
Citation: Zhang, J.; Lu, G.; Yu, J. A

Smart Contract Vulnerability

Detection Method Based on

Heterogeneous Contract Semantic

Graphs and Pre-Training Techniques.

Electronics 2024, 13, 3786. https://

doi.org/10.3390/electronics13183786

Academic Editor: Fabio Grandi

Received: 31 July 2024

Revised: 17 September 2024

Accepted: 20 September 2024

Published: 23 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Smart Contract Vulnerability Detection Method Based on
Heterogeneous Contract Semantic Graphs and
Pre-Training Techniques
Jie Zhang , Gehao Lu * and Jia Yu

School of Information Science and Engineering, Yunnan University, Kunming 650500, China;
zjlyy@mail.ynu.edu.cn (J.Z.); yujia@itc.ynu.edu.cn (J.Y.)
* Correspondence: glu@ynu.edu.cn

Abstract: The use of smart contracts in areas such as finance, supply chain management, and the
Internet of Things has significantly advanced blockchain technology. However, once deployed on
the blockchain, smart contracts cannot be modified or revoked. Any vulnerabilities can lead to
severe economic losses and data breaches, making pre-deployment vulnerability detection critically
important. Traditional smart contract vulnerability detection methods suffer from low accuracy and
limited reusability across different scenarios. To enhance detection capabilities, this paper proposes a
smart contract vulnerability detection method based on heterogeneous contract semantic graphs and
pre-training techniques. Compared to the conventional graph structures used in existing methods,
heterogeneous contract semantic graphs contain richer contract information. By integrating these with
pre-trained models, our method exhibits stronger vulnerability capture and generalization capabilities.
Experimental results show that this method has improved the accuracy, recall, precision, and F1 value
in the detection of four widely existing and harmful smart contract vulnerabilities compared with
existing methods, which greatly improves the detection ability of smart contract vulnerabilities.

Keywords: smartcontracts; vulnerability detection; heterogeneous contract semantic graphs; pre-training
techniques

1. Introduction

Blockchain technology, since it was proposed by Satoshi Nakamoto in the Bitcoin
white paper in 2008 [1], has rapidly emerged as a disruptive technology with potential
applications in various fields, including finance, supply chain management, and the Internet
of Things (IoT). Ethereum, as the second-generation blockchain platform, introduced smart
contracts as a core feature, enabling decentralized computation on top of the blockchain [2],
which significantly expanded the scope of blockchain applications.

The automation and immutability of smart contracts have increased trust in their
use across various sectors; however, these same characteristics present significant security
challenges. Once vulnerabilities are embedded in smart contract code, they can lead to
major losses for associated accounts. According to the SlowMist Technology report [3], there
were 464 security incidents in 2023, resulting in losses totaling 2.486 billion USD. Notable
cases include the non-custodial lending platform BonqDAO and the crypto infrastructure
platform AllianceBlock, which lost approximately 120 million USD due to vulnerabilities in
BonqDAO’s smart contracts. Therefore, comprehensive security testing of smart contracts
before deployment is crucial.

Currently, researchers have developed many effective tools for detecting vulnerabilities
in smart contracts, which can be divided into two main categories: traditional methods,
such as Manticore [4], SmarTest [5], ConFuzzius [6], Slither [7], and deep learning-based
methods, such as VanillaRNN [8], LSTM [9], TMP [10]. However, these methods have
certain limitations:

Electronics 2024, 13, 3786. https://doi.org/10.3390/electronics13183786 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13183786
https://doi.org/10.3390/electronics13183786
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0008-7065-7653
https://doi.org/10.3390/electronics13183786
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13183786?type=check_update&version=2

Electronics 2024, 13, 3786 2 of 22

• traditional methods rely on complex predefined patterns or meticulously designed
test cases, requiring experts to deeply analyze vulnerabilities and continually update
specific rules. These methods struggle to scale with the rapid growth of smart contract
deployments, which restricts their applicability and leads to lower accuracy.

• Deep learning-based methods often inadequately consider the structural and seman-
tic information of code, leading to insufficient generalization when facing diverse
smart contracts.

In order to address the shortcomings of existing methods, we select four smart contract
vulnerabilities that cause the most serious and widespread losses: Reentrancy [11], Transac-
tion State Dependency [12], Block Info Dependency [13], and Nested Call [12] as research
objects. These vulnerabilities were chosen based on the research findings of Monika [12]
and Chen [14], who categorized and graded the impact of smart contract vulnerabilities.
Additionally, their importance has been validated through numerous studies (e.g., [15,16])
and widely recognized classifications, such as the SWC Registry [13]. See Appendix A
for corresponding code examples and descriptions. This paper proposes a smart contract
vulnerability detection method based on heterogeneous contract semantic graphs and
pre-training techniques. Compared with the traditional data flow graph used in existing
methods, the heterogeneous contract semantic graph contains richer contract structure
information, which enables the model to focus on the key features of the vulnerability more
comprehensively and has stronger vulnerability capture and generalization capabilities.
The heterogeneous contract semantic graph is embedded in the graph neural network
so that it can be used as part of the pre-training model input to detect smart contract
vulnerabilities.

The main contributions of this paper are as follows:

• We designed a heterogeneous smart contract semantic graph generation method
based on abstract syntax trees (AST), using variables and function calls as nodes to
comprehensively represent the semantic and structural information of contracts at the
statement level.

• By combining heterogeneous contract semantic graphs with pre-training techniques,
our Approach achieved superior performance in detecting various types of smart
contract vulnerabilities. Experimental results show that our method achieves detection
accuracies of 90.96%, 89.57%, 88.46%, and 87.34% for the four types of vulnerabilities,
representing significant improvements over 12 mainstream methods.

Next, Section 2 will introduce the existing work on smart contract vulnerability de-
tection and the relevant background knowledge of this article. Section 3 will introduce
the smart contract vulnerability detection method based on heterogeneous contract se-
mantic graphs and pre-training technology. Section 4 will show the experimental results,
and Section 5 will summarize.

2. Related Work
2.1. Existing Smart Contract Vulnerability Detection Tools

With the rapid development of blockchain platforms such as Ethereum, numerous
smart contract vulnerability detection tools have emerged. In the following, we will briefly
introduce mainstream methods for detecting smart contract vulnerabilities. We will also
analyze their strengths and limitations. Representative traditional methods include those
based on symbolic execution (e.g., Oyente [17], Manticore [4], SmarTest [5], Mythril [11]),
fuzz testing (e.g., ContractFuzzer [18], ConFuzzius [6]), static analysis (e.g., Slither [7],
SmartCheck [19]), and formal verification (e.g., KEVM [20], ZEUS [21]).

Symbolic execution-based methods, such as Oyente [17], use symbolic inputs instead of
concrete ones. They simulate the execution of the analyzed program and transform program
operations into symbolic expressions. This allows for the analysis of path reachability, test
data generation, and detection of specific vulnerabilities. However, as the size of smart
contract code increases, these methods may face challenges like path explosion and slow
constraint solving. This can reduce the efficiency of vulnerability detection. Fuzz testing-

Electronics 2024, 13, 3786 3 of 22

based methods, such as ContractFuzzer [18], generate many random test cases by obtaining
function parameters through the Abstract Binary Interface (ABI). They combine these
cases with vulnerability patterns to detect issues like reentrancy vulnerabilities. However,
these test cases often lack specificity and may not cover all possible vulnerability scenarios.
For complex smart contracts, fuzz testing may fail to trigger deeply hidden vulnerabilities,
especially those that only appear under specific input conditions. Slither [7], as a static
analysis tool, directly analyzes the source code of smart contracts. It can quickly detect
potential vulnerabilities without executing the contract. This makes it more efficient
in speed, allowing it to handle large-scale smart contract codebases. However, static
analysis tools typically rely on predefined rules or patterns. As a result, Slither may fail
to detect certain atypical vulnerabilities, especially those involving complex state changes
or dynamic behaviors. KEVM [20] uses formal modeling of smart contract behavior to
verify whether a contract adheres to specific security properties. It provides a high level
of security assurance. However, formal verification involves exhaustive checking of all
possible execution paths. As a result, KEVM’s verification process often requires significant
time. This can be problematic when handling complex contracts, leading to excessively
long verification times.

In recent years, deep learning has been widely applied in various fields. Leveraging
big data and deep learning techniques to automatically learn the characteristics of smart
contract vulnerabilities has become a new research direction. Wang et al. [15] developed
ContractWard, which extracts features from bytecode using n-grams. The model uses
five machine learning algorithms, including Random Forest and Support Vector Machine,
to detect six types of vulnerabilities, such as reentrancy and integer overflow. However,
this method does not consider the structural or semantic information of the code during
learning and computation. Liu et al. [22] proposed the vulnerability detection network
CGE (Combining Graph features and Expert patterns). It defines expert pattern features,
such as timestamp declarations, and combines them with contract graph features obtained
through graph neural networks. This improves the accuracy of vulnerability detection.
However, their model cannot handle heterogeneous graphs with multiple types of nodes.
They addressed this by removing secondary nodes and aggregating their features into
primary nodes, which led to the loss of some information. This reduced the method’s
generalizability when dealing with diverse smart contracts.

2.2. Graph Pre-Trained Models

Pre-trained models begin by undergoing preliminary training on large-scale, unsu-
pervised datasets to learn general features and representations. They are then fine-tuned
on smaller, labeled datasets to adapt to specific tasks. The primary advantage of this
approach is the ability to leverage the extensive information from large datasets to enhance
performance on specific tasks. Models like BERT [23] and GPT [24] have achieved notable
success in natural language processing tasks and are widely used. Inspired by this, re-
searchers in the field of software engineering have proposed a series of models specifically
for programming languages, such as CodeBERT [25] and CodeT5 [26], which are designed
to understand and generate source code. Similar to text-based pre-training models, these
models learn the structure, syntax, and common programming patterns by pre-training on
large amounts of open-source code, significantly improving the automation and efficiency
of programming-related tasks.

