
upon the state-of-the-art YOLO algorithm and consists of a backbone network, a PAFPN,
and a three-branch decoder head. The backbone network extracts and fuses multi-scale
features, while the PAFPN [37] further enhances feature transmission and fusion from
higher to lower layers. The design of the three-branch decoder head helps maintain
accuracy when detecting objects of different sizes. For the underwater fish detection task,
the Mamba-C2f, which combines Mamba with C2f, is introduced to replace the original
feature transformation module in YOLO, enhancing the long-range dependency awareness
of the network. During training, the UEM network, which does not require additional
image enhancement labels, is directly added before the object detection network and is
jointly trained end-to-end with the object detection network.

2.1. Underwater Enhancement Module

The UEM is designed to address issues such as uneven lighting, color distortion, and
reduced contrast in underwater environments and to enhance the gradient flow information
in images. The UEM decomposes the input image into multiple scales using a Laplacian
pyramid and processes them with a multi-scale fusion approach. At each scale, the UDAB
is applied, which separately processes the high-frequency and low-frequency components
of the image. During training, high-frequency information is reinforced at each fusion stage.
This module significantly enhances the details and gradient flow information in underwater
images and can be jointly trained end-to-end with the YOLO algorithm without the need
for additional supervision, so that the perceptual capability of the detection network
is improved. As shown in Figure 1, the UEM network uses the Laplacian pyramid to
decompose the image into four different scales. The Laplacian pyramid focuses more
on global information from the bottom layer to the top layer. Conversely, it also pays
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more attention to local details. This is the gradient flow information lost during image
downsampling, which is the target of enhancement by our UEM.
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Assuming the input image is x ∈ RHxWx3, the Laplacian pyramid is obtained using
the following equation:

G(x) = Down(Gaussan(x)) (1)

Down refers to downsampling, and Gaussian indicates the application of a Gaussian
filter, with a kernel size of 5 × 5. Each time an image undergoes processing using the
Gaussian pyramid, both its width and height are reduced by half, leading to a resolution
that is only one-fourth of the original. Notably, the downsampling process in the Gaussian
pyramid is irreversible. To retrieve the original high-resolution image after upsampling, it
is necessary to compensate for the lost information. This missing information constitutes
the elements of the Laplacian pyramid, which can be expressed as follows:

Li = Gi −Up(Gi+1) (2)

Li represents the i-th layer of the Laplacian pyramid, Gi denotes the i-th Gaussian blur,
and Up represents the bilinear upsampling operation. During the image reconstruction
process, the original high-resolution image can be restored by performing the inverse
transform corresponding to Equation (2).

After acquisition of the components of the Laplacian pyramid, each component under-
goes feature enhancement through the UDAB. The top right corner of Figure 1 shows the
network architecture of the UDAB. The UDAB includes two branches: the Detail-Aware
Branch (DAB) and the Low-Frequency-Aware Branch (LFAB), which operate in parallel.
In the wake of feature extraction, the outputs of the two branches are concatenated, and
feature fusion is performed using a 1 × 1 convolution, generating the enhanced features.

In one of the UDAB branches, a DAB is proposed to enhance each component. This
module is divided into the Context Block and the Edge Enhance Block.
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In Figure 2, the Context Block is designed to capture contextual information by lever-
aging long-range dependencies to globally improve the components. The Edge Enhance
Block employs Sobel operators in two orientations to compute gradients, which is helpful
in edge detection and texture enhancement. The context branch incorporates residual
blocks that process features before and after the long-range dependency capture, utilizing
residual learning to transfer and construct detailed low-frequency information through skip
connections. Specifically, the first residual block expands the channel dimension from 3 to
32, while the second block reduces it back to 3. The edge branch uses Sobel operators [38],
which integrate Gaussian filters and differential derivatives to estimate gradients for edge
detection. Furthermore, this study applies Sobel operators in both horizontal and vertical
directions, re-extracts edge information through convolutional filters, and improves the
information flow with residuals. This method can be summarized as follows:

EEB(x) = F(Sobelh(x) + Sobelw(x)) + x (3)

Sobelh and Sobelw represent sobel operations along the height h and width w di-
rections, respectively. F represents the fusion of the Sobelh and Sobelw branches using
convolution operations.
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In the two components of the UADB, the low-frequency part of the component contains
most of the semantic information of the image, which is crucial for the predictions of the
detector. To enrich the semantic information of the reconstructed image, we propose the
LFAB in another branch of the UADB module to capture the low-frequency information of
the component (see Figure 3):



Electronics 2024, 13, 3780 8 of 27

Electronics 2024, 13, x FOR PEER REVIEW 8 of 29 
 

 

 
Figure 2. Structure of Detail-Aware Branch. 

In the two components of the UADB, the low-frequency part of the component con-
tains most of the semantic information of the image, which is crucial for the predictions 
of the detector. To enrich the semantic information of the reconstructed image, we propose 
the LFAB in another branch of the UADB module to capture the low-frequency infor-
mation of the component (see Figure 3): 

 
Figure 3. Structure of Low-Frequency-Aware Branch. 
Figure 3. Structure of Low-Frequency-Aware Branch.

