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Abstract: The infrared image colorization technique overcomes the limitation of grayscale char-
acteristics of infrared images and achieves cross-modal conversion between infrared and visible
images. Aiming at the problem of lack of infrared-visible pairing data, existing studies usually adopt
unsupervised learning methods based on contrastive loss. Due to significant differences between
modalities, reliance on contrastive loss alone hampers the learning of accurate semantic features. In
this paper, we propose DC-Net, which is a dual-branch contrastive learning network that combines
perceptual features and multiscale residual attention for the unsupervised cross-modal transforma-
tion of infrared to visible images. The network comprises a patch-wise contrastive guidance branch
(PwCGB) and a perceptual contrastive guidance branch (PCGB). PwCGB focuses on discerning
feature similarities and variances across image patches, synergizing patch-wise contrastive loss with
adversarial loss to adaptively learn local structure and texture. In addition, we design a multiscale
residual attention generator to capture richer features and adaptively integrate multiscale information.
PCGB introduces a novel perceptual contrastive loss that uses perceptual features from pre-trained
VGG16 models as positive and negative samples. This helps the network align colorized infrared
images with visible images in the high-level feature space, improving the semantic accuracy of the
colorized infrared images. Our unsupervised infrared image colorization method achieves a PSNR
of 16.833 and an SSIM of 0.584 on the thermal infrared dataset and a PSNR of 18.828 and an SSIM
of 0.685 on the near-infrared dataset. Compared to existing algorithms, it demonstrates substantial
improvements across all metrics, validating its effectiveness.

Keywords: infrared image colorization; cross-modal conversion; semantic features; multiscale
residual attention

1. Introduction

Infrared detectors operate effectively both day and night, particularly excelling in low-
light conditions by capturing the thermal emissions from objects. In contrast to full-color
visible images, single-channel infrared imagery lacks color and textural detail, diverging
from human visual perception. Translating infrared to the visible spectrum can imbue
infrared images with color, enhancing human perception under all lighting conditions [1].
However, bridging the gap between these spectral domains to generate semantically rich
color images remains challenging. Deep learning approaches, particularly convolutional
neural networks (CNNs), have advanced the colorization of infrared images [2]. While
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supervised methods like conditional generative adversarial networks (cGANs) [3] show
promise in this domain, they typically depend on extensive paired datasets, which are
impractical to collect in real-world settings due to high costs and time constraints. Learning
to map between unpaired infrared and visible images thus presents a valuable alternative.

Unsupervised infrared image colorization, which aims to map grayscale thermal im-
ages into the visible spectrum without matched references, is an emerging focus in imaging
research. Traditional methods, relying on preset knowledge or multispectral fusion, often
fall short due to rigid color translation rules and a lack of flexibility [4–7]. Recent devel-
opments in deep learning, with architectures like CycleGAN [8], CUT [9], and UNIT [10],
have made strides in unpaired image-to-image translation, offering innovative strategies
for cross-domain colorization [11–13]. Despite these advancements, significant challenges
persist. Infrared and visible imagery differ fundamentally in color space and information
content, complicating the task of inferring accurate semantic colors from monochromatic
data without labeled guidance. Current unsupervised methods struggle with semantic
interpretation, hindering their ability to establish complex mappings between domains.
Consequently, the colorization results often lack naturalness and semantic precision. Fur-
thermore, a distinct domain difference exists between infrared and visible images. Infrared
and visible domains correspond to different wavelength ranges, directly impacting their
imaging mechanisms and the information content they carry. While visible imaging usually
relies on the reflection of an external light source, thermal infrared imaging is mainly based
on the thermal radiation of the object itself. Consequently, the same object exhibits entirely
different visual characteristics at different wavelengths. For example, in the visible domain,
an object may exhibit vibrant colors, while in the infrared domain, it shows a different
temperature distribution. While visible images can provide rich color and texture infor-
mation, images in the thermal infrared domain mainly reflect temperature distributions.
Single-channel infrared grayscale images not only lack semantic color information but also
suffer from structural blurring and lack of texture information [14,15], which increases
the difficulty of cross-domain feature learning. In summary, existing unsupervised image
translation methods have certain limitations in processing infrared images. They are diffi-
cult to accurately predict the chromaticity information and structural texture information
that matches the semantic information from the grayscale information of infrared images,
resulting in the generation of colorized infrared images that do not meet the standards of
human visual perception.