However, some existing works [25,26] treat program source code as collections of
tokens, overlooking that code is not merely a sequence of words but includes various
graph-like data structures such as loops, jumps, controls, and dependencies [27]. Graph-
CodeBERT [28] makes up for the shortcomings of previous work by incorporating semantic-
level information about the code and introducing the data flow graph (DFG) of the code for
pre-training. The data flow graph is a structure frequently used in program analysis [29].
In GraphCodeBERT, code is first parsed into an Abstract Syntax Tree (AST) using standard
compilation tools. From the AST, a labeled sequence of source code variables is derived,

Electronics 2024, 13, 3786 4 of 22

and a data flow graph is constructed. This graph represents program variables as nodes
and the dependencies among them as edges. The code and its corresponding data flow
graph serve as inputs to the model, achieving good results in a variety of code-related
downstream tasks.

2.3. Graph Structure Representation of Smart Contracts

Current research [29] suggests that programs can be transformed into graphical represen-
tations, thereby preserving the relationships between program elements. Zhuang et al. [10]
have utilized this approach by converting smart contracts into graphs and employing Graph
Neural Networks (GNN) for detecting vulnerabilities in smart contracts. However, their
model struggles with handling heterogeneous graphs with multiple types of nodes, lead-
ing them to remove secondary nodes and aggregate their features into primary nodes,
resulting in a partial loss of structural information. Wu et al. [30] introduced a method for
smart contract vulnerability detection named Peculiar, which uses the tree-sitter-solidity tool
https://github.com/JoranHonig/tree-sitter-solidity (accessed on 31 July 2024) to generate
an AST. From the AST, they extract a Data Flow Graph (DFG) to represent the contract’s
graphical structure and have designed a method to filter key variables, simplifying the DFG
into a Critical Data Flow Graph (CFDG) for model input. Although the CDFG simplifies
smart contract information to some extent and focuses more on variables that could lead to
vulnerabilities, it only includes the data flow relationships between variables and misses
a lot of structural information related to vulnerabilities, such as special function calls and
execution sequences. In order to solve the problem that the existing smart contract graph
structure cannot adequately represent smart contract information, this paper proposes a new
smart contract graph structure representation method, which uses variables and function
calls as nodes to construct a heterogeneous contract graph. Based on this heterogeneous
graph, we further consider how to effectively capture the complex semantic relationships
within the graph. There are several embedding methods for heterogeneous graphs, such
as metapath2vec [31], HAN [32], and HGT [33]. Metapath2vec defines meta-paths to guide
random walks, capturing semantic relationships in heterogeneous graphs, and then uses the
Skip-Gram model to learn node embeddings. HAN utilizes meta-paths to guide attention
mechanisms, focusing on interactions between nodes with significant semantic importance.
HGT, based on the Transformer architecture, introduces type-specific parameterization to
handle the heterogeneity of nodes and edges, and incorporates relative temporal encoding to
account for the dynamic nature of the graph. This is particularly crucial for smart contract
vulnerability detection, as vulnerabilities are often closely related to data flow and control
flow timing between nodes. Therefore, we select HGT as the graph embedding method to
fully represent the semantic information and structural relationships of smart contracts.

3. Research Method

In the methodology of this paper, we do not undertake the pre-training task our-
selves; instead, the pre-training is handled by GraphCodeBERT [28]. This is appropriate
because the Solidity language, specifically designed for Ethereum smart contract develop-
ment, exhibits features like static typing, inheritance, libraries, and complex user-defined
types, drawing influences from JavaScript, Python, and C++. GraphCodeBERT, during its
pre-training phase, utilized 2.3 million functions from six programming languages, encom-
passing three pre-training tasks: modeling programming languages, predicting edges in
the program data graph (data flow graph), and aligning variables across program source
code and its graph structure. Our method requires loading the pre-trained parameters
from GraphCodeBERT, followed by fine-tuning them on a smart contract dataset. The
workflow of this method is shown in Figure 1 and is divided into two stages : (a) Graph
Generation Stage, during which source code is converted into an AST, parsing the AST to
retain different nodes and edges and generating a heterogeneous contract semantic graph.
(b) Vulnerability Detection Stage, where smart contract vulnerabilities are detected based
on the pre-trained model. We will now elaborate on these two stages.

https://github.com/JoranHonig/tree-sitter-solidity

Electronics 2024, 13, 3786 5 of 22

Figure 1. Method workflow. (a) Graph generation phase: The smart contract source code is first
generated into a standardized syntax tree by the solc-typed-ast tool. Based on the information in the
standardized syntax tree, the variables and function call behaviors in the source code are used as
nodes to construct a heterogeneous contract semantic graph. (b) Vulnerability detection phase: HGT
is used to embed the semantic graph of heterogeneous smart contracts, and the corresponding source
code is used as the input of GraphCodeBERT to detect vulnerabilities in smart contracts.

3.1. Graph Generation Phase

In the process of generating the AST for Solidity code, most existing work, such
as [10,30], predominantly employs the tool tree-sitter-solidity, which is known for its
efficiency and incremental parsing capabilities. However, for Solidity code, the AST
generated by this tool does not contain sufficiently detailed node information. For example,
as shown in Listing A1, concerning the content at line 11 of the reentrancy vulnerability
example code msg.sender.call, Figure 2a represents a portion of the AST nodes obtained
from tree-sitter-solidity, whereas Figure 2b shows a portion of the AST nodes parsed by the
official Solidity compiler, solc. It is evident that the AST nodes parsed by tree-sitter-solidity
only include type and text information within their description, lacking detailed metadata.
In contrast, the AST generated by solc not only includes structural information within
the AST hierarchy but also provides rich descriptive information for nodes such as id,
src, nodeType, and typeDescriptions, particularly offering standardized descriptions in
typeIdentifier and typeString for critical nodes associated with vulnerabilities like the
low-level function call call(). Given that solc has undergone multiple iterations since 2015,
the AST structure and node information generated by different versions of solc can vary.
The tool solc-typed-ast enables the creation of normalized type Solidity ASTs based on solc,
mitigating the differences brought by various versions of the compiler. Therefore, we opt
to use solc-typed-ast to generate the code AST.

The AST generated by the solc-typed-ast tool includes 56 types of nodes, which we
categorize into three classes based on their functionalities. They are structure operation
class nodes, variable and call class nodes, and other class nodes. The detailed classification
is shown in Table A1 in Appendix A. The structural and operational class nodes encompass
the structure and control information of an entire ‘.sol’ file’s AST, from top to bottom,
including files, contracts, functions, statements, and operations. We utilize this information
to construct the edges in the heterogeneous contract semantic graph, including both data
flows and control flows. The variable and call class nodes, as components of statements, are
constructed as nodes within the heterogeneous contract semantic graph. Other class nodes,
which include import statements, structured documentation, and other nodes that do not
contribute to vulnerability generation, or basic class nodes like names, contain information
that can be encapsulated by higher-level nodes and may be omitted.

Electronics 2024, 13, 3786 6 of 22

"type": "member_expression",
"text": "msg. sender. call",
"children": [
 {
 "type": "member_expression",
 "text": "msg. sender",
 "children": [
 {
 "type": "identifier",
 "text": "msg"
 },
 {
 "type": ".",
 "text": "."
 },
 {
 "type": "property_identifier",
 "text": "sender"
 }
]
 },
 {
 "type": ".",
 "text": "."
 },
 {
 "type": "property_identifier",
 "text": "call"
 }
……

(a) tree-sitter-solidity Parsing result

 "expression": {
 "expression": {
 "id": 42,
 "name": "msg",
 "nodeType": "Identifier",
 "referencedDeclaration": 4294967281,
 "src": "507:3:0",
 "typeDescriptions": {
 "typeIdentifier": "t_magic_message",
 "typeString": "msg"
 }
 },
 "id": 43,
 ……
 "nodeType": "MemberAccess",

"memberName": "sender",
 ……
 "typeDescriptions": {
 "typeIdentifier": "t_address",
 "typeString": "address"
 }
 },
 "id": 44,
 "isConstant": false,
 "memberLocation": "518:4:0",
 "memberName": "call",
 "nodeType": "MemberAccess",
 "src": "507:15:0",
 "typeDescriptions": {
 "typeIdentifier":

"t_function_barecall_payable$_t_bytes_memory
ptr$returns$_t_bool_$_t_bytes_memory_ptr_$
",

 "typeString": "function (bytes memory)
payable returns (bool, bytes memory)"

 }
},

…...

(b) solc Parsing results
Figure 2. The information contained in the AST obtained by the two tools for parsing the same
statement is very different. For a more intuitive comparison, we bold the parsing results of the same
element “call”.

Specifically, in high-level programming languages, the basic units of execution are
statements, including both simple and compound statements. Simple statements consist of
a single logical line, such as expression statements (ExpressionStatement) and assignment
statements (Assignment), whereas compound statements encompass other statements
(groups of statements) that influence or control the execution of the included statements
in some manner, such as if statements (IfStatement) and for statements (ForStatement).
The logic within simple statements facilitates operations on variables and function calls.
In our proposed method for constructing heterogeneous contract semantic graphs, we
analyze each simple statement in the contract according to the typed-AST structure, extract-
ing variables and function call nodes to serve as nodes within the heterogeneous contract
semantic graph. It is important to note that Solidity includes certain special variables
that are always present in the global namespace. These built-in variables are essentially
of a basic type and are used to describe attributes of blocks and transactions, such as
block.prevrandao and msg.sender [34]. Although these variables are not explicitly de-
clared, they are still integrated as nodes in our graph. Solidity allows for the manipulation
of mappings, arrays, and structures through dereferencing, but we do not treat the results
of such dereferences (e.g., balances[msg.sender]) as individual nodes. Instead, we regard
these structures as a whole, which facilitates their inclusion as nodes when constructing
the contract semantic graph.

