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Abstract: With the rapid evolution of intelligent driving technology, vehicle trajectory prediction
has become a pivotal technique for enhancing road safety and traffic efficiency. In this domain,
high-definition vector maps and graph neural networks (GNNs) play a vital role, supporting precise
vehicle positioning and optimizing path planning, thereby improving the performance of intelligent
driving systems. However, high-definition vector maps and traditional GNNs still encounter several
challenges in trajectory prediction, such as high computational resource demands, long training
times, and limited modeling capabilities for dynamic traffic environments and complex interactions.
To address these challenges, this paper proposes an adaptive edge generator method, this method
dynamically constructs and optimizes the connections between nodes in the GNN architecture, effec-
tively enhancing the accuracy and efficiency of trajectory prediction. Specifically, we classify nodes
into dynamic and static nodes based on their attributes, and devise differentiated edge construction
strategies accordingly. For dynamic nodes, we introduce a relative angle factor, enabling the attention
model to comprehensively consider the distance and intersection status between nodes, resulting in
more accurate computation of edge weights. For static nodes, we utilize a length threshold to assess
the feasibility of establishing connections between vehicles and lane lines, determining whether a
connection should be established. Through this approach, we successfully reduce the algorithmic
complexity, increase computational speed, and maintain high trajectory prediction accuracy. Tests on
the Argoverse motion prediction dataset demonstrate that trajectory prediction utilizing the adaptive
edge generator achieves an average displacement error (ADE) of 0.6681, a final displacement error
(FDE) of 0.9864, and a miss rate (MR) of 0.0952. Furthermore, the model parameters are significantly
reduced, validating the effectiveness of the proposed vehicle trajectory prediction method based on
the adaptive edge generator.

Keywords: vehicle trajectory prediction; graph neural network; edge construction and generation

1. Introduction

Vehicle trajectory prediction is crucial for autonomous driving technologies [1], espe-
cially in complex traffic environments such as urban roads, highways, and intersections.
Autonomous vehicles must continuously make decisions to address diverse and dynamic
situations, predicting the behaviors of other vehicles and pedestrians to respond promptly
and prevent traffic accidents. Accurate vehicle trajectory prediction enhances traffic flow
and efficiency by optimizing route planning and speed control, reducing congestion and
improving road usage efficiency. However, predicting trajectories in scenarios involving
complex interactions [2], such as multiple vehicles in proximity, frequent lane changes, and
intersection crossings, is particularly challenging due to increased dynamics and uncer-
tainties. Traditional methods [3], including rule-based, statistical, and machine learning
approaches, often fall short in such environments because of their limited capacity to model
nonlinear relationships and dynamics, failing to meet the high demands for accuracy,
robustness, and real-time performance required by autonomous driving systems [4].
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In recent years, the advent of deep learning technologies has progressively become the
focal point of vehicle trajectory prediction research. Deep learning-based approaches utilize
high-definition (HD) scene maps [5], which offer detailed structural and geographical
information about the vehicle’s surroundings [6]. This enhanced environmental percep-
tion [7] aids significantly in accurate trajectory prediction. HD maps not only serve as a
reference for predicting potential future paths but also facilitate the planning and control
processes based on these predictions [8]. Furthermore, HD maps are instrumental for
vehicle localization. By aligning the vehicle’s current sensor data with map information, the
system can pinpoint its exact location with greater precision, a critical factor for achieving
reliable trajectory predictions [9,10].

Researchers typically transform scene maps into bird’s-eye view images and analyze
them using convolutional neural networks (CNNs) [11], a method that leverages general
image models but is computationally demanding and offers limited perceptual range [12].
Recent studies have shifted focus towards vectorized representations of scene maps [13] for
a more compact depiction of scenes. These vectorized maps extract key information from
trajectories and map elements, processing these scenes through models such as graph neural
networks [14] and Transformers [15]. This approach facilitates learning the relationships
between vectorized entities, such as trajectory waypoints and lane segments, offering
more detailed and accurate map information, thus enhancing the perceptual capabilities of
autonomous driving systems.

However, in complex traffic scenarios like intersections, where lane lines, obstacles,
and other elements frequently change and increase in complexity, it remains a critical
challenge to determine whether autonomous systems can efficiently identify relevant
objects within the map to simplify algorithm complexity and enhance computational speed.
Furthermore, there is a pressing need to explore whether reducing computational load
during graph construction and incorporating appropriate semantic information into the
map can improve overall computational efficiency. These considerations are crucial for
advancing the capabilities of autonomous driving technologies in handling dynamic and
intricate traffic situations.