Assuming that the component is f ∈ RH×W×3, this study first converts it to f ∈ RH×W×32

through a convolutional layer and then applies a dynamic low-pass filter to capture low-
frequency information and adopts average pooling for feature filtering, which allows only
information below the cutoff frequency to pass through. Different semantic information has
different low-frequency thresholds. Inspired by the multi-scale structure in the Inception
network, this study uses adaptive average pooling with sizes 1 × 1, 2 × 2, 3 × 3, and 6 × 6,
and it applies upsampling at the end of each scale to restore the original size of the features.
The low-pass filter is formed through average pooling with different kernel sizes. Beyond
that, f is divided into four parts {f1, f2, f3, f4} through channel separation, with each part
processed using pooling of different sizes, as described below:

Filter(fi) = Up(Ps, fi) (4)

fi represents the different parts obtained from channel splitting, where Up denotes
bilinear interpolation upsampling and Ps represents adaptive average pooling with different
sizes. After passing through the LFAB structure, the final output is f ∈ RH×W×3.

After the components are enhanced by the DAB module, this study performs up-
sampling on the low-resolution components and integrates them with the high-resolution
components. Let the original input image be x ∈ RH×W×3 and the enhanced component
after multi-scale fusion be Ie ∈ RH×W×3; then:

Iu = Render(x, Ie) (5)

Iu ∈ RH×W×3 represents the image enhanced by the UEM network, which is the input
to the subsequent detection network. It denotes the fusion method of x and Ie. In different
low-level tasks, the rendering method varies. In this paper, an additive fusion method
is adopted.

2.2. Mamba-C2f

This study leverages the strengths of the Mamba model in strengthening long-distance
dependencies to enhance the ability of the detection algorithm to recognize varIoUs fish
species. Mamba significantly improves the model’s ability to perceive remote information
without substantially increasing computational burden. Unlike Transformers, Mamba
achieves long-distance dependency capture with computational complexity linear to that
of convolutional operations. This makes the Mamba model particularly advantageous for
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capturing fine details and complex shapes of fish. Furthermore, this study combines the
Mamba model with the C2f from YOLO to design the Mamba-C2f. The Mamba-C2f replaces
all C2fs in YOLO and optimizes feature extraction and information fusion processes, thereby
significantly improving adaptability and detection accuracy for complex fish species. The
Mamba-C2f maintains computational efficiency, enhances the capability to process and
recognize complex textures and shapes of fish, and improves detail capture. The module is
shown in Figure 4.
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Mamba-C2f consists of the Vision Mamba Encoder and the C2f, as shown in Figure 4.
Mamba-C2f includes two parallel branches: the Vision Mamba Encoder and the C2f. After
the two branches output their respective features, the features are concatenated and then
processed through a 1 × 1 convolution to adjust the number of channels and produce the
final output.

The Vision Mamba Encoders are similar to the Transformer Encoder, while the stan-
dard Mamba is designed for one-dimensional sequences, which needs modifications for
visual tasks. First, the two-dimensional image t ∈ RH×W×C is converted into flattened
two-dimensional image patches xp ∈ RJ×(p2C), where C represents the number of channels
and p represents the patch size. Next, xp is linearly projected into a vector of size D and
positional embedding Epos ∈ R(J+1)×D is added as follows:

T0 =
[
tcls; t1

pW; t2
pW; . . . ; tJ

pW;
]
+ Epos (6)

tJ
p represents the j-th of the image t, and W ∈ R(p2C)×D represents the projection matrix.

The sequence Tl−1 is then sent to the l-th layer of the Vision Mamba Encoder to obtain the
output Tl. Finally, the output class tokens tL

0 are normalized and fed into the multi-layer
perceptron (MLP) head to produce the final prediction p, as follows:

Tl = Vim(T l−1
)
+ Tl−1 (7)

f = Norm
(

tL
0

)
(8)

p = MLP(f) (9)

VIM represents the Vision Mamba Encoder, Norm represents the normalization layer,
and MLP represents the multi-layer perceptron. The original Mamba module, which is
designed for one-dimensional sequences, is not suitable for vision tasks requiring spatial
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awareness. Therefore, the Vision Mamba Encoder incorporates bidirectional sequence
modeling tailored for visual tasks (Algorithm 1).

Algorithm 1 Vision Mamba Encoder process.

Require: token sequence Tl−1 : (B, M, D)
Ensure: token sequence Tl : (B, M, D)
1: /* normalize the input sequence Tl−1 */
2: T′l−1 : (B, M, D)← Norm(Tl−1)

3: x : (B, M, E)← Linearx
(

T′l−1

)
4: z : (B, M, E)← Linearz

(
T′l−1

)
5: /* process with different direction */
6: for o in {forward, backward} do
7: x′o : (B, M, E)← SiLU(Conv1d0(x))
8: Bo : (B, M, N)← LinearB

o (x′o)
9: Co : (B, M, N)← LinearC

o (x′o)
10: /* softplus ensures positive ∆o*/
11: ∆o : (B, M, E)← log(1 + exp(Linear∆

o (x′o) + Parameter∆
o ))

12: /* shape of ParameterA
o is (E, N)*/

13: Ao : (B, M, E, N)← ∆o
⊗

ParameterA
o

14: Bo : (B, M, E, N)← ∆o
⊗

B0
15: yo : (B, M, E)← SSM

(
Ao, Bo, Co

)
(x′o)

16: end for
17: /* get gated yo */
18: y′forward : (B, M, E)← yforward

⊙
SiLU(z)

19: y′backward : (B, M, E)← ybackward
⊙

SiLU(z)
20: /* residual connection */
21: Tl : (B, M, D)← LinearT(y′forward + y′backward