The relationships among simple statements—such as sequence, loops, and condi-
tionals—act as control flows, while the operations within simple statements (such as
BinaryOperation, IndexAccess, etc.) and the inputs and outputs involved in function calls
are constructed as data flows. Take the code shown in Listing 1 as an example:

Electronics 2024, 13, 3786 7 of 22

Listing 1. Sample Code.

1 contract ReentrantBank {
2 mapping(address => uint256) public balances;
3 function deposit () public payable {
4 require(msg.value > 0);
5 balances[msg.sender] += msg.value;
6 }
7 function withdraw(uint256 _amount) public {
8 require(balances[msg.sender] >= _amount);
9 (bool sent ,) = msg.sender.call{value: _amount }("");

10 require(sent , "Failed to send Ether");
11 balances[msg.sender] -= _amount;
12 }

The visualization of the typed-AST generated by the solc-typed-ast tool is shown in
Figure 3.

SourceUnit
ID:77

PragmaDirective
solidity ^0.8.0

ID:1

Node

ContractDefinition
ReentrantBank

ID:76

Node

FunctionDefinition
Deposit

ID:25

FunctionDefinition
 withdraw

ID:63

Block
ID:24

ParameterList
ID:6

ParameterList
ID:28

Block
ID:62

VariableDeclaration
balance

ID:5

Node
Node

Node

ExpressionStatement
ID:15

ExpressionStatement
ID:23

FunctionCall
ID:14

Assignment
ID:22

IndexAccess
ID:19

MemberAccess
ID:21

Body parameters

statements statements

expression expression

rightHandSide LeftHandSide

ExpressionStatement
ID:39

VariableDeclarationStatement
ID:49

ExpressionStatement
ID:54

FunctionCall
ID:38

Identifier
balance

ID:17

Identifier
msg

ID:20

……

…… ……

Identifier
Require

ID:8

BinaryOperation
ID:12

Identifier
msg
ID:9

argumentsexpression

……

Figure 3. Typed–AST visualization.

Based on the structural information in the typed-AST, the example code is transformed
into a heterogeneous contract semantic graph as shown in Figure 4 .

The variable node features in the contract graph are represented by a four-tuple, F = (id,
name, nodeType, typeDescriptions). The function call node features in the contract graph
are represented by a five-tuple, F = (id, name, nodeType, typeDescriptions, parameter),
where id is the node identifier, name is the variable name (function name), nodetype is the
node type, typeDescriptions is the specific description of the node type, and parameter
is the function parameter. The edge features in the contract graph are represented by a
four-tuple, F = (order, type, Vstart, Vend), where order is the time order, type is the edge type
(control flow or data flow), and Vstart and Vend are the start and end nodes. The resulting
contract graph is denoted as HCG(SC) = (V, E), where V is the node set and E is the edge
set. Figure 4b shows the heterogeneous contract semantic graph built based on the contract
with the vulnerability, and Figure 4c shows its edge features.

Electronics 2024, 13, 3786 8 of 22

V

F

Variable
Node

Fuction
Node

Data
Flow

 Control
Flow

Vb

Fr1

Vms

Vmv

Fr2

Fcall

Va

Vsent

Fr3

③
⑭

⑮

Edge order type start end

① 1 DF

② 2 CF

③ 3 DF

④ 4 DF

⑤ 5 DF

⑥ 6 DF

⑦ 7 DF

⑧ 8 CF

⑨ 9 DF

⑩ 10 DF

⑪ 11 CF

⑫ 12 DF

⑬ 13 CF

⑭ 14 DF

⑮ 15 DF

（a）Sample Code （b）Heterogeneous Contract Semantic Graph （c）Edge Features

Figure 4. Heterogeneous Contract Semantic Graph Generation Process, Among them, (a) is the
sample code in Listing 1, (b) is the heterogeneous contract semantic graph generated based on sample
code, and (c) is the edge information in the heterogeneous contract semantic graph.

3.2. Vulnerability Detection Phase

This section will offer an in-depth description of how the proposed approach utilizes
a graph-based pre-trained model to identify vulnerabilities in smart contracts. It will
encompass details on data preparation, the model’s architecture, and the training procedure.

First is the data preparation process. This method is based on GraphCodeBERT [28],
but it differs in how it handles graph-structured data. In the original GraphCodeBERT
architecture, given a source code SC = {sc1, sc2, . . . , scn}, a corresponding data flow graph
G(SC) = (V, E) can be obtained, where V = {v1, v2, . . . , vn} is a set of variables (also the
nodes in the data flow graph), and E = {e1, e2, . . . , en} is a set of directed edges indicating
the dependencies among variables. The source code and the set of variables are merged
into a sequence I = {[CLS], SC, [SEP], V}, with [CLS] as a special token preceding the sets,
and [SEP] as a separator between the source code SC and the variable set V. For each
token in the sequence I, we generate the corresponding position embedding and add the
token and the corresponding position embedding to represent the token. Special position
embeddings are assigned to all variables to signify their roles as nodes within the data flow.
The final input representation, denoted as X0, is derived in this manner.

In our method, the embedding for the source code text follows the approach used
in GraphCodeBERT. However, the embedding for the graph structure differs because
the GraphCodeBERT method, which is suited for handling simple homogeneous graphs
like data flow graphs, does not adequately capture the information in the heterogeneous
contract semantic graph HCG(SC) = (V, E) generated earlier. In our graph embedding
process, we choose HGT [33] as the graph structure embedding method to extract the
structural information of the heterogeneous contract semantic graph. The resulting node
feature sequence replaces the variables sequence in the GraphCodeBERT method.

The purpose of HGT is to consolidate information from source nodes to obtain the
contextual representation of target nodes. This procedure can be segmented into three
distinct phases:

• The first part is the calculation of heterogeneous mutual attention. The calculation of
heterogeneous mutual attention begins by examining the meta-relationships between a
target node t and each of its source nodes s ∈ N(T). These relationships are defined by
the tuple ⟨T(s), ϕ(e), T(t)⟩, representing the source node type, the edge type, and the
target node type, respectively. To accommodate the diverse and complex nature of
these relationships in a heterogeneous graph, the model converts target node t into a
query vector and each source nodes s into a key vector. Unlike standard Transformers
that use a direct inner product for such calculations, HGT utilizes distinct attention
matrices WATT

ϕ(e) tailored to each edge type ϕ(e), ensuring that the nuances of different
semantic associations are captured effectively.

• The second part is the heterogeneous message-passing process. The message-passing
process from the source node to the target node and the calculation of mutual attention
are parallel. The goal is to merge the meta-relationships of various edges into the

Electronics 2024, 13, 3786 9 of 22

message-passing process. By doing so, it helps to balance the distribution disparities
among different types of nodes and edges.

• The third part is the aggregation for a specific task. It uses the attention vector as the
weight to calculate the corresponding information from the source node and obtain
the updated vector. The updated vector is linearly mapped and connected with the
original vector of t in the previous layer as a residual. In this way, the output H(L)[t]
of the target node t in the Lth layer of HGT is obtained. Stacking L layers can obtain a
rich context representation H(L) for each node as the input of the downstream task.

In order to be able to handle the dynamic nature of the graph, relative time coding is
introduced. Traditionally, time information has been integrated by constructing a separate
graph for each time slot, a method that can lead to the loss of structural dependencies
across different time slots. Moreover, the representation of a node at time t might rely on
edges from various other time slots. Thus, the appropriate method to model a dynamic
graph is to preserve all edges occurring at various times and permit interactions between
nodes and edges that possess different timings [32]. Specifically, given a source node s
and a target node t with the edge ϕ(e) between them , the edge information ϕ(e) includes
temporal information order, which is used as an index for the relative temporal encod-
ing. This encoding is applied through sine and cosine functions to capture the relative
temporal dependencies.

Base(order, 2i) = sin
(

order

10000
2i
d

)
(1)

Base(order, 2i+1) = cos
(

order

10000
2i+1

d

)
(2)

RTE(order) = Linear(Base(order)) (3)

In Equations (1) and (2), order is the timing information carried by the edge in
the heterogeneous graph, i is the position index, and d is the dimension of the feature
vector in HGT. Base represents the basic relative temporal encoding calculated by sine and
cosine functions. In Equation (3), Linear represents the projection of the basic relative time
code to obtain the final relative time code RTE(order). RTE(order) is added to the node
representations H(L) to obtain H(L)′ . This allows the resulting node representations to
capture the relative temporal information between the source node s and the target node t.

