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Abstract: In the modern era, AI-driven algorithms have significantly influenced medical diagnosis
and therapy. In this pilot study, we propose using Streamlit 1.38.0 to create an interactive dashboard,
PoAna .v1—Pose Analysis, as a new approach to address these concerns. In real-time, our system
accurately tracks and evaluates individualized rehabilitation exercises for patients suffering from low
back pain using features such as exercise visualization and guidance, real-time feedback and monitor-
ing, and personalized exercise plans. This dashboard was very effective for tracking rehabilitation
progress. We recruited 32 individuals to participate in this pilot study. We monitored an individual’s
overall performance for one week. Of the participants, 18.75% engaged in rehabilitative exercises less
frequently than twice daily; 81.25% did so at least three times daily. The proposed Long Short-Term
Memory (LSTM) architecture had a training accuracy score of 98.8% and a testing accuracy of 99.7%,
with an average accuracy of 10-fold cross-validation of 98.54%. On the pre- and post-test assessments,
there is a significant difference between pain levels, with a p < 0.05 and a t-stat value of 12.175. The
proposed system’s usability score is 79.375, indicating that it provides a user-friendly environment
for the user to use the PoAna .v1 web application. So far, our research suggests that the Streamlit
1.38.0-based dashboard improves patients’ engagement, adherence, and success with exercise. Future
research aims to add more characteristics that can improve the complete care of low back pain (LBP)
and validate the effectiveness of this intervention in larger patient cohorts.

Keywords: deep learning model; personalized care; self-administrative tool; system usability testing;
data visualization

1. Introduction

The prevalence of LBP will lead to rheumatoid arthritis, carpel tunnel syndrome,
osteoarthritis, ligament sprain, bone fracture, and so on. Notably, the prevalence of LBP has
significantly impacted working personnel in low-income and middle-income countries [1].
According to Ferreira et al. [2], by 2050, LBP will be the primary cause of years lived
with disabilities (YLD). Hospitals and rehabilitation centers are the usual settings for
rehabilitation programs that involve professional monitoring and direction [3,4]. We highly
suggest self-management as a first-line therapy option. The personalized care system
represents a modern, Society 5.0 implementation of medicine [5]. Personalized healthcare
systems alleviate the limitations of traditional therapy systems. Understanding visual
situations, the primary objective of computer vision, requires a variety of tasks, such
as recognition, detection, and captioning [6]. A standard method for action recognition
involves representing human stances in videos as skeleton data [7].

Artificial Intelligence (AI)-based personalized physiotherapy systems are an impactful
technology for people [8]. The Sussex Community National Health Service (NHS) organi-
zation prescribed the exercises for LBP rehabilitation [9]. Self-rehabilitation faces issues
when analyzing the prescribed exercise poses, which may cause severe muscle strain [10].
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Finding the skeletal data using pose estimation techniques (OpenPose, MediaPipe) leads to
a precise analysis of proper exercise monitoring [11]. Recent research utilizing Microsoft
Kinect depth-sensing cameras [12] has demonstrated that artificial intelligence (AI) may
offer immediate feedback during squat exercises [13,14], therefore greatly enhancing the
precision of the workout movements and increasing user involvement. Building upon prior
efforts, this system provides accurate and real-time monitoring to guarantee users execute
exercises accurately and safely. We have specifically developed dedicated AI-powered
exercise regimens to target persistent low back pain (LBP), a prevalent and incapacitating
ailment. These technologies have improved the quality of life for health by providing
customized, artificial intelligence-directed workout regimens. The selfBACK project has es-
tablished the efficacy of artificial intelligence (AI) in encouraging physical exercise through
a self-management application [15–17]. These results indicate that this method has the
potential to improve compliance with exercise regimens by allowing users to independently
manage their rehabilitation with less medical involvement. Comparative studies of AI
applications and conventional physical therapy have shown that AI can be equally, if not
more effective at directing exercises such as squats.

We selected Streamlit 1.38.0 for this project because of its ability to efficiently create and
implement interactive web applications [18]. It effortlessly integrates with Python (version
3.10.5), enabling us to construct a user-friendly interface capable of efficiently visualizing
and interacting with deep learning models developed using Keras 3.3.2 or PyTorch 2.4.
The proposed framework is well-suited for applications that necessitate real-time data
processing and user engagement. For instance, our self-rehabilitation tool offers prompt
feedback on exercise performance. Furthermore, Streamlit 1.38.0 the deployment process,
allowing us to focus on the fundamental features of the program without requiring consid-
erable front-end coding [19–21]. The key challenge in this technique is the loss of tracking
joints due to poor lighting conditions, the occlusion of body parts, and more [22–24]. This
proposed web application, equipped with an interactive dashboard, enables users to inde-
pendently monitor a person’s movement and receive visual feedback on the correctness of
their exercise. LSTM classifies exercise poses and provides feedback on their correctness.
Furthermore, the therapist can evaluate the participants’ overall performance and provide
comments to the user to enhance their exercise performance. The key points from our work
are summarized below: (1) To analyze motor function during LBP exercise therapy, our
model uses standard RGB videos. (2) Deep learning-based RGB data fusion allowed for
an accurate algorithm for motor function assessment. (3) Our model significantly outper-
formed SOTA approaches in evaluating the functions of LBP exercise. (4) We created a
web health app that provides assessment results, recommends various self-exercises for
patients, and monitors their recovery. We conducted a statistical analysis to validate the
significance of the proposed framework.