To solve the above problems, we propose a dual-branch structure colorization network
for infrared images. Unsupervised infrared image to visible image conversion is realized
based on perceptual features and multiple contrastive learning. The generator of the
infrared image colorization network is improved by combining multiscale residual blocks
with an attention mechanism. Our unsupervised infrared image colorization method aims
to effectively capture image features at different scales, preserve and enhance image detail
information, and generate colors that are consistent with human visual perception. We note
that the patchNCE loss learns patch-level similarity features by maximizing the mutual
information between image patches in the input and output images, while the generative
adversarial loss digs the overall image-level similarity features by playing the mutual
game between the generated image and the target domain image. In order to learn multi-
level feature information, we combine contrastive learning with the generative adversarial
network framework in the patch-wise contrastive guidance branch (PwCGB) and design a
composite loss function. In addition, considering the importance of semantic information
for the infrared image-visible image conversion task, we propose perceptual contrastive
loss. Inspired by the perceptual loss, we extract the high-dimensional features of infrared
images, generated colorized images, and visible images in the perceptual contrastive
guidance branch (PCGB) by a pre-trained VGG16 network, respectively. By minimizing
the representation distance of positive sample pairs and maximizing the representation
distance of negative sample pairs, the similarity and difference between the infrared and
visible domains in the feature space are optimized. The strategy of perceptual contrastive
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learning combined with high-dimensional feature extraction helps to improve the quality
of colorization of infrared images and makes the semantic colors of the generated colorized
images more accurate. In order to further improve the quality of colorized infrared images
and enhance the feature extraction capability of the generator network in the colorization
task, our designed multiscale residual block is added in the down-sampling stage of the
generator. Parallel residual blocks with different convolutional kernel sizes are utilized to
acquire feature information at different scales. In addition, we combine channel attention
and residual connectivity by designing feature fusion attention residual blocks in the
up-sampling stage of the generator. Through the attention mechanism, the multiscale
information can be better integrated, which enables the low-level features and high-level
features to be combined more efficiently during the up-sampling process and improves the
accuracy of colorization.

Therefore, the main contributions of this paper are as follows:

• We propose a dual-branch network for unsupervised infrared image colorization.
The large differences between the infrared and visible domains are fitted by multiple
contrastive learning.

• We propose perceptual contrastive loss to enhance the similarity between the gener-
ated image and the visible image in the high-dimensional feature space, making the
colorized image more compatible with human visual perception.

• A multiscale residual module is designed to help the encoder process feature maps at
different scales, enhancing the generator network’s feature extraction capability.

• A feature fusion attention residual block is designed to integrate multiscale feature
information, focusing on important features during up-sampling to produce higher-
quality colorized images.

2. Related Work
2.1. Image Translation Task

Image translation techniques [16] aim to convert an image from one image domain
X to another image domain Y, enabling cross-domain translation between images. This
involves removing some attribute X from the original image and giving it a new attribute Y.
The image-to-image translation task is a task of converting an input image into an output
image, which usually involves translation between different domains such as semantic
segmentation maps to real street maps, grayscale maps to color maps, and so on [17,18].
Common image-to-image translation methods include Generative Adversarial Networks
(GANs) [19], Conditional GANs [2], pix2pix [16], StarGAN [20], Unsupervised Image-to-
image Translation [12], etc. GANs use adversarial training to learn to generate realistic
images, while cGANs introduce conditional information to generate images under specific
conditions. StarGAN supports multi-domain image translation, allowing diverse transfor-
mations such as face translation into different styles of make-up, etc. Supervised learning
approaches such as cGANs and pix2pix are constrained by the need for paired training data,
which limits the feasibility of the algorithms. To overcome this limitation, unsupervised
learning methods become the key means to solve the problem of unpaired data for image
translation tasks [21–24]. Unsupervised image translation tasks have far-reaching impli-
cations for applications such as cross-domain image synthesis, style migration, and data
enhancement. CycleGAN [10] and CUT [11] are representatives of unsupervised image
translation methods. As shown in Figure 1, cycleGAN has a two-sided framework and
learns the mapping between two domains unsupervised by introducing the cycle consis-
tency loss. CUT adopts a one-sided framework and realizes unsupervised cross-domain
translation by learning the shared latent space.
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Figure 1. Comparison of our method with CycleGAN and CUT flowchart.