Secondly, the model architecture and training process are as follows. As shown in
Figure 5, the sequence I = {[CLS], SC, [SEP], H(L)′} obtained in the data preparation
stage is fed to the Join layer. In the Join layer, the sequence I from the data preparation
stage is converted into an input vector X0. Subsequently, the input vector X0 proceeds
through the multi-head attention layer, undergoes layer normalization, and passes through
multiple Transformer layers (n = 12) to produce distinct contextual representations,
Xn = Transformern(Xn−1), n ∈ (1, 12). Equations (4) and (5) represent the training process
of the model. In Equation (4), H and X are vectors, MultiAttn denotes a multi-head self-
attention operation, and LN denotes a layer normalization operation. In Equation (5), FNN
represents a two-layer feed-forward network, where each Transformer layer comprises a
structurally identical transformer. As shown in Equations (4) and (5), the output Xn−1 of
the previous layer first undergoes a multi-head self-attention operation. The output of the
self-attention operation is not directly passed to the next stage, but is first added to Xn−1

to form a residual connection and normalized to obtain a vector Hn. After the vector Hn

passes through the feedforward layer, which includes two linear transformation layers with
an activation function in between, it also undergoes a residual connection and another layer
of normalization to produce the output Xn. This process helps the model avoid potential
gradient vanishing problems in deep networks while maintaining information from each
layer’s input.

Hn = LN(MultiAttn(Xn−1) + Xn−1) (4)

Xn = LN(FFN(Hn) + Hn) (5)

Electronics 2024, 13, 3786 10 of 22

For the output X̂ of the multi-head self-attention in the nth transformer layer, the cal-
culation process is shown in Equation (6) to (9):

Qi = X(n−1)WQ
i , Ki = X(n−1)WK

i , Vi = X(n−1)WV
i (6)

headi = Softmax

(
QiKT

i√
dk

+ M

)
Vi (7)

Mij =

{
0, if qi ∈ {[CLS], [SEP]} or qi, ki ∈ SC or ⟨qi, ki⟩ ∈ E ∪ E′

−∞, otherwise
(8)

X̂ = [head1, . . . , headu]WO
n (9)

Figure 5. Vulnerability detection phase.

In Equation (6), X(n−1) ∈ R|I|×dh is the output of (n− 1)th Transformer layers, X, W are
vectors, and Q, K, V are triplets. X(n−1) is linearly projected onto the triplets of Qi, Ki, and Vi

using model parameters WQ
i ,WK

i ,WV
i ∈ Rdh×dk . To incorporate a graph structure within the

Transformer and illustrate dependencies between graph nodes, we adopt the approach of
GraphCodeBERT [28], utilizing graph-guided masked attention to depict the interactions
among tokens. Graph-guided masked attention is implemented through the mask matrix
M. In Equation (7), head is the head in multi-head attention, dk is the dimension of the head,
M is the mask matrix, M ∈ R|I|×|I|, where if the ith token and the jth token are associated,
then Mij = 0, otherwise it is −∞. The calculation process of M is shown in Equation (8),
[CLS] is a special mark in front of the set, [SEP] is a separator, SC = {sc, sc2, . . . , scn} is the
set of tokens in the source code, E is the set of edges {e1, e2, . . . , el} in the heterogeneous
contract semantic graph HCG, representing the control flow and data flow relationship
between nodes, and E′ is a set indicating the association between the smart contract source
code token and the nodes in the heterogeneous contract semantic graph (HCG). Attention
computations are permissible between nodes vi and vj when they are directly connected
(i.e., ⟨vi, vj⟩ ∈ E) or are the same node (i.e., i = j). To represent the relationship between
the source code tokens and the nodes in the heterogeneous contract semantic graph, we
first define a set E′. If node vi is determined by the token scj in the source code (i.e.,
⟨vi, scj⟩, ⟨scj, vi⟩ ∈ E′), they are allowed to perform attention computation with each other;
in other cases, the attention is masked by assigning an attention score of −∞. After the
Softmax calculation in Equation (7), it is assigned a value of 0. In Equation (9), u is the
number of heads in the multi-head attention, and WO

n ∈ Rdh×dh is the model parameter.
After the nth layer of the Transformer model, layer normalization is employed for

regularization. Subsequently, the output y, which represents the probability of the contract
containing a vulnerability, is derived using a linear layer followed by a Sigmoid [35] function,
as demonstrated in Equation (10). A loss function is then formulated to measure the dis-
crepancy between this output y and the target value, where the target is set to 1 if the smart

Electronics 2024, 13, 3786 11 of 22

contract exhibits a specific vulnerability, and 0 otherwise. Finally, the backpropagation
algorithm is utilized to train the network.

y = Sigmoid(Xn) (10)

4. Experiment

In this section, we undertake a comprehensive empirical analysis of the method we
propose, utilizing datasets that are publicly accessible. This evaluation is designed to
rigorously test the effectiveness of our approach. To systematically assess the performance
of our method, we have articulated several specific research questions:

• RQ1: Is our proposed method capable of effectively identifying the four most prevalent
vulnerabilities in smart contracts, and does it outperform existing methods in this
regard? We address this question by comparing the accuracy, precision, recall, and F1-
score metrics.

• RQ2: What is the contribution of different modules in the proposed method to vulner-
ability detection? This question investigates the contribution of various modules to
the model, including the heterogeneous contract semantic graph and the pre-trained
model. We designed ablation experiments to answer this question.

4.1. Experimental Setup

Experiment environment: To conduct the experimental analysis, we utilized the
open-source tool solc-typed-ast https://github.com/Consensys/solc-typed-ast, accessed
on 11 March 2024, to parse Ethereum Solidity source code into a standard AST format. This
was followed by further data optimization operations, such as removing comments. We de-
veloped a heterogeneous contract semantic graph generator based on the standardized AST
information. The neural network was designed and implemented using the PyTorch frame-
work. All experiments were performed on a physical machine running the Ubuntu 22.04
operating system, equipped with an Intel Xeon Silver 4310 processor with a base frequency
of 2.1 GHz, 64 GB of RAM, and an NVIDIA A10 GPU with 24 GB of VRAM. Model training
acceleration was achieved using the CUDA 12.4 computing library. The development
environment included Visual Studio Code software (version 1.86), the PyTorch (version 2.2)
framework, a Node.js (version 20.8.0) environment, and programming languages such as
Python (version 3.11) and JavaScript (ECMAScript 2023).

Comparative Methods: To evaluate the effectiveness of the proposed method, we
compared its performance with 12 state-of-the-art smart contract vulnerability detection
methods. These include six open-source detection methods based on different neural net-
work models: VanillaRNN [8], LSTM [36], GRU [36], DR-GCN [10], TMP [10], and CGE [22].
Additionally, we compared our method with six traditional smart contract vulnerability
detection tools from top-tier conferences and journals: Oyente [17], Contractfuzzer [18],
Mythril [11], Slither [7], Smartcheck [19], and Securify [37].

Dataset: To assess the effectiveness of the proposed method, we constructed our
dataset based on the open-source dataset Smartbug [38]. Smartbug is one of the most
widely used public datasets in smart contract vulnerability detection research, containing
47398 Ethereum smart contracts labeled based on static analysis tools. However, due to
the errors in static analysis tools, this labeling method lacks complete accuracy. In order to
conduct an accurate evaluation, we carefully selected those parts of Smartbug that have
been manually verified and confirmed to be accurate vulnerability labels as our dataset
in combination with relevant literature [16,30]. we first reclassified the data from several
manually labeled smart contract datasets according to the four types of vulnerabilities we
are studying. Then, we used automatic analysis tools to detect vulnerabilities in these
contracts, ensuring that our dataset contained a certain number of contracts that traditional
detection tools failed to classify as vulnerabilities. In addition, we removed comments
from the code, excluded contracts with less than 100 lines of code, and deleted duplicate
contracts, which had different addresses but the same main functions determined by code

https://github.com/Consensys/solc-typed-ast

Electronics 2024, 13, 3786 12 of 22

similarity analysis. This process produced the final dataset we used in our experiments.
The dataset’s variety and frequency of vulnerabilities are detailed in Table 1 . The dataset
is randomly divided into three parts, each accounting for a different proportion: 70% for
the training set, 20% for the validation set, and 10% for the test set. The neural network
model uses the training set to learn the various vulnerability features in the smart contract,
while the validation set is used to adjust parameters during model training to avoid model
overfitting. The test set is used to evaluate the generalization ability of the model in
vulnerability detection. Such a data allocation strategy helps to conduct a comprehensive
and rigorous evaluation of the model.

Table 1. Vulnerability Counts Across Different Categories.

Reentrancy Transaction State Dependency Block Info Dependency Nested Call Safe

973 895 1030 863 1097

Parameter setting: The default parameters of the model are as follows: Batch size: 16,
Initial learning rate: 2× 10−5, Dropout rate: 0.1, Optimizer: use AdamW, weight decay is
set to 1× 10−4.

4.2. Evaluation Metrics

In the experiments presented in this paper, we employed four widely-used evaluation
metrics to comprehensively assess the performance of the smart contract vulnerability
prediction model: Accuracy, Recall, Precision and F1-score. The calculations for these
metrics are based on the four crucial components in the confusion matrix: True Positive (TP),
True Negative (TN), False Positive (FP), and False Negative (FN). The specific formulas for
these calculations are detailed as follows:

Accuracy = 100× TP + TN
TP + FP + TN + FN

(11)

Recall = 100× TP
TP + FN

(12)

Precision = 100× TP
TP + FP

(13)

F1 = 200× Precision× Recall
Precision + Recall

(14)

Note: All calculated values in the article are multiplied by 100 and expressed
as percentages.

4.3. Ablation Experiment

This section aims to validate the individual contributions of each component in the
proposed method. First, to verify the contribution of pre-training techniques, we normal-
ized the parameters of the pre-trained model (GraphCodeBERT [28]) and trained the model
using the same input. For the smart contract files in the dataset, the canonical abstract
syntax tree (AST) is first parsed by the solc-typed-ast tool. Based on the AST, a hetero-
geneous contract semantic graph is constructed, and features are extracted through the
HGT network. Before training, GraphCodeBERT’s parameters are normalized to eliminate
the pre-training advantage. We denote this variant as method−WP. During the training
phase, the loss rate decreased slowly. After a period of training, we tested the results
on the test set, as shown in Table 2. The method−WP exhibited a substantial decline in
performance across various types of vulnerability detection tasks. This outcome suggests
that pre-training techniques can boost the generality of models, lessen the learning burden,
and serve an indispensable role in the detection of vulnerabilities.