)
+ Tl−1

22: Return Tl

Vision Mamba Encoder processes each element in the sequence in both forward and
backward directions simultaneously, with each direction potentially having different state
space parameters. Through this approach, the model can simultaneously consider informa-
tion from both the beginning and end of the sequence and capture and utilize spatial and
contextual information in the image more comprehensively. Before the sequence processing,
a Layer Normalization (LN) layer is used to standardize the input. This normalization is
conductive to stabilizing the training process and improving model performance. Then, the
normalized sequence is linearly projected into two different spaces for subsequent bidirec-
tional processing and gating mechanisms. This step is achieved through two different linear
layers. After the bidirectional processing, the sequence is handled in forward and backward
directions. For each direction, a 1D convolution is applied to capture local dependencies.
The resulting output is x′. Furthermore, this output is transformed through three linear
layers to obtain the three key parameters B, C, and ∆. The parameter ∆ is processed through
a softplus operation to ensure its positivity, as it will be used for calculating time-scale
transformations. The transformed ∆ adjusts the evolution matrix A and the input matrix B.
In practice, ∆ serves as a scaling factor to adjust these matrices. In the wake of this trans-
formation, the state space model computes the final output. The forward and backward
outputs are combined through a gating mechanism and multiplied spatially. Subsequently,
the results from both directions are summed to produce the final sequence output. This
step, which involves the linear layer LinearT and residual connections, completes the final
output sequence. It is then reconstructed into t ∈ RH×W×C, by the Patch Merging module.

For the C2f, the input data first pass through the initial convolutional layer, and the
output is split into two parts. One part is directly fed to the final output, while the other
part undergoes processing through several Bottleneck modules. Then, these two results
are concatenated along the channel dimension and processed via a second convolutional
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layer to produce the final output. This branch design enhances the network’s non-linearity
and representational capacity while improving its ability to model complex data. The C2f
enriches feature representation by combining features from different branches along the
channel dimension, ensuring that the final concatenated features incorporate information
from multiple pathways.

Finally, if the output of the Vision Mamba Encoder is fv ∈ RH×W×C and the output of
the C2f is fc ∈ RH×W×C, then the output M of the Mamba-C2f is:

M = F(Concat(fv, fc)) (10)

F represents a 1 × 1 convolution that maps the concatenated features from 2c to c.

2.3. Loss Function

We use three loss functions from YOLOv8: Varifocal Loss [39] (VFL Loss), Distribute
Focal Loss [40] (DFL Loss), and Complete IoU Loss [41] (CIoU Loss).

The VFL Loss function is used to optimize model performance in object detection
tasks. It combines the Intersection over Union (IoU) between the predicted bounding box
(bbox) and the ground truth (gt) with the score for calculation, which can be expressed
as follows:

VFL(p, q)
{
−q(q log(p) + (1− q) log(q− p)) q > 0

−αpγ log(1− p) q = 0
(11)

q represents the IoU between the bbox and the gt, and p represents the score. In the
VFL Loss function, IoU is used as a soft label q. Unlike the basic formula, which directly
divides by the sample size, the VFL Loss function improves upon this by multiplying by
q. When q is greater than 0, it indicates that there is an intersection between the predicted
box and the ground truth box, which can be considered a positive sample. When q is equal
to 0, it means there is no intersection between the two boxes, which can be regarded as a
negative sample.

The DFL Loss is used to help the network quickly focus on values near the label,
maximizing the probability density at the label. The idea is to use a cross-entropy function
to optimize the probabilities of the two positions adjacent to the label y, making the
network’s distribution concentrate around the label value.

DFL(Si, Si+1) = −
(
yi+1 − y

)
logSi + (y− yi)logSi−1 (12)

yi represents the predicted value, yi+1 represents the adjacent predicted value, and S
represents the output distribution.

CIoU Loss is designed to be more comprehensive and refined, in which multiple
factors such as the shape, position, and orientation of the gt are considered. The compre-
hensiveness of CIoU Loss is reflected in its consideration of multiple factors, including
position, shape, and orientation. This allows the model to learn the features of the target box
more comprehensively, thereby improving the model’s performance in complex scenarios.
Whether dealing with minor or significant changes in the target box, CIoU Loss effectively
guides the model in learning and optimization.

CIOU Loss = IOU− (
ρ2(b, bgt)

c2 + σv) (13)

v =
4
π2 IOU

(
arctan

wgt

hgt − arctan
w
h

)2

(14)

σ =
v

(1− IOU) + v
(15)

w and h refer to the width and height of the predicted box, while wgt and hgt refer
to the width and height of the ground truth box. ρ2 represents the squared distance
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between the two center points, b denotes the center coordinates of the predicted box, bgt

denotes the center coordinates of the ground truth box, and c represents the diagonal
length of the two enclosing rectangles. v is used to measure the consistency of the relative
proportions between two bounding boxes. σ represents weights of v. Finally, the overall
loss is calculated as follows:

Total Loss(x) = αLossVFL(x) + βLossDFL(x) + γLossCIOU(x) (16)

α, β, and γ are the loss weights. In the YOLO framework, these weights α, β, and γ

are dynamically adjusted during training to ensure that each component of the loss reaches
a balanced state.