2.2. Unsupervised Image Translation Method Based on Contrastive Learning

The goal of contrastive learning is to learn an encoder such that similar data have
similar representations in the coding space, while the representations of different classes
of data are as different as possible [25–27]. Mutual information plays an important role in
contrast learning, which measures the similarity information implied between two feature
vectors. Typically, contrast learning divides the samples into two classes, positive and
negative samples, and employs the Noise Contrastive Estimation (NCE) framework to
maximize the similarity between related samples while minimizing the similarity between
unrelated samples. In the image translation task, the input image and the target image
have similarity information in the corresponding spatial locations. Based on this, CUT
(Contrastive Unpaired Translation) introduces the idea of contrast learning in image trans-
lation and proposes a new loss function, the InfoNCE loss. CUT selects a patch at a random
location in the generated image as the CUT selects a random patch in the generated image
as an anchor point, and it considers the patch at the corresponding position in the input
image as a positive sample and the patches at the remaining positions as negative samples.
By skillfully constructing the patch-level contrast loss, CUT can effectively map the input
image to the target domain and realize unsupervised image translation. This approach is
suitable for many real-world scenes where a large amount of paired data are not available.

2.3. Deep Learning-Based Cross-Domain Colorization of Infrared Images

The infrared image cross-domain colorization task is an important research direction
in the field of infrared image processing, which aims to map infrared grayscale images
from the infrared domain to the visible domain [28,29]. This task is of great significance
for expanding the availability of infrared image data and improving the adaptability of
human eye observation. In recent years, fully automated deep learning-based colorization
methods for infrared images across domains have made great progress in achieving remark-
able success. Compared with traditional colorization methods for infrared images, these
methods exhibit excellent robustness and generalization. Deep learning-based colorization
methods were first applied to process NIR images due to their richer detail information,
higher contrast, etc. Limmer et al. [30] implemented a cross-domain translation task for
NIR images using convolutional neural networks. Influenced by thermal infrared sensors,
atmosphere and other factors, thermal infrared images often suffer from image distortion
and unclear targets, which increases the difficulty of the thermal infrared image colorization
task. Berg et al. [1] proposed a fully automated thermal infrared image colorization method,
which uses the U-Net architecture to convert thermal infrared images into visible color
images with reasonable brightness and chromaticity. Kuang [31] and Neeraj Bhat [32]
were trained using the KAIST-MS [33] dataset with a combination of content loss and
adversarial loss. Existing deep learning-based colorization methods for infrared images
are mainly fully supervised learning approaches, which require a large amount of paired
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infrared-color image data. However, limited by various reasons such as scene and camera,
paired infrared image data is almost non-existent in real scenes. Therefore, fully supervised
learning methods have certain limitations in practice.

3. Proposed Method
3.1. Architecture

Figure 2 depicts the architecture of DC-Net, featuring two principal branches: the
patch-wise contrastive guidance branch (PwCGB) for local and global feature extraction
and the perceptual contrastive guidance branch (PCGB), which focuses on semantic detail
aligned with human visual perception. DC-Net operates via a dual-path framework
illustrated in Figure 1c. In PwCGB, the input infrared image xi is converted to the color
output y′i by the generator GI2V(GX), which is then reduced to the infrared representation
x′i by the generator GV2I(GY). The DC-Net model employs a contrast loss rather than a
cyclic consistency loss to compare the infrared input with the generated color image, using
the generative adversarial loss to constrain xi and x′i as well as yi and y′i. In PCGB, the input
infrared image xi, the color output y′i, and the visible image yi are processed through a pre-
trained VGG16 network to obtain the feature maps used for contrast loss computation. With
this multi-level feature learning approach, DC-Net facilitates the conversion of high-fidelity
infrared to visible images.
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Figure 2. Overall architecture of DC-Net.

3.2. Patch-Wise Contrastive Guidance Branch

In the PwCGB, we apply a patch-based strategy to dissect the input image into small
chunks, selecting positive and negative samples randomly. Positive samples correspond
to areas with target similarities, while negatives exhibit differences. Through contrastive
learning, we refine color and texture matching across similar patches, differentiating
features where needed to bring the synthetic colorized infrared images closer to actual
visible-domain images in terms of local qualities. For comprehensive feature extraction,
we incorporate generative adversarial loss. This fosters a convergence of characteristics
between the colorized infrared and visible images, aligning global colors and textures.