Electronics 2024, 13, 3786 13 of 22

Table 2. Performance comparison of our method and its variants on four vulnerability detection tasks.

Methods
Reentrancy Block Info Dependency Transaction State Dependency Nested Loop

Acc Rec Pre F1 Acc Rec Pre F1 Acc Rec Pre F1 Acc Rec Pre F1

Method-WP 55.32 34.68 48.03 59.1 44.69 50.52 47.92 49.19 41.24 47.96 31.74 51.24 39.56 36.28 32.09 34.06
Method-HOG 80.09 81.18 72.15 76.4 81.3 80.68 78.42 79.53 74.11 76.39 68.92 72.46 70.23 65.08 71.44 68.11
Our method 90.96 91.62 89.16 90.37 89.57 87.62 91.43 89.50 88.46 86.20 90.37 88.26 87.34 84.91 89.77 87.30

To study the contribution of the heterogeneous contract semantic graph, we compared
the performance differences between homogeneous and heterogeneous graph analyses. For
the smart contract files in the dataset, the canonical abstract syntax tree (AST) is first parsed
by the solc-typed-ast tool. In the contract graph construction phase, the heterogeneous
contract semantic graph is replaced by the isomorphic graph generated by the method
proposed by Liu [22], so this variant is recorded as method − HOG. Then, the graph
embedding is completed by GAT (graph attention neural network), and finally the obtained
graph features and source code are used as input to train the GraphCodeBERT model loaded
with pre-trained parameters. After training, the results tested on the test set are shown in
Table 2. We observed that the original architecture of our method significantly outperformed
method-HOG in all aspects. This result suggests that the heterogeneous contract semantic
graph contains finer-grained semantic information in its graphical features, which is crucial
for the smart contract vulnerability detection task.

4.4. Comparison with Other Deep Learning Based Methods

The experiments compared the proposed method with 12 state-of-the-art methods,
including six open-source detection methods based on different neural network models:
VanillaRNN [8], LSTM [36], GRU [36], DR-GCN [10], TMP [10], and CGE [22]. Table 3
presents the Accuracy, Recall, Precision and F1-score values of our method compared to
the six detection methods based on neural network models.

Table 3. Performance comparison with neural network-based methods.

Methods
Reentrancy Block Info Dependency Transaction State Dependency Nested Call

Acc Rec Pre F1 Acc Rec Pre F1 Acc Rec Pre F1 Acc Rec Pre F1

Vanilla-RNN 50.12 55.84 46.33 50.72 49.77 44.59 51.17 52.15 52.43 50.20 54.65 52.40 51.98 50.80 48.76 49.71
LSTM 53.29 59.97 48.45 53.79 50.79 57.23 51.42 54.17 53.15 60.24 51.86 55.74 55.07 56.35 50.83 53.43
GRU 57.80 72.17 52.18 60.68 62.76 59.85 65.43 62.61 62.76 59.85 65.43 62.61 59.65 57.43 61.98 59.97
DR-GCN 78.96 77.05 73.24 75.09 75.53 72.89 78.11 75.51 - - - - - - - -
TMP 82.15 80.90 80.39 80.64 80.87 78.39 83.45 80.88 - - - - - - - -
CGE 85.32 81.25 87.46 84.23 86.21 84.10 85.96 85.03 - - - - - - - -
Our method 90.96 91.62 89.16 90.37 89.57 87.62 91.43 89.50 88.46 86.20 90.37 88.26 87.34 84.91 89.77 87.30

“-” means the corresponding tool does not support detecting this type of vulnerability.

The initial three models utilize text sequences from smart contract codes as inputs,
while the subsequent three models are based on the graph structure data of smart contracts.
These models represent typical approaches in the field of smart contract vulnerability de-
tection and have been widely adopted as benchmark methods in recent studies [10,30,37].
Considering that none of the compared methods support other block information depen-
dency vulnerabilities except timestamp dependency, in order to ensure the fairness of the
comparison, we limit the scope of method evaluation and only verify and compare the de-
tection effect of timestamp dependency vulnerabilities. It can be seen that in smart contract
reentrancy vulnerability detection, our method improves the accuracy by 52.11% compared
to the best-performing text sequence modeling model, GRU, and by 6.61% compared to
the best-performing graph structure modeling model, CGE. In detecting block informa-
tion dependency vulnerabilities in smart contracts, our method improves the accuracy by
42.71% compared to the best-performing text sequence modeling model, GRU, and by
4.90% compared to the best-performing graph structure modeling model, CGE. We attribute
this improvement to our proposed heterogeneous contract semanti graph, which contains
richer semantic information and higher separation between different features compared to

Electronics 2024, 13, 3786 14 of 22

homogeneous graphs. Methods based on graph structure data modeling tend to outper-
form those based on text sequence modeling, which also proves that code is not merely a
sequence of words, and ignoring structural information such as data flow and control flow
can degrade performance. For the detection of transaction state dependency vulnerabilities
and Nested Call vulnerabilities, as the three graph structure-based methods do not support
these types, we only compare with the text sequence-based methods. The results show that
compared to the best-performing GRU, our method improves the accuracy by 40.94% and
46.42%, respectively.

4.5. Compared with Traditional Tools

In addition to comparing our method with neural network-based approaches, we also
compared it with state-of-the-art traditional smart contract vulnerability detection tools.
Based on the detection targets and main features of these tools [39], we used Smartcheck [19],
Securify [37], and Slither [7] for source code-level vulnerability detection, and Oyente [17],
Contractfuzzer [18], and Mythril [11] for bytecode-level vulnerability detection. In order
to meet the input requirements of Oyente, Contractfuzzer and Mythril tools, we use the
compiler to generate corresponding bytecodes for the smart contracts in the dataset for
them to use. The results are shown in Table 4.

Table 4. Performance comparison with traditional tools.

Methods
Reentrancy Block Info Dependency Transaction State Dependency Nested Call

Acc Rec Pre F1 Acc Rec Pre F1 Acc Rec Pre F1 Acc Rec Pre F1

Smartcheck 40.43 41.25 39.11 40.15 52.91 39.70 51.17 52.15 30.66 33.89 40.67 36.97 47.26 50.12 55.99 52.99
Oyente 60.23 62.35 65.12 63.46 39.45 41.23 43.56 42.37 - - - - 42.78 39.75 46.89 43.03
Contractfuzzer 67.54 61.44 49.26 54.68 63.99 65.68 67.89 66.75 - - - - - - - -
Mythril 65.35 69.91 50.08 58.36 70.23 63.31 69.88 66.43 77.12 51.32 59.70 55.19 60.23 55.71 60.38 55.71
Securify 73.88 75.79 68.45 71.93 - - - - - - - - - - - -
Slither 80.35 87.10 82.57 84.77 77.12 74.28 68.42 71.23 60.96 82.09 62.07 71.27 55.37 27.69 61.91 38.27
Our method 90.96 91.62 89.16 90.37 89.57 87.62 91.43 89.50 88.46 86.20 90.37 88.26 87.34 84.91 89.77 87.30

“-” means the corresponding tool does not support detecting this type of vulnerability.

It can be observed that traditional vulnerability detection tools do not perform well.
The best-performing traditional tool, Slither, achieved an accuracy of 80.35% in reentrancy
vulnerability detection, while our method significantly improved the accuracy by 13.20%.
We believe the poor performance of traditional methods is due to their heavy reliance on
simple and fixed vulnerability detection patterns. For example, Mythril uses symbolic
execution, mixed concrete execution, and control flow analysis to detect vulnerabilities
in smart contracts. In reentrancy vulnerability detection, Mythril determines if a contract
has a reentrancy vulnerability based on whether there are internal function calls or state
variable modifications following a low-level call to call.value. Additionally, tools that use
bytecode as input lack source code semantic information, which can lead to decreased
detection performance. For block information dependency vulnerability detection, since
Securify does not support the detection of such vulnerabilities, we only compared our
method to the other five methods. Our method outperforms traditional methods on all
four metrics and achieves 16.1% accuracy improvement over the best traditional method,
Slither. The poor performance of some traditional tools may be attributed to their simplistic
approach of checking for the presence of block information statements like block.timestamp
to determine the existence of timestamp dependency vulnerabilities. Since only Mythril,
Slither, and Smartcheck support the detection of transaction state dependency vulnera-
bilities and Nested call vulnerabilities, we compared our method solely with these three
tools. The results show that our method improved accuracy by 14.7% and 26% in detecting
transaction state dependency vulnerabilities and Nested call vulnerabilities, respectively,
compared to the best-performing traditional tool, Mythril.

Electronics 2024, 13, 3786 15 of 22

4.6. Comparison of Runtime Resource Consumption

To verify the usability of the proposed method, we evaluated the average time and
memory consumption of the proposed method and other baseline methods in detecting
contracts in the dataset. Since only reentrancy vulnerabilities can be detected by all methods,
to ensure the fairness of the evaluation and the accuracy of the results, we screened out
contracts containing reentrancy vulnerabilities and security contracts from the original
dataset to form a sub-dataset, and shut down all background processes for evaluation in a
clean experimental environment.