In graph convolutional neural networks (GCNNs), edges represent the relationships
or interactions between nodes, facilitating the transmission of information and influences
across the network. The method of edge construction is pivotal as it directly influences
the network’s representational capabilities and overall performance [16]. Traditionally,
edges in graph neural networks are constructed using a fully connected graph approach.
While comprehensive, this method results in complex network structures that significantly
increase computational and storage demands. Moreover, fully connected graphs often
struggle to capture the inherent sparsity and localized features present in traffic data, which
can have a detrimental effect on model performance.

To overcome the aforementioned challenges, this paper introduces an adaptive edge
generation scheme tailored for constructing graph convolutional neural networks specif-
ically for vehicle trajectory prediction. This adaptive edge generator utilizes time series
and map information as inputs to refine the traditional fully connected graph approach
in graph neural networks, particularly focusing on the connections between one’s own
vehicle and pertinent objects. Nodes are differentiated into static and dynamic categories
based on their attributes, and distinct connection strategies are employed for each type.
For dynamic nodes, the attention mechanism is enhanced by incorporating a relative angle
factor, enabling the model to more comprehensively assess the positional relationships
between vehicles. This improvement is particularly beneficial for understanding complex
traffic scenarios, such as intersections. For static nodes, edges are established based on
a maximum distance criterion. The trajectory prediction method proposed in this paper
not only ensures high accuracy but also reduces algorithmic complexity and enhances the
computational speed of the model.

The remainder of this paper is structured as follows: Section 2 discusses related
work and identifies prevailing challenges in vehicle behavior prediction. Section 3 pro-
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vides a concise explanation of the adaptive edge generator’s principles and outlines the
prediction methodology. Section 4 details the experiments conducted and analyzes the
results obtained.

2. Related Work
2.1. Map Information

In recent years, motion prediction has emerged as a central focus of autonomous
driving research, particularly due to the critical role of high-definition maps in urban
environments. Consequently, significant research efforts have been directed towards
the effective encoding of these high-definition maps for motion prediction. The encoding
approaches for motion prediction maps, which rely heavily on spatial features, are primarily
categorized into rasterized and vectorized forms. The objective is to furnish the computer
with a robust foundation for data analysis and statistics, and to digitize complex map
features to enhance their readability and recognition by computational systems [17].

Rasterization: Rasterization techniques convert the environment surrounding an
agent, typically visualized as a bird’s-eye view (BEV), into an image format. This trans-
formation redefines the task of semantically understanding the target’s surroundings into
a computer vision challenge, allowing the use of numerous image-based methodologies
such as convolutional neural networks. Rasterized representations are particularly noted
for their ability to encapsulate the spatial context of a target, such as a map, effectively.
A notable study in this domain is ChauffeurNet [18], which employs recurrent neural
networks (RNNs) [19] to generate predicted trajectories. ChauffeurNet displays maps,
navigation data, and other objects in a BEV, focusing on a rectangular region ahead of the
target. The road map is depicted as an RGB image, illustrating features like lane centerlines
and curbs.

Similarly, MultiPath [20] forecasts movements based on anchor classification and
offset regression of these contextual elements. Numerous studies adopt this rasterized map
representation, merging it with vectorized depictions to enhance predictions of vehicle
motion and interactions. Techniques such as a multi-hypothesis fully connected (FC)
prediction head leverage convolutional contextual features and vectorized agent state
features. CoverNet [21] innovatively generates anchor trajectories and classifies them using
similar feature pairings. Techniques like multiple futures prediction [22] and multi-agent
tensor fusion [17] employ RNNs to encode and decode predicted target motions, integrating
contextual features at various stages.

While rasterized maps offer the advantage of partitioning map information into a
grid format, simplifying computational processing and understanding, they also come
with challenges. For extensive areas, rasterization can effectively provide voluminous
information. However, this method suffers from the drawbacks of large data volumes, high
spatial complexity, and limited adaptability in dynamic environments.

Vectorization: Vectorization techniques prioritize the topology of the map by concep-
tualizing it as a graph. These graphical representations are significantly more compact than
raster images, which often leads to improved efficiency. Graphical representations excel at
articulating complex traffic semantics due to their ability to define connectivity clearly. For
instance, they can distinctly describe scenarios where two lanes are physically proximate
yet separated by a median strip, preventing interaction.

Prominent predictive networks employing vectorization include VectorNet [13], which
conceptualizes both the map and vehicle motion using a two-level hierarchy of fully
connected graphs. Similarly, LaneGCN [23] represents the map as a heterogeneous directed
graph and utilizes a parameterized graph convolutional network (GCN) to train on this
structure. Following this, LaneRCNN [24] builds upon the foundation set by LaneGCN by
constructing a predicted vehicle graph that models interactions within the map, enhancing
the overall prediction accuracy and contextual relevance of the traffic scenarios modeled.