3. Experiments and Analysis
3.1. Datasets

Underwater fish object detection, as a specialized type of object detection, is signif-
icantly more complex than general object detection. It faces two main challenges. First,
the complexity of the targets themselves presents a challenge: targets in the ocean, such as
fish and corals, have small scales, varIoUs postures, and camouflage, exhibiting significant
intra-class variation and similar inter-class morphology, which greatly increases the diffi-
culty of detection. Second, the complexity of the environment also poses a challenge. Issues
such as fog effects, color distortion, and light interference are common in underwater envi-
ronments, further complicating detection. Therefore, the chosen dataset must encompass
these characteristics. Consequently, the RUOD dataset [42] and the DUO dataset [43] are
selected for training and testing.

The RUOD dataset offers a wide range of general underwater scenes and addresses
varIoUs underwater detection challenges. It includes ten target categories such as fish,
divers, starfish, corals, sea turtles, sea urchins, sea cucumbers, scallops, squid, and jellyfish.
The dataset features images captured in complex underwater environments with effects
like fog, color distortion, and light interference, enabling a thorough evaluation of detector
performance. It contains 7466 images for training and 1867 images for testing and evalua-
tion. The distribution of samples across training and test sets, along with the number of
samples per category, is shown in Figure 5.
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The DUO dataset contains 7782 accurately labeled images, with 6671 used for training
and 1111 used for testing. The dataset consists of four typical aquaculture species: sea
urchins, sea cucumbers, scallops, and starfish. The images in the DUO dataset exhibit
typical underwater characteristics such as color distortion, low contrast, uneven lighting,
blurriness, and high noise, presenting challenges for accurately detecting different aqua-
culture species. Meanwhile, it reflects the real-world issues faced in marine environment
target detection. The distribution of the data and the number of samples per category in
the training and test sets are showcased in Figure 6.
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3.2. Experimental Setup

In terms of training settings, the model undergoes 100 epochs, with each batch pro-
cessing 16 images of size 640 × 640 pixels. For preventing overfitting, an early stopping
mechanism is configured. Training is halted if there is no significant improvement within
50 epochs. Additionally, the initial learning rate is set to 0.01, and optimization is con-
ducted using a momentum optimizer with weight decay to ensure training stability and
effectiveness. For further enhancing training efficiency, automatic mixed Precision training is
employed, significantly reducing computational resource usage without sacrificing accuracy.

For data augmentation, varIoUs image processing techniques are applied to enhance
the robustness of model in different environments. In data augmentation, the probability of
horizontal flipping is set to 50%, which can help the model maintain high recognition rates
for objects facing different directions. The hue, saturation, and brightness enhancement
ratios are set to 0.015, 0.7, and 0.4, respectively, which helps the model adapt to different
lighting conditions and color variations. The configuration also allows for turning off
mosaic augmentation during the final 10 epochs of training to avoid negative impacts on
model performance from excessive image distortion.

During the inference phase, multiple optimization options are available, including
a cosine learning rate scheduler to fine-tune model parameter adjustments. The training
is conducted using four RTX 4090 GPUs, each with 24 GB of memory, and the training is
carried out concurrently through the Distributed Data Parallel (DDP) mode.

3.3. Evaluation Metrics

For the evaluation of the algorithm, four metrics, mAP@50, mAP@50:95, Precision–
Recall, and P-R Curve, are selected to comprehensively assess the accuracy of the im-
proved model.
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(1) Precision: Precision represents the proportion of actual positive samples among those
predicted as positive. The formula can be expressed as:

Precision =
TP

(TP + FP)
(17)

where TP (true positive) denotes the number of true positives and FP (false positive)
denotes the number of false positives.

(2) Recall: Recall indicates the proportion of actual positive samples that are correctly
predicted as positive. The formula can be expressed as:

Recall =
TP

(TP + FN)
(18)

where FN (false negative) represents the number of false negatives. Generally, Preci-
sion and Recall are somewhat in conflict. Increasing Precision tends to decrease Recall,
and vice versa.

(3) mAP (mean Average Precision) is a commonly used computer vision evaluation metric
that measures the performance of object detection algorithms. After the introduction
of Precision and Recall, AP (Average Precision) needs to be understood. AP represents
the Average Precision at a confidence threshold, which is the area under the Precision
and Recall curve. To calculate AP, Precision and Recall are plotted as curves, and
the area under the curve is computed. In practice, AP is often calculated via a
discretization method, where Recall values are fixed at 0, 0.1, 0.2, . . ., 1. For each
Recall value, the maximum Precision value is determined. Then, each Precision value
is multiplied by the difference in Recall values between points, and all these products
are summed to obtain AP.

mAP, as the average AP across multiple confidence thresholds, is about calculating
the average of several AP values. In practice, confidence thresholds tend to start at 0.5 and
increase in steps of 0.05 or 0.1. AP is calculated for each confidence threshold. Furthermore,
the average of all AP values is taken as mAP. mAP is an important metric for evaluating
the performance of object detection algorithms, as it can comprehensively consider the
Precision and Recall performance of the algorithm across different confidence thresholds
and provide a complete reflection of the algorithm’s performance.