U-Net is commonly used as a generator in generative adversarial networks, featuring
down-sampling paths (encoder) and up-sampling paths (decoder) to learn high-resolution
feature mappings. While the traditional U-shaped network structure can fuse contextual
information, U-Net relies solely on convolution and pooling operations, which are insuffi-
cient to capture multiscale information. Additionally, U-Net uses direct feature fusion and
cannot selectively focus on important features.To improve the generator network’s capacity
to capture and represent the intricate features of input infrared images, we have developed
a multiscale residual attention U-Net (MRA-UNet) as the generator in the PwCGB branch.
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3.2.1. Multiscale Residual Block

We introduce a multiscale residual block (MRB) in the encoder, as shown in Figure 3a.
Residual blocks from ResNet are combined with convolution kernels of different sizes to
construct a parallel two-branch structure. This structure helps the generator better extract
multiscale low-frequency texture information through cross-layer residual connections,
strengthening the network’s feature learning and information transfer capabilities. The
multiscale residual module extracts features at different scales in the down-sampling stage,
capturing richer image details and improving feature extraction capability. MRB directly
passes important information to deeper layers, reducing the loss of feature information.

(b) CFARB

CC SS

CARB
f1

f2 C S

CARB
f1

f2

(a) MRB

Conv ReLU

BatchNorm MaxPoolDeConv Skip connection

Concatenate Conv k

ff

Figure 3. The structure of MRB and CFARB.

3.2.2. Channel Attention Residual Block

As shown in Figure 3b, we combine the channel attention module with residual
connections to design the Channel Attention Residual Block (CARB) and introduce the
Feature Fusion Attention Residual Block (CFARB) in the decoder. The attention mechanism
guides the network to learn effective features faster by modeling the interdependence
between feature channels, adaptively fusing the features of each channel. This allows for
the better integration of multiscale information, enabling a more effective combination
of low-level and high-level features during up-sampling, thus improving colorization
accuracy. It also facilitates the colorization generator to capture more useful channel
feature information.

3.3. Perceptual Contrastive Guidance Branch

The perceptual loss aims to measure the perceptual similarity between the model’s
generated output and real data. Leveraging a pre-trained CNN, specifically VGG16, it
assesses high-level feature correspondence. This measure has proven effective in visual
applications like image synthesis and style transfer, prompting its use in our PCGB branch
for infrared-to-visible image translation, emphasizing semantic content to yield colorized
outputs closely matching the visible spectrum.

As shown in Figure 4, we extract features from visible, colorized infrared, and infrared
images using VGG16 and then implement perceptual contrastive learning with sampled
blocks from identical spatial locations across these features. This enables the model to
integrate semantic and color attributes pertinent to both spectrums. To broaden diversity,
negative samples are drawn not just from infrared but also from visible feature maps.
Specifically, grayscale and non-corresponding blocks from visible images serve as negatives,
enhancing structural and content fidelity within the colorized products, thus ensuring their
alignment with human visual expectations.
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Figure 4. Structure of the perceptual contrastive guidance branch.

3.4. Loss Function

In this section, we will discuss the loss functions employed in both the patch-wise con-
trastive guidance branch (PwCGB) and the perceptual contrastive guidance branch (PCGB).
The composite loss function in the PwCGB branch is a combination of the contrastive loss
(LCon) and the generative adversarial loss (LPerCon).

3.4.1. Contrastive Loss

The initial step involves selecting an anchor vector Q as the query vector. Subsequently,
one positive sample K+ and N−1 negative samples K− are chosen. The contrastive loss is
then computed to compare the similarity features in the cross-domain coloring task between
the infrared and visible domains. LCon serves as a constraint for the colorized infrared
image generator G, eliminating the need for paired visible images as label information. The
representation of the contrastive loss is as follows:

LCon = − log[
exp(Q · K+/τ)

exp(Q · K+/τ) + ∑N−1
i=1 exp(Q · K−/τ)

] (1)

In the equation, the parameter τ is a fixed value set to 0.07.