The structure of this research provides a comprehensive understanding of
“PoAna .v1”, a real-time interactive dashboard for LBP exercise rehabilitation analysis
and feedback generation. Section 1 introduces the basic understanding of AI for healthcare
sectors in the rehabilitation of LBP, highlighting the different self-rehabilitation techniques
equipped with AI and software developed for self-rehabilitation web applications for tel-
erehabilitation. Section 2 describes the methodologies and materials, including the process
of deep learning models, feature collection and preprocessing, and the comparison of
various web application frameworks and web applications. In Section 3, we went into
more detail about the tests that were used to figure out the overall performance analy-
sis, the statistical analysis of the pre-pain and post-pain assessments, the comparison of
performance matrices with other methods, and the score for the system usability for the
PoAna .v1 web dashboard for self-rehabilitation. Section 4 delves into discussing the pro-
cess of the proposed system performance in real-time and deliberates on the effectiveness
of the proposed system with other approaches. Finally, Section 5 concludes the paper
by outlining the limitations of the proposed approach and future directions for moving
forward with our work for further implementations.
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2. Materials and Methods

We included participants in this study if they had experienced musculoskeletal pain,
such as shoulder, wrist, elbow, and hip pain, for at least 3 weeks. We utilized the pain
assessment scales (PAS) questionnaire [25] to recruit the participants. We conducted the
recruitment process among the volunteer participants. Initially, 38 people showed interest
in participating in this study. We excluded four participants because they did not meet our
inclusion criteria (two individuals had recently undergone surgery; one was an alcoholic,
and another was on medication for high blood sugar). Two people dropped out of the
study due to their poor responsiveness to continuing work on our web application. Figure 1
depicts the flow of participants in this study.
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Figure 1. The flow of participants using our proposed self-rehabilitation web application.

We are trialing the PoAna .v1 app intervention on a general group, rather than a
subgroup with specific pain characteristics, to improve the quality of life for all people with
non-specific chronic LBP, regardless of demographic factors such as symptom duration. We
recruited three different age groups of participants with muscle strain, sharp pain in the
upper and lower limbs, stiffness, limited mobility of motor functions, and radiated pain in
the upper and lower body parts. The gender ratio of the overall participants is 11 females
and 21 males. The mean age of participants is 37.38± 15.19, and BMI is 25.83 ± 4.18. Table 1
displays the three different age groups of participants, their anthropometric parameters,
and pain level in the pre-pain assessment.

Table 1. Participants’ anthropometric parameters.

Parameter Group—1 Group—2 Group—3

Age More than 55 Age: Between ≥25 to ≤55 Age: Between ≥17 to <25
Gender Male—4; Female—1 Male—11; Female—6 Male—6; Female—4

Mean Height (cm) 156.8 ± 3.03 160 ± 6.97 162.4 ± 5.81
Mean Weight (kg) 64.8 ± 14.11 69.66 ± 7.85 59.56 ± 7.79

BMI (kg/m2) 26.26 ± 5.19 27.34 ± 3.70 22.56 ± 2.76

LBP level

No pain—0 No pain—0 No pain—0
Mild pain—0 Mild pain—1 Mild pain—2

Moderate pain—1 Moderate pain—10 Moderate pain—7
Severe pain—4 Severe pain—7 Severe pain—0



Electronics 2024, 13, 3782 4 of 20

2.1. Proposed System Flow Diagram

We captured self-rehabilitation exercise poses using a webcam, mobile cam, and
standard RGB camera. The captured video feed sequence served as the system analysis’s
primary input for the MediaPipe framework, which extracts the key landmarks or points
on the human body joints from the video feed. The data collection for this study consisted
of 96 video feeds captured from four distinct fields-of-view angles. The videos ranged in
duration from 10 to 30 s and documented nine different postures held by sixteen individuals
during low back pain recovery exercises. To train the model, the total amount of photos
was evenly divided into 4800 per class. We estimated the key points on the body using
the landmarks. These key points determine the angles for various body joint movements
in the video feed. The LSTM model trains on various body joint angles, and it generates
feedback on exercise performance using the same key points. If the system determines
that the calculated angles fall within the accepted range for the exercise, it will provide
feedback indicating that the exercise was performed correctly; if not, it will provide feedback
indicating that the exercise was not performed correctly. Table 2 tabulates the details of the
accepted calculated angle ranges for important body joints.