3.4. Ablation Experiments

In FishDet-YOLO, the UEM is introduced to enhance the gradient flow information
in images. The UEM incorporates the UDAB module, which integrates the DAB module
to extract high-frequency information and the LFAB module to obtain low-frequency in-
formation. In the detection network architecture, the Mamba-C2f is designed to enhance
the algorithm’s ability to capture long-range dependencies. In addition, ablation exper-
iments are conducted to validate the effectiveness of each innovative module. Table 1
presents the ablation experiment results of FishDet-YOLO on RUOD. According to the
results, enabling the DAB module or LFAB module individually improves the model’s
performance, with mAP50 reaching 83.8% and 83.1%, respectively, and corresponding
improvements in Precision and Recall. When both the DAB and LFAB modules are enabled
simultaneously, the model’s mAP50 further increases to 86.3%. After the Mamba-C2f is
incorporated, all performance metrics of the model improve significantly, with the final
mAP50 reaching 89.5%, mAP50–95 reaching 65.9%, and Precision and Recall at 87.2% and
82.3%, respectively.
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Table 1. RUOD ablation experiments; in the experimental data, bold numbers represent the highest
accuracy,

√
indicates the use of the module, and x indicates the non-use of the module.

UEM
Mamba-C2f mAP50 (%) mAP50–95 (%) Precision Recall

DAB LFAB

x x x 81.5 55.2 82.6 74.4
x x

√
84.2 58.0 84.9 77.2

x
√

x 83.1 56.8 83.7 75.9√
x x 83.8 57.5 84.4 76.5√ √

x 86.3 61.0 86.1 79.1√ √ √
89.5 65.9 87.2 82.3

Table 2 shows the ablation experiment results on the DUO dataset. The baseline model
has an mAP50 of 80.6%, an mAP50–95 of 60.2%, a Precision of 82.0%, and a Recall of 73.0%.
After the introduction of the Mamba-C2f, mAP50 and mAP50–95 increase to 82.7% and
63.3%, respectively, with Precision and Recall reaching 83.6% and 75.2%. The addition of
the LFAB module further increases mAP50 to 84.4% and mAP50–95 to 66.4%, with extra
improvements in Precision and Recall. The model with the DAB module shows mAP50
at 83.9% and mAP50–95 at 64.9%. Combining the DAB and LFAB modules, mAP50 rises
to 86.1% and mAP50–95 reaches 68.2%, with Precision and Recall at 85.8% and 79.1%,
respectively. Finally, the model incorporating all features achieves an mAP50 of 88.8%, an
mAP50–95 of 69.4%, a Precision of 86.4%, and a Recall of 80.8%.

Table 2. DUD ablation experiments; in the experimental data, bold numbers represent the highest
accuracy,

√
indicates the use of the module, and x indicates the non-use of the module.

UEM
Mamba-C2f mAP50 (%) mAP50–95 (%) Precision Recall

DAB LFAB

x x x 80.6 60.2 82.0 73.0
x x

√
82.7 63.3 83.6 75.2

x
√

x 84.4 66.4 85.1 77.6√
x x 83.9 64.9 84.2 76.7√ √

x 86.1 68.2 85.8 79.1√ √ √
88.8 69.4 86.4 80.8

As revealed by the results in Tables 1 and 2, the DAB and LFAB modules enrich the
gradient flow information in images. The Mamba-C2f plays a crucial role in enhancing the
model’s ability to capture long-distance dependency features in complex scenes, signifi-
cantly improving the performance of FishDet-YOLO in underwater fish detection tasks.

As shown in Tables 3 and 4, to examine the effect of Laplacian decomposition compo-
nent count in the UEM on final accuracy, we conducted an ablation study analyzing the
impact of decomposing the image into 2 to 5 components. The results indicate that the
highest accuracy was achieved when the image was decomposed into four components.

Table 3. Ablation study of different Laplacian component counts on RUOD dataset. Bold numbers
represent the highest accuracy.

Laplacian Component Count mAP50 (%) mAP50–95 (%) Precision (%) Recall (%)

2 88.8 65.3 86.4 82.0
3 89.1 65.5 86.9 82.1
4 89.5 65.9 87.2 82.3
5 89.3 65.8 87.0 82.2
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Table 4. Ablation study of different Laplacian component counts on DUD dataset. Bold numbers
represent the highest accuracy.

Laplacian Component Count mAP50 (%) mAP50–95 (%) Precision (%) Recall (%)

2 87.9 68.8 86.0 80.3
3 88.5 69.2 86.1 80.6
4 88.8 69.4 86.4 80.8
5 88.6 69.1 86.3 80.5

As shown in Tables 5 and 6, we studied the impact of different loss functions on model
performance. The experimental results show that using VFL Loss, DFL Loss, and CIoU
Loss together achieves the highest detection accuracy.

Table 5. An ablation study of different loss functions on the RUOD dataset. Cls Loss represents
classification loss, Reg Loss represents regression loss, CE Loss represents the cross-entropy loss, and
L1 Loss represents the mean absolute error Loss. Bold numbers represent the highest accuracy.

Cls Loss Reg Loss mAP50 (%) mAP50–95 (%) Precision (%) Recall (%)

CE Loss L1 Loss 84.4 61.6 83.5 77.9
VFL Loss L1 Loss 85.7 62.4 84.2 78.6
DFL Loss L1 Loss 86.3 63.1 85.7 79.2
CE Loss CIoU Loss 87.8 64.8 86.7 80.4

VFL Loss + DFL Loss L1 Loss 87.2 64.1 86.0 80.1
VFL Loss + DFL Loss CIoU Loss 89.5 65.9 87.2 82.3

Table 6. An ablation study of different loss functions on the DUD dataset. Cls Loss represents
classification loss, Reg Loss represents regression loss, CE Loss represents the cross-entropy loss, and
L1 Loss represents the mean absolute error Loss. Bold numbers represent the highest accuracy.