3.4.2. Generative Adversarial Loss

To better restore the chromatic and luminance information of the overall infrared
image, a generative adversarial loss is introduced in the PwCGB branch. For any input
infrared image Ix, the generator G and discriminator D collaborate to encourage the
generated colorized infrared image G(Ix) to compete with the target domain visible image
Iy, aiming for more accurate color information. The representation of the generative
adversarial loss LG is as follows:

LG = EIy∼Y log D(Iy) +EIx∼X log(1 − D(G(Ix))) (2)

3.4.3. Perceptual Contrastive Loss in PCGB Branch

Through a fixed pre-trained VGG16 network, the infrared image, colorized infrared
image, and visible image are individually employed as inputs to the pre-trained VGG16
network, yielding corresponding output features: f eature_i , f eature_per, and f eature_rgb.
Then, the query vector q is selected in f eature_per, and the contrastive loss is computed
with positive samples k+ and negative samples k−, respectively. Make the generated color
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information and structural detail information more in accordance with their semantic
features. The representation of the perceptual contrastive loss LPerCon is as follows:

LPerCon =
i

∑
0

λ
∥q,k+∥1

∥q,k−∥1 + t
(3)

where i is the number of feature layers extracted by VGG, λ is the weight, and t is a fixed
parameter with a fixed value of 1 × 10−7. Based on the two aforementioned loss functions,
the overall loss function can be defined as

L = λ1LCon + λ2LG + λ3LPerCon (4)

where λ1, λ2, and λ3 represent the weights for contrastive loss, global feature loss, and
perceptual loss, respectively.

4. Experiments
4.1. Experiments Settings
4.1.1. Datasets

Our models are trained and evaluated on different datasets for different infrared
bands. In the NIR band, we used the NIRScene [34] dataset. This dataset consists of
477 images in 9 categories captured in both RGB and NIR modalities. The scene categories
of the NIRScene dataset contain a countryside, field, forest, indoor, mountain, old building,
street, city, and lake. In the thermal infrared band, we randomly selected several images
in the multispectral pedestrian detection dataset KAIST [33] as a training set. The KAIST
pedestrian dataset consists of a total of 95,328 images, each of which contains both RGB
color images and infrared image versions. The KAIST dataset captures a variety of regular
traffic scenes including schoolyards, streets, and the countryside.

4.1.2. Quantitative Evaluation Metrics

Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Mean
Squared Error (MSE) were employed in this study as quantitative evaluation metrics to
measure the quality of colorized infrared images. The quantitative experimental results are
reported as the average scores across all images in the test set.

4.1.3. Training Details

For training, we randomly select 1000 unpaired images in the KAIST dataset and crop
the dataset’s image size to 256 × 256 using a sliding window. Our model is trained on a
single NVIDIA 2080Ti GPU with a batch size of 1. During training, we optimize using the
Adam optimizer with β1 = 0.5, β2 = 0.999. The model is trained with an initial learning
rate of 0.0001 for 200 epochs with a total training time of 24.38 h. To compute the contrast
loss and the perceived contrast loss, we select layers 4, 8, 12, and 16 for the computation.
For each layer, we select 256 patches. In the training process, how to assign appropriate
weights for adversarial loss and contrast loss is an important issue. Too large or too small
weights may lead to undesirable results. For example, if the weight of adversarial loss is
too high, it may lead to the loss of details in the generated image; while if the weight of
contrast loss is too high, it may inhibit the ability to generate diversity. After experiments,
we set the loss weights of each component to 0.5, 0.5, and 1.

4.2. Quantitative Testing

In order to quantitatively analyze our method and other unsupervised image trans-
lation algorithms, tests are performed on the test sets of the NIR dataset and KAIST
dataset, respectively.

Tables 1 and 2 show the quantitative test results of CycleGAN, CUT, FastCUT, IR-
colorization [35], TIC-CGAN [31], and the method proposed in this paper on the KAIST
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and NIR datasets, respectively. The results show that the best performance is achieved
in each quantitative metric using our method. Moreover, for the KAIST thermal infrared
dataset, our method has a significant advantage. On the KAIST dataset, our method shows
a significant improvement over the CycleGAN method. Our method improves 28.9% in
PSNR, 39.0% in SSIM, and 48.4% in MSE. Compared to the CUT method, our method
also achieved better results. It improved 23.8% in PSNR, 35.5% in SSIM, and 43.1% in
MSE. Compared with the FastCUT method, our method shows improvements of 14.3%
in PSNR, 32.4% in SSIM, and 44.1% in MSE. Compared with the IR-colorization method,
our method shows improvements of 12.5% in PSNR, 17.7% in SSIM, and 50% in MSE.
Compared with the TIC-CGAN method, our method shows improvements of 11.0% in
terms of PSNR, 7.3% in terms of SSIM, and 40% in terms of MSE. Our method also achieves
the best measurement results on the NIR dataset.