Table 2. Details of the accepted ranges of angles to show the feedback on various exercises.

Name of the Exercise Accepted Range of Angles for Important
Key Points Sample Performed Correctly

Arm raise

Left Elbow Angle = 175◦; ±2◦

Left Shoulder Angle = 177◦; ±2◦

(or)
Right Elbow Angle = 175◦; ±2◦

Right Shoulder Angle = 177◦; ±2◦
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Table 2. Cont.

Name of the Exercise Accepted Range of Angles for Important
Key Points Sample Performed Correctly

Knee hug

Left elbow Angle = 165◦; ±10◦

Right elbow Angle = 165◦; ±10◦

Left shoulder Angle = 10◦; ±5◦

Right shoulder Angle = 10◦; ±5◦

Left hip Angle = 50◦; ±5◦

Right hip Angle = 50◦; ±5◦

Left knee Angle = 120◦; ±8◦

Right knee Angle = 120◦; ±8◦
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The Logitech C920 external webcam, selected for its extensive accessibility, cost-
effectiveness, and dependable functionality, records video in 1080p of resolution
(1920 × 1080 pixels) at a rate of 30 frames per second. This outstanding video was perfect
for our investigation. The laptop’s integrated camera captures images at a resolution of
720p (1280 × 720 pixels) and produces 30 frames per second. Although its resolution was
lower, it was sufficient for our requirements, allowing us to evaluate the resilience of our
techniques across various image qualities. We stored the feedback and calculated angles
in a CSV file for future reference and analysis. “PoAna .v1”, also known as Pose Analysis,
integrates the entire process into a sleek web application. The app allows the participants
to access their daily performance feedback, the detailed analysis of their exercises, and
track their progress. Figure 2 illustrates the proposed system process flow.
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2.2. Feature Collection and Processing

rad = arctan2
(
cy − by, cx − bx

)
− arctan2

(
ay − by, ax − bx

)
, (1)

angle =
∣∣∣∣rad× 180

π

∣∣∣∣, (2)

where a, b, and c are the landmarks on body key points, vectors of x, and y coordinates are
extracted from each frame in the video sequence. An arctangent of difference between the
x and y coordinates of landmarks of one body joint subtracted with another joint point of x
and y coordinates will give a rad value. Finding the absolute value of rad multiplied by
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180/π will provide the angle of body joints. Detailed information about the tracked skeletal
joints, the set of derived characteristics, and the activity class labels can be seen in Table 3.

Table 3. Detailed information about the tracked skeletal joints, the set of derived characteristics, and
the activity class labels.

S. No. Parameters Description

1 Tracked skeletal joints Left_shoulder, right_shoulder, left_elbow, right_elbow, left_wrist, right_wrist,
left_hip, right_hip, left_knee, right_knee, left_ankle, right_ankle

2 Set of derived characteristics

Left elbow angle (LE_angle), Left shoulder angle (LS_angle), Left knee angle
(LK_angle), Left wrist angle (LW_angle), Right shoulder angle (RS_angle),

Right elbow angle (RE_angle), Right knee angle (RK_angle), Right hip angle
(RH_angle), Right wrist (RW_angle)

3 Activity class labels Arm_raise, Bridge_pose, Cat_cow, Child_pose, Knee_hug, Knee_roll,
Lumbar_flexion, Side_bend

Algorithm 1 depicts the collection exercise poses and the export of key points.

Algorithm 1: Pose Data Collection and Keypoint Export

Input :
V ← Video file path
A← Set of actions
N ← Number of sequences
L← Length of each sequence (number of frames)
D ← Base path for saving keypoints
Output :
Keypoints data stored in numpy arrays
Initialize Variables and Models :
cap← Video Capture(V)
holistic← min _detection_confidence = 0.5, min _tracking_confidence = 0.5
Loop Through Actions and Sequences :
for each action a ∈ A do
for each sequence s ∈ {0, 1, . . . , N − 1} do
for each frame f ∈ {0, 1, . . . , L− 1} do
Read frame :

Ret, frame← cap.read
Make Detections :

Image, results← mediapipedetection(frame,holistic)
Draw Landmarks :
Drawstyledlandmarks(image,results)

Apply Wait Logic :
if f ramenum = 0 then
STARTING COLLECTION
Collecting frames for a Video Number
waitKey(2000ms)
else
Collecting frames for a Video Number
end if

Export Keypoints :
Keypoints← extractkeypoints(results)
Npypath ← os.path.join(DATAPATH, a, str(s), str(f))