Cls Loss Reg Loss mAP50 (%) mAP50–95 (%) Precision (%) Recall (%)

CE Loss L1 Loss 84.4 61.6 83.5 77.9
VFL Loss L1 Loss 85.2 63.1 84.6 78.5
DFL Loss L1 Loss 86.0 62.8 85.3 79.0
CE Loss CIoU Loss 87.1 65.0 85.2 80.2

VFL Loss + DFL Loss L1 Loss 86.9 66.2 85.8 80.4
VFL Loss + DFL Loss CIoU Loss 88.8 69.4 86.4 80.8

3.5. Comparative Experiments

This paper introduces FishDet-YOLO and compares it with 10 target detection algo-
rithms, including the classic SSD [11] and Faster R-CNN [10], as well as recent versions of
the YOLO series models, YOLOv8, YOLOv9 [15], and YOLOv10 [16], for evaluating its ad-
vantages. Additionally, this paper includes Transformer-based target detection algorithms
such as DETR [21] and Deformable-DETR [22], two state-of-the-art (SOTA) algorithms from
the past two years, YOLO-Fish [23] and UODN [44], as well as the latest fish detection
algorithm of 2024, DP-FishNet [24].

Table 7 shows the comparison results on the RUOD dataset. It can be observed from the
experimental results that FishDet-YOLO performs excellently across all metrics, especially
in the key indicators of mAP50 and mAP50–95, achieving 89.5% and 65.9%, respectively,
significantly higher than other models. Compared with the classic SSD and Faster R-CNN,
FishDet-YOLO improves mAP50 by 17.2% and 14.3%, respectively, indicating superior
overall performance in accuracy and Recall. Compared with the latest YOLO series versions,
FishDet-YOLO also demonstrates clear advantages. Compared with the latest YOLOv10,
FishDet-YOLO improves mAP50 and mAP50–95 by 6.7% and 6.4%, respectively, further
validating the effectiveness of the UEM and Mamba-C2fs introduced in our network
architecture. Moreover, FishDet-YOLO excels in both Precision and Recall, achieving 87.2%
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and 82.3%, surpassing the most advanced YOLO models and Transformer-based DETR
series. In the context of SOTA algorithms for underwater fish detection tasks, especially
in comparison with UODN, YOLO-Fish, and DP-FishNet, FishDet-YOLO has maintained
significant performance improvements, surpassing these three SOTA algorithms for fish
detection and demonstrating its exceptional performance in complex fish detection tasks.

Table 7. Comparative experiments on the RUOD dataset, with bold text in the experimental data
representing the highest Precision. Bold numbers represent the highest accuracy.

Method mAP50 (%) mAP50–95 (%) Precision (%) Recall (%)

SSD [11] 72.3 45.1 78.2 68.5
Faster R-CNN [10] 75.2 47.3 80.7 71.8

YOLOv8 81.5 55.2 82.6 74.4
YOLOv9 [15] 82.3 58.7 83.9 75.1
YOLOv10 [16] 82.8 59.5 84.8 75.2

DETR [21] 77.6 50.4 79.3 70.9
Deformable-DETR [22] 82.1 56.3 83.0 75.1

YOLO-Fish [23] 84.9 58.9 84.0 77.3
DP-FishNet [24] 86.2 61.5 85.0 78.3

UODN [44] 86.7 62.1 85.5 79.4
FishDet-YOLO 89.5 65.9 87.2 82.3

In Table 8, SSD and Faster R-CNN show relatively low performance on the DUO
dataset, with mAP50 scores of 68.9% and 73.5%, respectively. The YOLO series models
perform exceptionally well, with YOLOv8 achieving an mAP50 of 80.6%, while YOLOv9
and YOLOv10 further improve to 82.2% and 84.1%, respectively. DETR and its variants
have certain advantages in complex scenarios but still lag behind the YOLO series. YOLO-
Fish has an mAP50 of 85.7%, UODN scores 87.1%, and FishDet-YOLO further increases
to 88.8%. As indicated by these results, FishDet-YOLO significantly improves Precision
and Recall in fish detection tasks, demonstrating its substantial advantage in complex
underwater scenes.

Table 8. Comparative experiments on the DUO dataset, with bold text in the experimental data
representing the highest Precision. Bold numbers represent the highest accuracy.

Method mAP50 (%) mAP50–95 (%) Precision Recall

SSD [11] 68.9 42.7 75.4 64.2
Faster R-CNN [10] 73.5 48.1 78.9 69.3

YOLOv8 80.6 60.2 82.0 73.0
YOLOv9 [15] 82.2 62.8 83.2 74.4
YOLOv10 [16] 84.1 65.7 84.5 76.2

DETR [21] 76.4 53.4 78.7 70.1
Deformable-DETR [22] 80.3 58.6 81.4 72.8

YOLO-Fish [23] 85.7 67.5 84.8 78.0
DP-FishNet [24] 86.3 68.2 84.9 78.8

UODN [44] 86.1 68.3 85.4 79.1
FishDet-YOLO 88.8 69.4 86.4 80.8

Table 9 shows the performance comparison with the comparison algorithm, including
the number of parameters, FLop. According to the results, the algorithm in this paper
surpasses the detection algorithm designed by the Transformer in terms of performance,
and it also surpasses DP-FishNet and UODN. In terms of comprehensive accuracy and
speed, Fish Det-YOLO achieves superior results. However, it is slightly lower than the
YOLOv8 algorithm, which is also the direction for future optimization.
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Table 9. Performance metrics comparison. The bold text represents the algorithm proposed in
this paper.