Table 1. Average quantitative results of different methods on the KAIST dataset.

Dataset Method Side Type PSNR SSIM MSE

CycleGAN Two-sided 13.064 0.420 0.064
CUT One-sided 13.597 0.431 0.058

KAIST FastCUT One-sided 14.730 0.441 0.059
IR-colorization One-sided 14.961 0.496 0.066

TIC-CGAN Paired 15.155 0.544 0.055
Ours Two-sided 16.833 0. 584 0.033

Table 2. Average quantitative results of different methods on the NIR dataset.

Dataset Method PSNR SSIM MSE

CycleGAN 17.794 0.589 0.036
CUT 17.892 0.621 0.034

NIR FastCUT 18.600 0.676 0.032
IR-colorization 17.807 0.615 0.041

TIC-CGAN 17.940 0.639 0.030
Ours 18.828 0.685 0.031

To compare the performance of our method with other unsupervised image translation
methods more intuitively, as shown in Figure 5, we use a line graph to represent the average
measurement results on the KAIST dataset. As shown in Figure 6, we use a line graph to
represent the average measurement results on the NIR dataset.
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Figure 5. Average quantitative results of different methods on the KAIST dataset.



Electronics 2024, 13, 3784 10 of 14

Cycl
eG

AN
CUT

Fas
tCUT

IR-
col

ori
zat

ion

TIC
-CGAN

Ours

Methods

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Va

lu
es

Normalized PSNR
PSNR

Cycl
eG

AN
CUT

Fas
tCUT

IR-
col

ori
zat

ion

TIC
-CGAN

Ours

Methods

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Va

lu
es

Normalized SSIM
SSIM

Cycl
eG

AN
CUT

Fas
tCUT

IR-
col

ori
zat

ion

TIC
-CGAN

Ours

Methods

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Va

lu
es

Normalized MSE
MSE

Figure 6. Average quantitative results of different methods on the NIR dataset.

4.3. Qualitative Testing

Figure 7 shows the colorization results of different unsupervised image translation
methods on the KAIST dataset. For the street scene, each method recovers the approximate
color. However, CUT, CycleGAN, and FastCUT fail to accurately recover the structure
and details of the “vehicle” target on the street, and the taillights on the “vehicle” are not
correctly colored. For the campus scene, the first three methods only recover the colors
of the sky and the ground but seriously lose the color and structural information of the
targets such as “buildings” and “lane lines”. IR-colorization successfully recovers the
colors of taillights but loses most of the feature colors of targets such as “crosswalks” and
“buildings”. TIC-CGAN performs well in recovering “lane lines” and “crosswalks”, but the
results are structurally ambiguous and lack texture information. Our method preserves the
structural information of targets such as trees, buildings, vehicles, and lane lines while also
restoring their colors based on human eye perception.

Figure 7. Colorization results of different methods on the KAIST dataset.

Figure 8 shows the colorization results of different unsupervised image translation
methods on the test set NIR-Scene. For the mountain scene, CUT, CycleGAN, and FastCUT
all exhibit a coloring disorder, incorrectly assigning roads the color of mountains. In the
indoor scenes, CUT and FastCUT show different degrees of texture mosaicing, while Cy-
cleGAN results in blurred “chandeliers”. On the contrary, IR-colorization and TIC-CGAN
perform well for mountain scenes, but the “chandelier” appears blurred when dealing
with indoor scenes. The colorization of our method matches the semantic information,
and the texture is clear. For the lake scene, both CycleGAN and our method are able to
color accurately, while CUT, FastCUT, IR-colorization, and TIC-CGAN have coloring errors.
In addition, only our method succeeded in recovering the color of the mountains around
the lake.
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Figure 8. Colorization results of different methods on the NIR dataset.

To verify the effectiveness of DC-Net in detail, texture and coloring, as shown in
Figure 9, on the thermal infrared dataset we show the effect of each method to colorize the
target using a car as an example. Among them, CUT, CycleGAN edge distortion is the most
obvious, TIC-CGAN detail information is lost the most, and only our method accurately
colors the body and lights. On the NIR dataset, we take the chandelier as an example to
show the effect of each method to colorize the target. Among them, CUT and FastCUT all
show serious mosaic phenomena, while CycleGAN, IR-colorization and TIC-CGAN show
blurred details.