Np.save
(

npypath, keypoints
)

end for
end for
end for
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When it came to identifying the exercise positions, we gathered the appropriate ten
features from different angles: the left elbow, left shoulder, left hip, left knee, left wrist, right
shoulder, right hip, right knee, and right wrist, using twelve key points through MediaPipe
0.10.15, as mentioned in Figure 3.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 22 
 

 

                       Image, results ← mediapipeୢୣ୲ୣୡ୲୧୭୬(୰ୟ୫ୣ,୦୭୪୧ୱ୲୧ୡ)  

 
                       𝐃𝐫𝐚𝐰 𝐋𝐚𝐧𝐝𝐦𝐚𝐫𝐤𝐬: 
                       Drawୱ୲୷୪ୣୢౢౚౣ౨ౡ౩(ౣౝ,౨౩౫ౢ౪౩)  
 
                       𝐀𝐩𝐩𝐥𝐲 𝐖𝐚𝐢𝐭 𝐋𝐨𝐠𝐢𝐜: 
                       𝐢𝐟 𝑓𝑟𝑎𝑚𝑒௨ = 0 𝐭𝐡𝐞𝐧  
                           STARTING COLLECTION 
                           Collecting frames for a Video Number 
                           waitKey(2000ms) 
                       𝐞𝐥𝐬𝐞 
                            Collecting frames for a Video Number 
                        𝐞𝐧𝐝 𝐢𝐟 
 
                        𝐄𝐱𝐩𝐨𝐫𝐭 𝐊𝐞𝐲𝐩𝐨𝐢𝐧𝐭𝐬: 
                        Keypoints ← extract୩ୣ୷୮୭୧୬୲ୱ(୰ୣୱ୳୪୲ୱ) 
                        Npy୮ୟ୲୦ ← os. path. join൫DATAୌ, a, str(s), str(f)൯ 
                        Np. save൫npy୮ୟ୲୦, keypoints൯ 
 
                𝐞𝐧𝐝 𝐟𝐨𝐫  
         𝐞𝐧𝐝 𝐟𝐨𝐫  𝐞𝐧𝐝 𝐟𝐨𝐫  

When it came to identifying the exercise positions, we gathered the appropriate ten 
features from different angles: the left elbow, left shoulder, left hip, left knee, left wrist, 
right shoulder, right hip, right knee, and right wrist, using twelve key points through Me-
diaPipe 0.10.15 , as mentioned in Figure 3. 

 
Figure 3. Found through MediaPipe: (a) 33 key points of skeletal information, and (b) 12 key points 
that are considered for the collection of angle features. 

We created feature vectors after carefully selecting relevant features for each action. 
We save the ten distinct angular characteristics as a dataset in a numpy array (.npy) for-
mat. In the third step, we feed the dataset containing the features recovered from the series 

Figure 3. Found through MediaPipe: (a) 33 key points of skeletal information, and (b) 12 key points
that are considered for the collection of angle features.

We created feature vectors after carefully selecting relevant features for each action.
We save the ten distinct angular characteristics as a dataset in a numpy array (.npy) format.
In the third step, we feed the dataset containing the features recovered from the series of
frames to the LSTM, enabling it to recognize rehabilitation exercise poses for non-specific
chronic back pain.

2.3. Comparison of Various Web App Frameworks with Streamlit

In this subsection, we discussed the comparison of various web application frame-
works. The most common frameworks used for web applications for data science and
machine learning [20,21] are Streamlit, Dash, Flask, and Voila. Table 4 Shows the compari-
son of various web app frameworks for data science and machine learning environments.

Table 4. Comparison of various web application frameworks’ features for data science and machine
learning environments.

Features Streamlit Dash Flask Viola

Design complexity For prototyping, design with
minimal code.

Compared to Streamlit, the
design prototype requires

more initial setup. But, it is
simple to use.

For routing and template
creation, detailed coding

is required.

This framework contains
limited tools for design

prototyping.

Integration with Python Seamless and built specifically
for Python.

Seamless and built specifically
for Python.

It is seamless, general-purpose,
and flexible for various

applications.

It is only suitable for a limited
number of applications.

Customization Focuses on rapid deployment
and simplicity.

It offers more flexibility with
design and interaction.

Complete control over app
design but requires more coding.

Not more flexible compared to
Streamlit.

Performance
It allows for quick deployment

and handles small and
data-intensive applications.

It can handle complex and
data-driven apps well.

It is highly efficient and capable
of handling heavy loads.

While it works well for
interactive visualizations, it
necessitates optimization for

large-scale applications.

Use cases
It provides rapid prototyping,

simple dashboards, data
exploration, and model demos.

Complex dashboards, data
visualization, and enterprise

apps require interactivity.

To develop full-scale web
applications, APIs, and intricate

data-driven websites.

Similar to the Streamlit 1.38.0
framework.