Method Params Flops FPS

SSD [11] 71.6 M 87.5 G 22
Faster R-CNN [10] 123.6 M 213.3 G 7

YOLOv8 5.2 M 8.7 G 169
YOLOv9 [15] 7.1 M 26.4 G 114

YOLOv10 [16] 7.2 M 21.6 G 125
DETR [21] 41.3 M 86.4 G 28

Deformable-DETR [22] 40.3 M 173.6 G 19
YOLO-Fish [23] 86.0 M 201.2 G 8
DP-FishNet [24] 27.5 M 102.5 G 31

UODN [44] 19 M 43.9 G 123
FishDet-YOLO 6.8 M 19.5 G 143

3.6. Visual Qualitative Analysis Experiments

In Figure 7, the P-R Curve shows the experimental results of the baseline model
YOLOv8 and the proposed improved algorithm FishDet-YOLO on the RUOD test set. As
shown by the figure, the mAP for each fish species clearly presents the optimization trend.
The improved algorithm increases the mAP from 81.5% to 89.5%, a significant increase
of 8%. The AP for the corals category improves from 0.678 to 0.824, a 14.6% increase,
demonstrating notable improvement in coral detection. The AP for cuttlefish increases
from 0.946 to 0.984. In spite of the smaller increase (3.8%), it still indicates enhanced
accuracy in cuttlefish recognition. The AP for the diver category rises from 0.909 to 0.958,
an increase of 4.9%, showing more precise performance in fish detection. The AP for
echinus improved from 0.879 to 0.927, a 4.8% increase, indicating significant improvement
in sea urchin detection. Other categories, such as fish, holothurian, jellyfish, scallop, starfish,
and turtle, also see increases in AP of 11.5, 8.9, 12.9, 8.8, 5.0, and 4.8%, respectively, further
proving the effectiveness of the improved algorithm across varIoUs object detection tasks.

Figure 8 showcases the results of FishDet-YOLO on the DUO test set. Significant
improvements in AP (Average Precision) are achieved across all categories, suggesting a
comprehensive enhancement in detection performance. The AP for holothurian increases
from 0.779 to 0.887, a rise of 11.4 percentage points, revealing a significant improvement
in accuracy for sea cucumber detection. The AP for echinus rises from 0.915 to 0.935,
an increase of 2.0 percentage points, reflecting stable performance improvements in sea
urchin detection. The AP for scallop surges from 0.617 to 0.786, a 16.9 percentage point
increase, highlighting a notable improvement in scallop detection performance. The AP
for starfish improves from 0.912 to 0.943, a gain of 3.1 percentage points, further verifying
that the algorithm’s accuracy in starfish detection is enhanced. Overall, these results
reflect positive progress in the detection performance of varIoUs target categories with the
improved algorithm.

In Figures 9 and 10, a visual comparison of the detection results is given. Evidently,
the model before improvement had certain issues with false positives and missed detection,
particularly in cases where marine organisms were overlapped, triggering lower accuracy.
In contrast, the FishDet-YOLO model proposed in this paper shows detection results much
closer to the ground truth, demonstrating higher accuracy.
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In addition to detection visualization, this study visualizes the output of the UEM to
further investigate how the UEM enhances gradient flow information. Figure 11 shows the
results of a comparison between the UEM network output and the original input image.
From the perspective of image clarity, the UEM output exhibits higher image sharpness.
With increased image clarity, the content of high-frequency information in the image is
richer, and the gradient flow information is also more abundant. From the dimensions of
color and saturation, the UEM output provides a better visual experience. This further
explains the mechanism of the UEM.
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4. Discussion
4.1. Findings

In this paper, a novel underwater fish detection algorithm, FishDet-YOLO, is proposed.
It significantly enhances gradient flow information in images by introducing the UEM
and optimizing high-frequency and low-frequency information extraction with the UDAB
module. The Mamba-C2f is designed within the detection network to improve the model’s
ability to capture long-range dependencies in complex scenes.

Systematic ablation experiments validate the effectiveness of each innovative module.
The results reveal that the DAB and LFAB submodules in the UEM module are crucial for
improving FishDet-YOLO’s performance. According to the ablation experiments on the
RUOD dataset, activating either the DAB or LFAB module alone significantly improves
the performance of the model, with mAP50 reaching 83.8% and 83.1%, respectively. When
both the DAB and LFAB modules are activated, mAP50 further increases to 86.3%. After
introducing the Mamba-C2f, the model’s mAP50 reaches 89.5%, and mAP50–95 increases to
65.9%, indicating that the Mamba-C2f plays a key role in capturing long-range dependency
features. In ablation experiments on the DUO dataset, FishDet-YOLO also demonstrates
strong performance advantages. After adding the Mamba-C2f, the model’s mAP50 in-
creases to 82.7%. With the introduction of LFAB and DAB modules, mAP50 reaches 84.4%
and 83.9%, respectively. When both DAB and LFAB modules work together, mAP50 fur-
ther improves to 86.1%. Ultimately, when all modules are integrated, the model’s mAP50
reaches 88.8% and mAP50–95 reaches 69.4%, fully validating the effectiveness of these
modules in enhancing model performance.