Traditional tools are primarily based on techniques such as symbolic execution, static
analysis, or fuzz testing. These methods have most of their computational demands con-
centrated on the CPU and incur memory overhead during both static analysis and dynamic
execution. Therefore, we measured their memory consumption. For deep learning-based
methods, the VRAM consumption during inference is more indicative of model complexity
and resource utilization. Thus, we primarily measured their VRAM consumption during
the inference process. To ensure the reliability of the results, we ran each experiment multi-
ple times in the clean environment and averaged the results to obtain the final evaluation.
The results are shown in Table 5.

Table 5. Running time and memory consumption of different methods.

Methods Acc Recall Precision F1 Avg Time (s) Memory (MB) VRAM (MB)

Smartcheck 40.18 41.36 39.15 40.11 0.92 3.58 -
Oyente 60.05 62.77 65.21 63.41 2.50 174.44 -
Contractfuzzer 68.07 60.83 48.96 54.80 1.76 85.35 -
Mythril 65.13 69.36 49.83 57.95 2.39 161.40 -
Securify 73.38 75.86 68.52 71.50 2.73 170.59 -
Slither 81.15 87.86 82.00 84.71 0.89 4.27 -
Vanilla-RNN 50.46 55.78 46.40 50.24 0.35 - 71.34
LSTM 52.78 60.09 48.14 54.06 0.44 - 125.39
GRU 58.16 72.09 51.81 60.69 0.39 - 98.35
DR-GCN 79.24 77.17 73.05 74.96 0.65 - 217.53
TMP 81.54 80.61 79.66 80.08 0.73 - 393.75
CGE 85.56 81.19 88.32 83.58 0.91 - 674.20
Our method 90.96 91.62 89.16 90.37 0.84 - 650.83

Among traditional tools, the static analysis-based method Slither has the fastest exe-
cution speed and consumes the least memory, because static analysis usually only needs
to traverse the code once, generate an abstract syntax tree or control flow graph, and use
predefined rules for analysis. The symbolic execution-based method Securify generates a
large number of symbolic paths and symbolic expressions during execution. For multiple
conditional branches in complex code, the symbolic path may grow exponentially, resulting
in a large amount of memory consumption. The execution time and memory consumption
of deep learning-based methods are highly correlated with model complexity. Although the
three methods using text sequences as input have faster inference speeds, they exhibit
significant deficiencies in terms of accuracy. In contrast, methods based on graph structure
modeling, while having increased inference time, significantly improve detection accuracy
by better capturing the structural information within smart contracts. Given the substantial
economic value associated with smart contracts, we believe that increasing computational
resource consumption to enhance detection accuracy is both reasonable and worthwhile.

Compared to Slither, the best-performing traditional method, our approach achieves a
13% improvement in accuracy with similar execution time, greatly reducing the likelihood
of missing potential vulnerabilities. Additionally, compared to CGE, the best neural
network-based model, our method achieves a 6% increase in detection accuracy while
maintaining comparable inference time and VRAM consumption. This demonstrates that
our method not only improves performance while keeping resource consumption stable
but also more effectively leverages model complexity to enhance the detection of contract
vulnerabilities. Our method can provide higher security in actual smart contract audits,
especially for high-value smart contracts. This performance improvement can effectively
reduce the risk of economic losses caused by vulnerabilities. In addition, maintaining a

Electronics 2024, 13, 3786 16 of 22

balance between reasoning efficiency and resource consumption also makes our method
more practical in large-scale or batch contract audit scenarios.

5. Conclusions

In this paper, we propose a smart contract vulnerability detection method based on
pre-training technology and heterogeneous contract semantic graphs. Compared with
existing methods, the heterogeneous contract semantic graph proposed in this paper better
captures the dependency between program variables and functions. The graph embedding
is achieved through the heterogeneous graph neural network HGT, and the introduction
of pre-training technology enables efficient detection of smart contract vulnerabilities.
Experimental results show that the proposed method performs well in detecting four of the
most severe and widespread vulnerabilities. This approach not only covers a broader range
of vulnerability types but also achieves higher detection accuracy compared to existing
methods. It serves as an effective tool for the preliminary screening of vulnerabilities
in smart contracts, significantly improving the efficiency with which developers identify
potential issues. The method holds broad application prospects in the field.

However, our method has certain limitations:

• The scope of our method is currently limited to Ethereum and Solidity, and it does not
support the detection of vulnerabilities in smart contracts written in other languages
(such as Vyper, Rust, and Go).

• The dataset used in our experiments was manually curated based on existing research,
and this process may introduce some degree of subjectivity, potentially leading to
false positives.

• This study focuses on verifying the effectiveness of our approach using only four
specific vulnerability types. As blockchain technology evolves and programming
languages continue to advance, the types of vulnerabilities will also diversify.

6. Future Work

In future work, we aim to extend the capabilities of our method in several key areas.
First, we plan to broaden the scope of our approach to support vulnerability detection in
smart contracts written in other blockchain programming languages, such as Vyper, Rust,
and Go. This will enable our method to be applied across a wider range of platforms and
ecosystems beyond Ethereum and Solidity, making it more versatile and robust for develop-
ers working with different technologies. Second, we plan to extend our evaluation beyond
the four specific vulnerability types currently used. As blockchain technology evolves, new
types of vulnerabilities will emerge, and it is crucial to ensure that our method can detect a
broader array of vulnerabilities. This includes incorporating emerging vulnerability types
such as Gas optimization issues, flash loan attacks, etc. Furthermore, In addition, our cur-
rent approach focuses on detecting vulnerabilities in a single smart contract. As blockchain
technology continues to develop, decentralized applications (DApps) are becoming a main-
stream use case for blockchain systems. Therefore, developing methods for detecting
vulnerabilities between multiple interconnected contracts and components in DApps will
become a valuable and important area for future research. In the future, we will explore
the possibility of applying the current approach to DApp vulnerability detection.

Author Contributions: Conceptualization, J.Z.; methodology, J.Z.; software, J.Z.; validation, J.Z.;
formal analysis, J.Y.; investigation, J.Z.; data curation, J.Y.; writing—original draft preparation, J.Z.;
writing—review and editing, G.L.; visualization, J.Z.; supervision, G.L.; project administration, G.L.;
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

Electronics 2024, 13, 3786 17 of 22

Appendix A

Appendix A provides detailed descriptions and code examples of four smart con-
tract vulnerabilities, as well as the solc-typed-ast node type table to help readers better
understand the technical details mentioned in this article.

Appendix A.1. Reentrancy

One crucial feature of smart contracts is their ability to call and utilize code from other
external contracts. However, these external calls can potentially be hijacked by attackers
who use fallback functions to execute additional code, including calls that return to the
contract’s own code. In Solidity, the fallback function is a special, unnamed function that
takes no parameters and does not return a value. It is called when no matching function
signature is found, or when the contract directly receives Ether. Thus, attackers can con-
struct a contract at an external address that includes malicious code in the fallback function.
When a contract calls certain functions at this address, it triggers the malicious code [40].
The term “reentrancy” refers to the scenario where an external malicious contract uses
function calls to “re-enter” and manipulate the execution process of the vulnerable contract.

Reentrancy Example Example: Listing A1 illustrates a contract with a reentrancy
vulnerability, the ReentrantBank contract, which acts as a bank holding users’ Ether. Users
can withdraw Ether through the withdraw() function, which contains the reentrancy
vulnerability. The attacker’s contract exploits this vulnerability to steal funds from the bank
contract. In step 1, the attacker calls the withdraw() function in the ReentrantBank contract
to withdraw Ether. In step 2, the ReentrantBank contract sends Ether to the attacker by
executing sender.call{value: _amount}(""). In step 3, instead of proceeding to the next
expected step—deducting the attacker’s balance—the process enters the fallback() function
of the Attacker contract because the Ether transfer is conducted using sender.call{value:
_amount}(""). In step 4, within the fallback() function, the attacker calls the withdraw()
function again to extract Ether. This cycle continues repeatedly until the Ether in the
ReentrantBank contract is depleted.

Electronics 2024, 13, 3786 18 of 22

Listing A1. Reentrancy Example.

1 // Bank contract vulnerable to reentrancy attack
2 contract ReentrantBank {
3 mapping(address => uint256) public balances; // Stores each user’s balance
4 function deposit () public payable {
5 require(msg.value > 0);
6 balances[msg.sender] += msg.value; // Update the user’s balance
7 }
8 function withdraw(uint256 _amount) public {
9 require(balances[msg.sender] >= _amount); // Ensure the user has enough balance

10 // Vulnerability: Sends Ether to the caller before updating the balance
11 (bool sent ,) = msg.sender.call{value: _amount }(""); // Call to external contract
12 require(sent , "Failed to send Ether");
13 balances[msg.sender] -= _amount; // Update the user’s balance (should be done before ←↩

the call)
14 }
15 function getBalance () public view returns (uint256) {
16 return address(this).balance;
17 }
18 }
19 // Attacker contract exploiting the reentrancy vulnerability
20 contract Attacker {
21 ReentrantBank public bank;
22 uint256 public amount;
23 constructor(address _bankAddress) {
24 bank = ReentrantBank(_bankAddress);
25 }
26 fallback () external payable {
27 if (address(bank).balance >= amount) {
28 bank.withdraw(amount); // Recursively call withdraw to drain funds
29 }
30 }
31 function attack(uint256 _amount) external payable {
32 require(msg.value >= _amount);
33 amount = _amount;
34 bank.deposit{value: msg.value }(); // Deposit Ether into the bank contract
35 bank.withdraw(_amount); // Trigger the withdraw function , starting the reentrancy ←↩

attack
36 }
37 }

Appendix A.2. Transaction State Dependency

In Solidity, there is a global variable tx.origin that traces back through the entire call
stack to return the address of the account that originally initiated the call (or transaction).
If this variable is used within a smart contract to check if the caller has the correct permis-
sions for sensitive functions, it can lead to severe consequences. This is because tx.origin can
be manipulated in a way that deceives the contract into identifying the call as originating
from a trusted source when, in fact, it might be coming from an attacker. This vulnerability
can be exploited to grant unauthorized access to critical functions that should be protected,
leading to potential losses or other security breaches in the contract [14].