Electronics 2024, 13, 3782 9 of 20

Streamlit 1.38.0 was chosen because it greatly decreased the development time and
made it easy to integrate machine learning models and its fast interface creation capabilities
and good compatibility with Python.

2.4. Classification Model and Web Application

In this subsection, we discussed the lightweight classification model used to classify
the action and provide comments on whether it was correctly performed or not. We
developed a Streamlit-based web application, “PoAna .v1”, for users to analyze their
exercise poses for low back pain rehabilitation. The task at hand necessitates a complete
understanding of the activity rather than frame-by-frame details, making the temporal
dimension of the data a critical component. Part of the design consisted of a softmax layer
after a dense layer and one 64-unit LSTM block. Figure 4 shows a simplified representation
of the suggested model’s design.
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Pose estimation is one of the most popular AI approaches since it uses a person’s
photograph to determine their location and orientation in space. Chae et al. [11] developed
a mobile app based on convolutional LSTM that requires a Microsoft Kinect sensor to
capture human motion to classify the squat exercise. Bijalwan et al. [22] propose a system
that incorporates 3D joints and skeletal data, utilizing Kinectv2 sensor hardware. This
system creates economic barriers for remote users. During recovery exercises, Francisco
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and Rodrigues [26] developed computer vision-based (open pose technique) tracking of a
patient’s body joints, recognizing and validating the exercises. The OpenPose pose estima-
tion technique overlays the 18 body joint key points, which may not accurately predict the
exercise poses. They detected only three rehabilitation exercise poses. Rangari et al. [27]
proposed a system to classify the activity and guess its pose. In this system, improper
plank positions are currently difficult to categorize. Hongyan Zheng, Haijun Zhang, and
Hao Zhang are involved. The authors [28] utilize the OpenPose Model for multimodal
posture action classification. Improving accuracy and providing adequate resilience when
estimating the pose in real-time is still difficult. Hang Cai [29] analyzes real-time fitness
motions. This method can only monitor the movement of a single limb. Simultaneously,
the system has improved its ability to track multiple limbs simultaneously. For traditional
rehabilitation exercises (an eight-section brocade) in China, Qiu et al. [30] implemented
gradient-weighted class activation mapping (Grad-CAM) and presented the visual results
of matching between the correct and incorrect poses. The experimental examination utilizes
the built-in NVIDIA GeForce MX330 GPU in conjunction with an 11th generation Intel i5
CPU and 4GB RAM equipped laptop, manufactured by Dell, Texas, United States.

Physiotherapists, physical therapy experts, and researchers worked together to de-
velop the PoAna .v1 web application using Streamlit. The PoAna .v1 web application
features five tabs on its front end: home, accounts, experts, comments, and contact. The
web application takes further action based on the users’ requests. Figure 5 illustrates the
web application’s architectural flow.
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Figure 5. PoAna .v1 web application’s architecture.

This web application contains various features that can benefit users and experts. In
particular, the app allows users to visualize the exercises they have performed in real-time
and provides real-time feedback. The user either performs the exercise correctly or fails
to do so. Additionally, the user can view a graphical representation of angle deviations
during exercise execution. Users can perform various operations in the PoAna .v1 web
application, as depicted in Figure 6. Experts operations are shown in Figure 7.
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Figure 6. The operations of PoAna .v1, the application depicted here, are as follows: (a) the home
page screen displays the exercises that can be analyzed using this app; (b) once the user logs in, they
can select the start task button when they are ready to perform tasks; and (c) consumers can read the
instructions before performing their exercises. We conducted this research in Tamil Nadu, India. We
display the instructions in Tamil to ensure users comprehend and complete the exercise flawlessly;
(d) Additionally, individuals can visualize the feedback on their performance, regardless of correctness
or incorrectness.
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average age, weight, and BMI; (b) a comparison of the daily sessions each user attends is displayed;
(c) experts can visualize the performance analysis of users by selecting the users in this window;
(d) specialists can see the specific exercise comparison of various users in a single plot.
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3. Results

This study aims to assess the three assessments to ensure the web dashboard’s effec-
tiveness for LBP self-rehabilitation. The study compares the overall performance among
three age groups, examines the clinical outcome measure of the pain assessment scale,
evaluates the system usability score (SUS), assesses the accuracy of the model prediction,
and compares the effectiveness of SOTA methods.

3.1. Participants’ Overall Performance Analysis

We assessed the overall performance based on how long it took the user to complete
an exercise. Table 5 shows the required duration to complete a particular exercise per the
Sussex community’s NHS Foundation Trust for mechanical LBP.

Table 5. Overall performance assessment procedure for LBP exercises.

Name of the Exercise Procedure Sets Required to
Complete the Task Time Duration (S)

Arm raise

Arrange yourself with your feet shoulder
width apart, your arms by your sides, and your

palms facing inward. Position your arm
vertically in front of you while maintaining its
straightness. Stretch to the maximum extent to

align your arm with your head before
descending to the initial position.