In comparative experiments with other object detection algorithms, FishDet-YOLO
presents superior performance. On the RUOD dataset, FishDet-YOLO achieves mAP50 and
mAP50–95 of 89.5% and 65.9%, respectively, significantly surpassing varIoUs advanced
models, including the latest YOLOv10 and Transformer-based detection algorithms. The
results reveal that FishDet-YOLO not only has a significant advantage in detection accuracy
but also excels in handling long-range dependency features in complex underwater envi-
ronments. On the DUO dataset, FishDet-YOLO also shows strong competitiveness, with
a final mAP50 of 88.8%, the best among all compared algorithms. This further validates
the effectiveness of the proposed UEM and Mamba-C2fs, especially in handling complex
underwater scenes, where these modules significantly enhance the detection capability and
robustness of the algorithm.

In the visual qualitative analysis, the results presented through the P-R Curves further
support these conclusions. FishDet-YOLO demonstrates remarkable AP improvements in
varIoUs fish categories, such as corals, cuttlefish, and scallop. These improvements not only
validate the algorithm’s effectiveness in varIoUs object detection tasks but also indicate
that FishDet-YOLO has excellent application potential in underwater fish detection. Finally,
the effectiveness of detection before and after the improvements is demonstrated through
visual comparisons. Additionally, the UEM’s inputs and outputs are compared to explain
the functioning of the UEM.

In terms of model efficiency, FishDet-YOLO demonstrates superior performance
with 6.8 M parameters, 19.5 G FLOPs, and a processing speed of 143 FPS. Compared to
Transformer-based methods, such as YOLO-Fish (86.0 M parameters, 201.2 G FLOPs, and
8 FPS) and Deformable-DETR (40.3 M parameters, 173.6 G FLOPs, and 19 FPS), FishDet-
YOLO offers a more efficient use of computational resources and faster inference speed.
This efficiency allows FishDet-YOLO to maintain high detection accuracy while optimizing
computational performance, making it a robust solution for practical applications.

According to the experimental results, the design in FishDet-YOLO plays a significant
role in addressing the challenges of complex scenes. We hope to provide new perspectives
and references for underwater fish detection research.
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4.2. Limitations and Future Works

Although FishDet-YOLO achieves significant performance improvements on the
RUOD and DUO datasets, there are still some limitations. Firstly, the complexity of the
model is high, triggering increased computational demands, which may require substantial
computational resources in practical applications. Additionally, the generalization ability
of the model still needs further validation when applied to other types of underwater
images or fish detection in different environments. Moreover, underwater environments
present varIoUs challenges, such as low-light conditions and turbidity, which require
further investigation and validation. Lastly, since the model will be deployed on devices
with limited computational power in practical applications, the complexity of the model
under these constraints must be considered.

In future work, it will be essential to focus on the following areas: First, the model’s
computational efficiency should be further optimized to reduce redundant calculations,
so as to enable its effective operation in resource-constrained environments. Secondly,
more universally applicable enhancement methods can be explored to improve the model’s
generalization capabilities across varIoUs scenarios. Additionally, FishDet-YOLO can be
applied to a broader range of underwater biological detection tasks to verify its effectiveness
in diverse application contexts. At the same time, detection accuracy and robustness could
be further enhanced by incorporating more multimodal data (e.g., sonar or laser scanning
data) and integrating them with existing visual information robustness.

5. Conclusions

To summarize, we introduced the FishDet-YOLO algorithm to address the challenges
posed by the complexity of underwater environments and the diversity of fish species,
with the aim of enhancing both the accuracy and efficiency of underwater fish detection.
First, to mitigate issues such as uneven lighting, color distortion, and reduced contrast in
underwater environments, we developed the Underwater Enhancement Module (UEM).
This module utilizes Laplacian pyramids and multi-scale fusion techniques to enhance
high-frequency information in images, enrich gradient flow information, and enable end-
to-end joint training with the YOLO algorithm, thereby significantly improving detection
performance. Second, to address the complexity of varIoUs fish species, we leveraged
the long-range dependency capabilities of the Mamba model and integrated them with
YOLO’s C2f to create the Mamba-C2f. This approach effectively improves the accuracy and
adaptability of fish detection.

Despite its strong performance on the RUOD and DUO datasets, the FishDet-YOLO
algorithm has several limitations. Firstly, the model’s high complexity results in substantial
computational resource requirements, which may limit its applicability in real-time scenar-
ios. Secondly, although the model demonstrates good performance on specific datasets, its
generalization ability across diverse underwater environments and fish species requires
further validation. Additionally, the model may lack robustness in extreme environmental
conditions or with images of poor quality.

Future research should focus on the following directions: (1) optimizing the model’s
computational efficiency to reduce resource demands and enhance real-time applicability;
(2) improving the model’s generalization capability by expanding the training dataset
and adopting more universal feature extraction methods to enhance performance across
varied underwater environments and fish species; (3) exploring the model’s potential
applications in other underwater biological detection tasks, such as monitoring different
marine organisms; and (4) increasing the model’s robustness to variations in image quality
under challenging environmental conditions to ensure consistent performance. Through
these efforts, we anticipate that FishDet-YOLO will offer more effective solutions and
advance the field of underwater target detection.
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