Transaction State Dependency Example: As shown in Listing A2, attackers can bypass
permission checks by exploiting the logic on line 15. By using this method, anyone can
successfully execute the withdraw() function on line 6 to withdraw Ether from the contract.

Electronics 2024, 13, 3786 19 of 22

Listing A2. Transaction State Dependency.

1 contract Vulnerable {
2 address public owner; // Stores the contract owner ’s address
3 constructor () {
4 owner = msg.sender; // msg.sender is the address that deployed the contract
5 }
6 function withdraw () public {
7 // Vulnerability: Using tx.origin instead of msg.sender allows an attack through an ←↩

intermediary contract
8 require(tx.origin == owner , "Only owner can withdraw"); // Check if the original ←↩

transaction initiator is the owner
9 payable(owner).transfer(address(this).balance);

10 }
11 receive () external payable {}
12 }
13 contract Attacker {
14 Vulnerable public vulnerableContract;
15 constructor(address _vulnerableAddress) {
16 vulnerableContract = Vulnerable(payable(_vulnerableAddress));
17 }
18 function attack () public {
19 // When this function is called by an attacker , tx.origin refers to the attacker ,
20 // but msg.sender in Vulnerable contract will be this contract , bypassing the ←↩

ownership check
21 vulnerableContract.withdraw ();
22 }
23 receive () external payable {}
24 }

Appendix A.3. Block Info Dependency

Smart contracts can access block information (such as block.timestamp, block.number,
and block.hash) as part of their execution context. However, relying on these blockchain
environmental variables to determine their execution logic can lead to vulnerabilities
related to block information dependency [14]. For instance, using attributes of future blocks
as seeds for generating random numbers to determine the winners in a lottery game can
be problematic.

Block Info Dependency Example: In Listing A3, a lottery game contract is shown,
which selects a winner using the random() function (line 6). The random() function
generates a random number by performing calculations based on block.timestamp (line
11). When the game accumulates a significant amount of Ether, miners are incentivized to
manipulate these values within certain limits to increase their chances of winning.

Electronics 2024, 13, 3786 20 of 22

Listing A3. Block Info Dependency.

1 contract Lottery {
2 address public owner;
3 address [] public players;
4 function pickWinner () public onlyOwner {
5 require(players.length > 0, "No players participated");
6 uint index = random () % players.length; // Select a winner based on the random ←↩

function
7 // Transfer the contract balance to the selected winner
8 payable(players[index]).transfer(address(this).balance);
9 players = new address;

10 }
11 // Function to generate a pseudo -random number , using block information (timestamp and←↩

difficulty)
12 // Vulnerability: Block information can be influenced by miners , making the random ←↩

number predictable or manipulable
13 function random () private view returns (uint) {
14 // Generate a pseudo -random number using block.timestamp , block.difficulty , and~←↩

players array
15 return uint(keccak256(abi.encodePacked(block.timestamp , block.difficulty , players)));
16 }
17 receive () external payable {}
18 }

Appendix A.4. Nested Call

In the Ethereum execution environment, using the CALL instruction in a contract
requires paying gas, with a basic cost of 700 gas. If the call involves transferring a non-zero
value, an additional 9000 gas is required [14]. If a loop contains a CALL operation but
does not restrict the number of iterations, there is a risk that the gas cost could exceed the
limit. In such cases, the transaction will be terminated and reverted (rolled back), but the
gas already consumed will not be refunded. This could lead to users or contract owners
incurring high costs without achieving any results.

Nested Call Example: In Listing A4, an attacker can maliciously increase the number
of iterations in a loop, Each call to the send() function during each iteration will use the
CALL instruction to switch context in the EVM, which will consume a lot of gas. When
the gas consumption exceeds the limit, the transaction will be reverted, and only unused
gas will be refunded. The gas already consumed during execution will not be refunded,
causing the user or contract holder to pay high fees without any results.

Listing A4. Nested Call.

1 contract VulnerableContract {
2 function callExternal () public payable {
3 for (uint i = 0; i<member.length; i++) {
4 member[i].send(1 wei);}
5 }
6 }

Electronics 2024, 13, 3786 21 of 22

Appendix A.5. Solc-Typed-ast Node Type Table

Table A1. Solc-typed-ast node type table.

Functional Category Node Type

Structural and Operation

ContractDefinition, EnumDefinition, ErrorDefinition, EventDefinition, FunctionDefinition,
ModifierDefinition, SourceUnit, Block, Break, Continue, DoWhileStatement, EmitStatement,
ExpressionStatement, ForStatement, IfStatement, InlineAssembly, PlaceholderStatement,
PragmaDirective, Return, RevertStatement, Throw, TryCatchClause, TryStatement, UncheckedBlock,
VariableDeclarationStatement, WhileStatement, NewExpression, Assignment, BinaryOperation,
Conditional, TupleExpression, UnaryOperation, IndexAccess, IndexRangeAccess, MemberAccess

Variables and calling FunctionCall, Identifier, IdentifierPath, UserDefinedValueTypeDefinition, VariableDeclaration,
ModifierInvocation, ParameterList, StructDefinition

other
ImportDirective, PragmaDirective, OverrideSpecifier, StructuredDocumentation, UsingForDirective,
InheritanceSpecifier, ArrayTypeName, ElementaryTypeName, EnumValue, FunctionTypeName,
UserDefinedTypeName, FunctionCallOptions, Literal

References
1. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://www.ussc.gov/sites/default/files/

pdf/training/annual-national-training-seminar/2018/Emerging_Tech_Bitcoin_Crypto.pdf (accessed on 1 July 2024). [CrossRef]
2. Shao, Q.; Jin, C.; Zhang, Z.; Qian, W.; Zhou, A. Blockchain: Architecture and Research Progress. Chin. J. Comput. 2018, 41, 969–988.

(In Chinese with English abstract) [CrossRef]
3. SlowMist. 2023 Blockchain Security and Anti-Money Laundering Annual Report. 2024. Available online: https://www.slowmist.

com/report/2023-Blockchain-Security-and-AML-Annual-Report(EN).pdf (accessed on 11 February 2024).
4. Mossberg, M.; Manzano, F.; Hennenfent, E.; Groce, A.; Grieco, G.; Feist, J.; Brunson, T.; Dinaburg, A. Manticore: A User-Friendly

Symbolic Execution Framework for Binaries and Smart Contracts. In Proceedings of the 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), San Diego, CA, USA, 11–15 November 2019; pp. 1186–1189. [CrossRef]

5. So, S.; Hong, S.; Oh, H. SmarTest: Effectively Hunting Vulnerable Transaction Sequences in Smart Contracts Through Language
Model-Guided Symbolic Execution. In Proceedings of the 30th USENIX Security Symposium, Online, 11–12 August 2021;
pp. 1361–1378.

6. Torres, C.; Iannillo, A.; Gervais, A.; State, R. ConFuzzius: A Data Dependency-Aware Hybrid Fuzzer for Smart Contracts. In
Proceedings of the 2021 IEEE European Symposium on Security and Privacy (EuroS&P), Vienna, Austria, 6–10 September 2021;
pp. 103–119. [CrossRef]

7. Feist, J.; Grieco, G.; Groce, A. Slither: A Static Analysis Framework for Smart Contracts. In Proceedings of the 2nd IEEE/ACM
International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB), Montreal, QC, Canada, 27 May
2019; pp. 8–15. [CrossRef]

8. Goller, C.; Kuchler, A. Learning Task-Dependent Distributed Representations by Backpropagation Through Structure. In
Proceedings of the International Conference on Neural Networks (ICNN ’96), Washington, DC, USA, 3–6 June 1996; pp. 347–352.

9. Sak, H.; Senior, A.; Beaufays, F. Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic
Modeling. In Proceedings of the Fifteenth Annual Conference of the International Speech Communication Association, Perth,
WA, Australia, 27 November–1 December 2014.

10. Zhuang, Y.; Liu, Z.; Qian, P.; Liu, Q.; Wang, X.; He, Q. Smart Contract Vulnerability Detection using Graph Neural Network.
In Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI), Yokohama, Japan, 11–17 July 2020;
pp. 3283–3290.

11. Mueller, B. Mythril-Reversing and Bug Hunting Framework for the Ethereum Blockchain. 2017. Available online: https:
//pypi.org/project/mythril/0.8.2 (accessed on 11 February 2024).

12. di Angelo, M.; Salzer, G. Consolidation of Ground Truth Sets for Weakness Detection in Smart Contracts. arXiv 2023,
arXiv:2304.11624.