3–5 sets 30 s

Bridge pose

Lie on your back, with your knees flexed and
your feet supported on the floor. Contract your
lower abdominal muscles and exhale through
your buttocks. To create a ‘Bridge’ with your

body, elevate your buttocks off the floor or bed.

3–5 sets 30 s

Cat_cow pose

To begin, flex the mid-back upwards towards
the ceiling. Adjust the position by rotating the

pelvis in the opposite direction. Next, it is
necessary to enhance the arch in the

lower back.

3–5 sets 30 s

Child pose

Begin by assuming a kneeling posture. Next,
lower your upper body to the ground until

your forehead touches the floor. Position your
arm above your head and flatten your palms

on the floor.

3–5 sets 30 s

Knee hug pose
Position yourself on your back, flex, and

elevate your knees. Next, use your hands to
pull your knees back towards your chest.

3–5 sets 30 s

Knee roll

Reclining on your back with your knees flexed,
gradually lower your legs to one side and
maintain this position for 5 s. Rectify the

central position and interchange the sides. You
should see your back elongate opposite your

legs’ lateral tilt.

3–5 sets 30 s

Lumbar flexion pose

Place your feet shoulder-width apart. Proceed
gradually by rolling or bending forward and
moving your hands down your legs, towards

your feet, until you perceive a sensation of
elongation in your lumbar region.

3–5 sets 15 s

Side bend

Stand with your feet spaced shoulder width
apart and your hands resting beside you.
Gradually glide one hand down your leg,

extending to your knee.

3–5 sets 30 s

The participants are free to perform the exercises mentioned above within the time
duration specified in the table. If the participants can perform the exercise without pain,
they can do so. We consider the accuracy of exercise time duration (A) for an exercise per-
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formed correctly (PC) subtracted from one not performed properly (NPC), mathematically
expressed as Equation (3).

A = PC− NPC (3)

We measure the performance of an exercise (P) by considering the accuracy of its time
duration. We measure performance within the range of −100 to 100. The performance
calculation is based on the following fixed conditions:

• If the ‘A’ value is greater than or equal to 30 for all exercises except for lumbar flexion
(LF), then the lumbar flexion pose target for the exercise duration is 15 s. Hence, the
lumbar flexion condition is (A ≥ 15), and the performance is regarded as 100%.

• The performance is considered as−100% if the ‘A’ value is less than 30 for all exercises,
except LF, where it is 15 s instead of 30 s;

• If the ‘A’ value is not greater than 30 or less than −30 (i.e., A is between −30 and
30 inclusive), the value can be calculated by (A/30) × 100. This takes A’s value,
divides it by 30, and then multiplies the result by 100. We use this method to show the
exercise’s performance in percentage form.

Then, finally, we evaluate the overall performance (OP) of the user per session as
Equation (4).

OP =

(
∑8

n=1 P
)

8
(4)

where ‘P’ is the performance of an exercise pose by the user. The graphical representation
of various exercise performances is shown in Figure 8.
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3.2. Statistical Analysis of Pain Assessment

The null hypothesis of this research study is H0: there is no difference in pain lev-
els before and after treatment, and the alternate hypothesis is H1: there is a significant
difference in pain levels before and after treatment. Initially, we collected the pre-pain
assessment score before the participants started their self-rehabilitation sessions. The mean
pre-pain assessment score is 6.3390 with a standard deviation of 1.9746. The mean post-pain
assessment score is 3.0859; the SD is 1.8575. Figure 9 depicts the overall mean score of the
pre- and post-pain assessments.

We performed an independent t-test with a small sample size of 32. The t-test value
was 12.175, and the p-value achieved was p = 0.000002. p < 0.05, hence, we reject the null
hypothesis; there is a significant difference between pre-pain and post-pain assessments.
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The outliers are represented as
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We divided the participants in this study into three precise age groups: 17–24, 25–55,
and 55 and above. To analyze the variation in parameter distribution among these groups,
we conducted statistical tests for each parameter within each age group. Within each age
group, we utilized a Wilcoxon signed-rank and paired t-test to compare the parameters.
Implementing this method enabled us to detect notable variations in the distribution of
parameters among the different age groups. Table 6 displays the results.

Table 6. Statistical test analysis of variation in parameter distribution among different age groups.