Input FastCUTCycleGANCUT GTOursIR-colorization TIC-CGAN

Input FastCUTCycleGANCUT GTOursIR-colorization TIC-CGAN

Figure 9. Colorization results each method for targets in different wavelength.

Overall, the qualitative test results show that our method achieves good performance
in the task of converting infrared images to visible images, and the generated visible images
have accurate colors and rich details. All the unsupervised image translation methods
mentioned in the figure can recover the low-frequency background information such as
“sky” and “trees” very well. However, for the fast-changing details, textures, edges, and
other parts of the image such as “vehicle”, “crosswalk”, “lane line”, etc., the existing
unsupervised image translation methods can not generate a high-quality colorized infrared
image structure. High-quality colorized infrared image structure detail information. Our
method adeptly manages scenes with significant temperature fluctuations, like those at
object edges or in localized areas with notable temperature variations. In these conditions,
our approach produces high-frequency data, effectively capturing intricate details and local
features within the image. Additionally, it generates color information akin to that found
in visible images within the target domain.

4.4. Ablation Study

To evaluate the impact of different parts within our dual-branch structure, consisting
of PwCGB and PCGB, we conducted ablation studies. In this part, we train our network by
reducing the weights of each part of the loss function to 0 to test their effects. In the PwCGB
branch, we try to remove the contrastive loss LCon and the multiscale residual attention
generator. To test the effectiveness of PCGB, we try to remove LPerCon. We performed
ablation experiments on three scenes from the KAIST dataset, and the colorization results
are shown in Figures 10–12. In the school scene, removing both the perceptual contrast loss
and the MRA-UNet results in an overall dark color and the loss of most building details. In
the street scene, removing contrast loss, perceptual contrast loss, and the MRA-UNet results
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in blurred building structures and loss of small targets in the blue box. In the traffic scene,
targets like “lane lines” and “vehicles” show severe artifacts and are not colored correctly.
The average quantitative results after removing different parts are shown in Table 3.

Infrared GroundtruthOursRemove LPerC Remove LCon Remove MRA-UNet

Figure 10. The infrared image colorization results under school scene.

Infrared GroundtruthOursRemove LPerC Remove LCon Remove MRA-UNet

Figure 11. The infrared image colorization results under street scene.

Infrared GroundtruthOursRemove LPerC Remove LCon Remove MRA-UNet

Figure 12. The infrared image colorization results under traffic scene.

Table 3. Average quantitative results with different parts removed.

Dataset Method PSNR SSIM MSE

KAIST

Without LCon 14.740 0.334 0.069
Without LPerCon 14.562 0.332 0.061

Without MRA-UNet 15.028 0.332 0.056
Ours 16.833 0.584 0.033

5. Conclusions

This paper presents a novel unsupervised method for translating unpaired infrared
images to visible images using a semantic-aware dual-branch contrastive learning network.
The proposed network structure leverages contrastive learning for the transformation
process and enriches it with high-level perceptual features extracted by pre-trained deep
learning models. These features guide the colorization process, resulting in images that
more closely align with human visual perception. In addition, the multiscale residual
attention generator in PwCGB efficiently learns both local and global features of the image
through multi-layer residual blocks. The residual connectivity enables the model to better
capture the detailed information in the image, reduces information loss, and helps generate
more realistic color images. The feature fusion attention residual block introduced by the
generator enables a finer tuning of feature responses on different channels, improving
detail retention and color accuracy during colorization. Experimental results indicate that
our method effectively infers RGB values from infrared grayscale information, yielding
colorized infrared images of high quality. The generated images exhibit accurate colors
and detailed textures, performing well in translation tasks from infrared to visible imagery.
Nevertheless, real-world scenarios where high-temperature objects diffuse thermal radia-
tion can cause indistinct boundaries in colorized results due to similar grayscale values in
surrounding areas. Future work will focus on addressing this issue to enhance boundary
clarity. Additionally, the use of colorized infrared image models in real-time surveillance
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and defense systems is considered. In future research, we will investigate model pruning
and quantization techniques to reduce model size and computational demands, enhancing
inference speed.
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