13. SWC. Smart Contract Weakness Classification. 2023. Available online: https://swcregistry.io/ (accessed on 11 February 2024).
14. Chen, J.; Xia, X.; Lo, D.; Grundy, J.; Luo, X.; Chen, T. Defining Smart Contract Defects on Ethereum. IEEE Trans. Softw. Eng. 2022,

48, 327–345. [CrossRef]
15. Wang, W.; Song, J.; Xu, G.; Li, Y.; Wang, H.; Su, C. ContractWard: Automated Vulnerability Detection Models for Ethereum Smart

Contracts. IEEE Trans. Netw. Sci. Eng. 2021, 8, 1133–1144. [CrossRef]
16. Luo, F.; Luo, R.; Chen, T.; Qiao, A.; He, Z.; Song, S.; Jiang, Y.; Li, S. SCVHunter: Smart Contract Vulnerability Detection Based

on Heterogeneous Graph Attention Network. In Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering (ICSE ’24), Lisbon, Portugal, 12–24 April 2024. [CrossRef]

17. Luu, L.; Chu, D.; Olickel, H.; Saxena, P.; Hobor, A. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS), Vienna, Austria, 24–28 October 2016; pp. 254–269. [CrossRef]

https://www.ussc.gov/sites/default/files/pdf/training/annual-national-training-seminar/2018/Emerging_Tech_Bitcoin_Crypto.pdf
https://www.ussc.gov/sites/default/files/pdf/training/annual-national-training-seminar/2018/Emerging_Tech_Bitcoin_Crypto.pdf
http://doi.org/10.2139/ssrn.3440802
http://dx.doi.org/10.11897/SP.J.1016.2018.00969
https://www.slowmist.com/report/2023-Blockchain-Security-and-AML-Annual-Report(EN).pdf
https://www.slowmist.com/report/2023-Blockchain-Security-and-AML-Annual-Report(EN).pdf
http://dx.doi.org/10.1109/ASE.2019.00133
http://dx.doi.org/10.1109/EuroSP51992.2021.00018
http://dx.doi.org/10.1109/WETSEB.2019.00008
https://pypi.org/project/mythril/0.8.2
https://pypi.org/project/mythril/0.8.2
https://swcregistry.io/
http://dx.doi.org/10.1109/TSE.2020.2989002
http://dx.doi.org/10.1109/TNSE.2020.2968505
http://dx.doi.org/10.1145/3597503.3639213
http://dx.doi.org/10.1145/2976749.2978309

Electronics 2024, 13, 3786 22 of 22

18. Jiang, B.; Liu, Y.; Chan, W. ContractFuzzer: Fuzzing Smart Contracts for Vulnerability Detection. In Proceedings of the 33rd
IEEE/ACM International Conference on Automated Software Engineering (ASE), Montpellier, France, 3–7 September 2018;
pp. 259–269. [CrossRef]

19. Tikhomirov, S.; Voskresenskaya, E.; Ivanitskiy, I.; Takhaviev, R.; Marchenko, E.; Alexandrov, Y. SmartCheck: Static Analysis of
Ethereum Smart Contracts. In Proceedings of the 1st International Workshop on Emerging Trends in Software Engineering for
Blockchain (WETSEB), Gothenburg, Sweden, 27 May–3 June 2018; pp. 9–16. [CrossRef]

20. Hildenbrandt, E.; Saxena, M.; Rodrigues, N.; Zhu, X.; Daian, P.; Guth, D.; Moore, B.; Park, D.; Zhang, Y.; Stefanescu, A.; et al.
KEVM: A Complete Formal Semantics of the Ethereum Virtual Machine. In Proceedings of the 31st IEEE Computer Security
Foundations Symposium (CSF), Oxford, UK, 9–12 July 2018; pp. 204–217. [CrossRef]

21. Kalra, S.; Goel, S.; Dhawan, M.; Sharma, S. ZEUS: Analyzing Safety of Smart Contracts. In Proceedings of the 2018 Network and
Distributed System Security Symposium (NDSS), San Diego, CA, USA, 18–21 February 2018; pp. 1–12. [CrossRef]

22. Liu, Z.; Qian, P.; Wang, X.; Zhuang, Y.; Qiu, L.; Wang, X. Combining Graph Neural Networks with Expert Knowledge for Smart
Contract Vulnerability Detection. IEEE Trans. Knowl. Data Eng. 2023, 35, 1296–1310. [CrossRef]

23. Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [CrossRef]

24. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training. 2018.
Available online: https://paperswithcode.com/paper/improving-language-understanding-by (accessed on 11 February 2024).

25. Feng, Z.; Guo, D.; Tang, D.; Duan, N.; Feng, X.; Gong, M.; Shou, L.; Qin, B.; Liu, T.; Jiang, D.; et al. CodeBERT: A Pre-Trained
Model for Programming and Natural Languages. In Proceedings of the 2020 Findings of the Association for Computational
Linguistics (EMNLP), Online Event, 16–20 November 2020; pp. 1536–1547. [CrossRef]

26. Wang, Y.; Wang, W.; Joty, S.; Hoi, S. Codet5: Identifier-Aware Unified Pre-Trained Encoder-Decoder Models for Code Understand-
ing and Generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP),
Punta Cana, Dominican Republic, 7–11 November 2021; pp. 8696–8708.

27. Buratti, L.; Pujar, S.; Bornea, M.; McCarley, S.; Zheng, Y.; Rossiello, G.; Morari, A.; Laredo, J.; Thost, V.; Zhuang, Y.; et al. Exploring
Software Naturalness through Neural Language Models. arXiv 2020, arXiv:2006.12641.

28. Guo, D.; Ren, S.; Lu, S.; Feng, Z.; Tang, D.; Liu, S.; Zhou, L.; Duan, N.; Svyatkovskiy, A.; Fu, S.; et al. GraphCodeBERT: Pre-Training
Code Representations with Data Flow. In Proceedings of the 9th International Conference on Learning Representations (ICLR),
Virtual Event, Austria, 3–7 May 2021.

29. Allamanis, M.; Brockschmidt, M.; Khademi, M. Learning to Represent Programs with Graphs. In Proceedings of the 6th
International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018.

30. Wu, H.; Zhang, Z.; Wang, S.; Lei, Y.; Lin, B.; Qin, Y.; Zhang, H.; Mao, X. Peculiar: Smart Contract Vulnerability Detection Based
on Crucial Data Flow Graph and Pre-Training Techniques. In Proceedings of the 2021 IEEE 32nd International Symposium on
Software Reliability Engineering (ISSRE), Wuhan, China, 25–28 October 2021; pp. 378–389.

31. Dong, Y.; Chawla, N.; Swami, A. metapath2vec: Scalable Representation Learning for Heterogeneous Networks. Acm Trans.
Knowl. Discov. Data 2017. [CrossRef]

32. Wang, X.; Ji, H.; Shi, C.; Wang, B.; Ye, Y.; Cui, P.; Yu, P. Heterogeneous Graph Attention Network. In Proceedings of the The
World Wide Web Conference (WWW ’19), Raleigh, NC, USA, 26–30 April 2019; pp. 2022–2032. [CrossRef]

33. Hu, Z.; Dong, Y.; Wang, K.; Sun, Y. Heterogeneous Graph Transformer. In Proceedings of the Web Conference 2020 (WWW ’20),
Taipei, Taiwan, 20–24 April 2020; pp. 2704–2710. [CrossRef]

34. Ethereum. Units and Globally Available Variables. 2023. Available online: https://docs.soliditylang.org/zh/latest/units-and-
global-variables.html (accessed on 11 February 2024).

35. Zhang, Z.; Lei, Y.; Mao, X.; Li, P. CNN-FL: An Effective Approach for Localizing Faults Using Convolutional Neural Networks.
In Proceedings of the 26th International Conference on Software Analysis, Evolution and Reengineering (SANER), Hangzhou,
China, 24–27 February 2019; pp. 445–455. [CrossRef]

36. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
arXiv 2014, arXiv:1412.3555.

37. Tsankov, P.; Dan, A.; Drachsler-Cohen, D.; Gervais, A.; Buenzli, F.; Vechev, M. Securify: Practical Security Analysis of Smart
Contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS), Toronto, ON,
Canada, 15–19 October 2018; pp. 67–82.

38. Durieux, T.; Ferreira, J.; Abreu, R.; Cruz, P. Empirical Review of Automated Analysis Tools on 47,587 Ethereum Smart Contracts.
In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (ICSE), Seoul, Republic of Korea, 27
June–19 July 2020; pp. 530–541. [CrossRef]

39. Cui, Z.; Yang, H.; Chen, X.; Wang, L.Z. Progress in Smart Contract Security Vulnerability Detection. J. Softw. 2024, 35, 2235–2267. [CrossRef]
40. Antonopoulos, A.; Wood, G. Mastering Ethereum: Building Smart Contracts and DApps; O’Reilly Media: Sebastopol, CA, USA, 2018; p. 177.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3238147.3238177
http://dx.doi.org/10.1145/3194113.3194115
http://dx.doi.org/10.1109/CSF.2018.00022
http://dx.doi.org/10.14722/ndss.2018.23082
http://dx.doi.org/10.1109/TKDE.2021.3095196
http://dx.doi.org/10.18653/v1/N19-1423
https://paperswithcode.com/paper/improving-language-understanding-by
http://dx.doi.org/10.18653/v1/2020.findings-emnlp.139
http://dx.doi.org/10.1145/3097983.3098036
http://dx.doi.org/10.1145/3308558.3313562
http://dx.doi.org/10.1145/3366423.3380027
https://docs.soliditylang.org/zh/latest/units-and-global-variables.html
https://docs.soliditylang.org/zh/latest/units-and-global-variables.html
http://dx.doi.org/10.1109/SANER.2019.8668002
http://dx.doi.org/10.1145/3377811.3380364
http://dx.doi.org/10.13328/j.cnki.jos.007046

	Introduction
	Related Work
	Existing Smart Contract Vulnerability Detection Tools
	Graph Pre-Trained Models
	Graph Structure Representation of Smart Contracts

	Research Method
	Graph Generation Phase
	Vulnerability Detection Phase

	Experiment
	Experimental Setup
	Evaluation Metrics
	Ablation Experiment
	Comparison with Other Deep Learning Based Methods
	Compared with Traditional Tools
	Comparison of Runtime Resource Consumption

	Conclusions
	Future Work
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.3
	Appendix A.4
	Appendix A.5

	References