Parameters
17–24 Age Group 25–55 Age Group More than 55 Age Group

p-Value Significance p-Value Significance p-Value Significance

Question 1 6.714784× 10−3 True 7.629395× 10−6 True 6.250000× 10−2 False
Question 2 1.734969× 10−2 True 3.814697× 10−6 True 2.548148× 10−2 True
Question 3 1.693843× 10−3 True 4.341638× 10−6 True 6.250000× 10−2 False
Question 4 1.307971× 10−1 False 1.917252× 10−3 True 3.122981× 10−2 True
Question 5 1.694735× 10−2 True 1.355520× 10−3 True 3.410942× 10−2 True
Question 6 3.906250× 10−2 True 7.123216× 10−4 True 6.250000× 10−2 False
Question 7 7.812500× 10−2 False 6.133083× 10−4 True 6.250000× 10−2 False
Question 8 1.953125× 10−1 False 4.766092× 10−4 True 8.970902× 10−3 True
Question 9 2.343750× 10−2 True 3.557261× 10−4 True 1.893498× 10−2 True
Question 10 1.108281× 10−1 False 1.411438× 10−3 True 8.966252× 10−2 False
Question 11 1.775592× 10−2 True 3.814697× 10−6 True 4.005739× 10−2 True
Question 12 7.812500× 10−3 True 3.814697× 10−6 True 6.250000× 10−2 False
Question 13 2.343750× 10−2 True 1.092991× 10−5 True 1.778078× 10−1 False
Question 14 1.694735× 10−2 True 1.740782× 10−4 True 1.347019× 10−1 False
Question 15 5.148875× 10−4 True 1.596259× 10−7 True 4.742066× 10−2 True
Question 16 2.770785× 10−2 True 9.536743× 10−5 True 6.250000× 10−2 False
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Table 6. Cont.

Parameters
17–24 Age Group 25–55 Age Group More than 55 Age Group

p-Value Significance p-Value Significance p-Value Significance

Question 17 7.812500× 10−3 True 1.859963× 10−4 True 3.267792× 10−2 True
Question 18 1.775592× 10−2 True 1.144409× 10−5 True 6.250000× 10−2 False
Question 19 2.343750× 10−2 True 6.485782× 10−7 True 2.047587× 10−2 True
Question 20 2.343750× 10−2 True 1.883172× 10−4 True 6.250000× 10−2 False

The majority of measurements in the 17–24 age range showed significant variations,
except for a few such as Q4, Q7, Q8, and Q10. In almost all measures, the age range of
25–55 had the most persistent and substantial differences. The 55+ age group had fewer
significant differences, suggesting a lesser degree of significant diversity in characteristics.
The paired t-test can assess the difference between the pre-pain and post-pain assessment
scores within the same age group. Equation (5) mathematically represents it.

t =
d
sd√

n

(5)

We represent the mean difference between the paired observations as d, the standard
deviation of the differences sd, where n represents the number of observations in each pair.
To compare the parameter distribution across the different age groups, we employed the
Kruskal–Wallis test. Equation (6) expresses it as follows.

H =
12

N(N + 1)∑
k
i=1

R3
i

ni
− 3(N + 1) (6)

where N is the total number of observations, Ri is the sum of ranks for the one group, ni is
the number of observations for one group, and k is the number of groups used for assess-
ment. A p-value of 1.0 from the Kruskal–Wallis test suggests that there is no statistically
significant difference in the parameter distributions among the various age groups.

3.3. System Usability Score Assessment

We evaluated our PoAna .v1 web application’s system usability score for an interactive
patient dashboard [31]. The participant can administer the SUS after completing the one
week of sessions. The SUSs range from 0 to 4. We arranged the scores for each question as
specified. A score of 0 indicates strong disagreement, while a score of 4 indicates strong
agreement. Figure 10 displays the distribution of SUSs from all 32 participants.
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In the assessment, our system achieved a mean SUS of 79.375. Hence, our web
application can achieve excellent usability scores for diverse participants in the future.

3.4. Model Performance Metrics and Comparison of SOTA Methods

The prediction of the system was carried out after 30 sequences of frames on the
testing video. This system produces predictions and generates feedback. Figure 11 shows
the accuracy and loss performance on the split training and test data. We computed the
model’s performance matrices using the generation confusion matrix.
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Maintaining posture synchronization in real-time pose-guided matching is challenging
because different body components of the stance tend to overlap and, thus, fail to match.
Figure 12 compares our proposed system with other SOTA models.
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Most deep learning architectures use all of the image features, such as background,
human clothing variations, and lighting conditions. The attention mechanism in human
action recognition uses spatial and temporal features effectively to provide a high degree
of accuracy in the deep learning model [32,33]. The model faces challenges such as height-
ened computational complexity, elevated resource requirements, potential overfitting, and
intricate implementation and tuning. These make the model very sensitive to the feature
and unable to classify the exercise poses. Skeleton-based approaches, which represent
human actions as sequences of key points or joints, offer a robust alternative by focusing
on motion dynamics rather than appearance data. Our proposed model has the advantage
of reducing dimensionality, which provides a low computational cost compared to existing
models, as well as allowing us to perform real-time processing on less powerful hardware.
The proposed system’s real-time processing speed is inadequate; it can process the input
video with eight frames per second (FPS). Table 7 illustrates how our model compares in
terms of performance metrics with existing approaches.

Table 7. Comparison of performance metrics of our proposed model with those of existing models.

Performance
Metrics CV_MNN [26] Rang_LSTM [27] Conv ST_LSTM

[34] RPS_LSTM [35] MLP [36] CNN_LSTM [37] Proposed Model

Accuracy 46.2 75.6 52.7 95.1 29.9 73.4 99.6
Precision 46.0 75.3 52.3 95 29.6 73.2 99.2
Recall 46.1 75.3 52.3 95.1 29.6 73.2 99.2
F1-score 46.1 75.5 52.6 95.1 29.9 73.4 99.6
10-fold
cross-validation
accuracy

44.6 74.3 50.9 93.8 25.6 71.8 98.5

We measure the proposed model’s performance using metrics like accuracy, precision,
recall, F1-score, and stratified K-fold cross-validation to ensure the effective classification
of rehabilitation exercises. The trade-off between accurate prediction and inaccurate pre-
diction offers a valuable understanding of the model’s performance by evaluating these
quantitative measures. Symbolically, Equations (7)–(10) represent these matrices.

Accuracyi =
∑N

i=1 TPi

∑N
i=1 (TP i + FPi + FNi)

(7)

Precisioni =
TPi

TPi + FPi
(8)

Recalli =
TPi

TPi + FNi
(9)

F1− score = 2× Precisioni × Recalli
Precisioni + Recalli

(10)

We validate the effectiveness of the model’s performance by evaluating the stratified
K-fold cross-validation accuracy. The process starts with partitioning the dataset. We
partition the total number of samples (N) into K folds. In our study, we use K = 10 folds
for the cross-validation. The average accuracy of cross-validation is determined using the
following mathematical expression in Equation (11),

AccuracyCV =
1
K ∑K

1=1 Accuracyi (11)

The cross-validation accuracy evaluation reduces the variance compared to the train-
test spilt performance evaluation metric and minimizes the potential bias on the
model performance.

4. Discussion

During the preprocessing stage, we adjust the dimensions of images to ensure that the
input size remains constant. Through experimentation with several approaches, including
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maintaining the aspect ratio and using interpolation algorithms, we have devised a scaling
technique that effectively balances feature retention and input dimension standardization.
On a numerical scale, the results of the proposed system show a reduction in pain levels
in the participants by 3.3. Most of the users improved their performance by exercising
correctly. This framework’s deep learning model, which acquires RGB frames as data,
achieves a good cross-validation accuracy of 98.45%. This framework performs well in
CPU with a model size of 77.29 KB and a computational cost of 1206 FLOPs, which in turn
provide excellent support to web-based action classification and feedback generation. The
SUS also indicates that the system is excellent for real-time usability. Under any lighting
conditions, our system predicts the exercise pose.

The RGB videos offer a cost-effective solution for video-based pose analysis appli-
cations. The precision outcomes of technologies like depth cameras and motion sensors
provide comprehensive spatial positioning and movement in three dimensions. However,
these techniques are more expensive and cannot support the processing power of the CPU.
With CPU processing, our proposed system achieves reasonable accuracy in classifying
exercise poses. However, the real-time processing speed of the proposed system is not up to
par. We utilized an optimized algorithm that includes data processing, code profiling, and
asynchronous processing to reduce the computational complexity. Despite many benefits,
it has some limitations; the web application achieves a processing time of around eight
frames per second (FPS) in a CPU environment. With 30 FPS, it will perform well on GPU
systems. Users’ occlusion of other body parts during exercise may result in inaccurate exer-
cise pose predictions. Future investigations are required to develop lightweight adaptive
deep-learning models and implement parallel processing that achieves high prediction
accuracy with less time spent processing video feeds in real-time.

5. Conclusions

The primary objective of this work is to analyze the significant difference in pain
in pre- and post-treatment. Important key features of this work are that it shows the
overall performance of exercises performed by the individuals, experts can visualize
the overall session attended and performance comparison of each participant, and in
every session, participants can receive real-time feedback on the correction of an exercise.
Effective classification of exercise poses can be carried out with this proposed deep learning
model on the CPU. Feedback on exercise poses will enable the users to perform exercises
with utmost precision. Some limitations on the progress of tracking, periodic updates
on the exercise database, and processing time needed to address adopting Society 5.0 in
healthcare systems [38–41]. Technology-driven healthcare for smart cities is the future of
system integration which requires engaging users in high motivation to take their self-
rehabilitation through the integration of gaming technology [42–44]. To ensure the model’s
generalizability, we plan to apply the lightweight adaptive learning algorithm to a diverse
range of populations of different age groups. We conclude that for the healthcare of Society
5.0, our proposed system provides a stepped forward, user-friendly self-rehabilitation tool
to improve quality of life.
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