To summarize, vectorized maps offer several advantages over rasterized maps for
trajectory prediction:
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(1) Enhanced detail and accuracy: Vectorized maps provide more comprehensive map
information, including road curvature and traffic facilities, which are vital for accurate
trajectory prediction. By delivering more precise road shapes and features, vectorized
maps facilitate a better understanding of road conditions, aiding vehicles in making
more accurate trajectory planning and predictions.

(2) Superior real-time performance and dynamism: Vectorized maps are particularly
advantageous in trajectory prediction scenarios that demand real-time responsiveness
and dynamic adaptation. Road conditions may change due to various factors such
as new traffic signs, road construction, or traffic congestion. The ease of updating
vectorized maps allows for quick responses to such changes, ensuring that the maps
reflect the most current information and thereby enhancing the real-time accuracy
of predictions.

(3) Improved navigation and route planning: Vectorized maps excel in navigation and
route planning, providing more precise navigation guidance and route recommendations.
With a deeper understanding of the structure and characteristics of road networks,
vectorized maps can offer more accurate route planning for navigation systems.

These attributes highlight the significant application potential and value of vectorized
maps in intelligent transportation systems. The method of the adaptive edge generator pro-
posed in this paper, which is based on vectorized map encoding, aligns with these advantages.

2.2. Trajectory Prediction Based on Graph Neural Networks

Within the field of trajectory prediction, traditional neural network architectures such
as convolutional neural networks (CNNs) [25] and recurrent neural networks (RNNs) have
demonstrated efficacy in various application scenarios. However, they exhibit notable limi-
tations when applied to the complex task of trajectory prediction. This is primarily because
CNNs and RNNs are inherently biased toward processing data with regular geometric
structures. In contrast, trajectory prediction often involves handling data characterized by
significant irregularities and complex spatial dynamics, such as road networks, dynamic
vehicle positions, and obstacles. These challenges underscore the need for adapting or de-
veloping new neural network architectures better suited to the intricacies of trajectory data.

Graph neural networks (GNNs) offer a compelling solution for trajectory prediction
by incorporating graph theoretical principles to adeptly handle data characterized by
non-regular structures and dynamic interactions. The foundational strength of GNNs [14]
lies in their ability to conceptualize data as a graphical structure, with nodes representing
individual entities such as vehicles or pedestrians, and edges indicating the relationships
or interactions between these entities. By facilitating information transfer between nodes,
GNNs effectively capture complex patterns of inter-entity interactions, enabling the net-
work to uncover deep, underlying dependencies within the data. This capability makes
GNNs particularly suited to the multifaceted nature of trajectory prediction tasks.

To address the challenges posed by irregular graph data, the academic community has
introduced various innovative approaches and frameworks to enhance the performance
and adaptability of GNNs. Notably, Patchy-san [26] proposed a graph normalization
technique that enables neighborhoods of varying sizes to be mapped into a fixed-size
convolutional layer, facilitating effective information aggregation. Additionally, the Graph-
SAGE [27] framework leverages neighborhood sampling, employing pooling or LSTM
mechanisms to aggregate these samples, thus allowing for efficient integration of vertex
features. Graph convolutional networks (GCNs) excel in local information aggregation
by employing convolution operations within local neighborhoods, leveraging truncated
Chebyshev polynomial approximations to achieve this. Meanwhile, message-passing
neural networks (MPNNs) [28] provide a comprehensive framework for graph-based
architectures, highlighting the importance of message-passing mechanisms in summariz-
ing and integrating features across various graph network models. These advancements
significantly improve GNNs’ ability to manage and interpret complex and irregularly
structured data.
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While scholars have developed a range of solutions for GCNs to handle irregular
graph data, significant challenges remain in applying these techniques to dynamic graphs,
such as those used in trajectory prediction. Dynamic graphs are characterized by temporal
changes in their structure or attributes, including the addition or removal of nodes, the
formation or dissolution of edges, and the updating of node or edge attributes. This
dynamic nature complicates the direct application of traditional GCN methods, which
generally assume a static graph structure throughout training. When changes occur in the
graph’s structure or attributes, it necessitates the recalculation of the convolution operation
for the entire graph, substantially increasing the computational cost. Moreover, efficiently
integrating newly emerged nodes and edges into the dynamic graph poses additional
challenges, as traditional GCN methods may struggle to effectively manage such updates.
Consequently, effectively adapting to dynamic changes in graph structures and capturing
complex interactions within the environment represent significant hurdles in processing
large-scale dynamic graph data with GNNs.

2.3. Summary of Trajectory Prediction Problems Based on Graph Neural Networks

In the field of trajectory prediction, although significant strides have been made with
the introduction of RNNs, GNNs, and attention mechanisms to address vehicle trajectory
prediction, certain issues remain either overlooked or unresolved.

(1) Optimization of graph connectivity: Traditional methods often employ fully con-
nected graphs for vehicle trajectory prediction, ensuring that all nodes are engaged in
the graph convolution process. However, this approach does not reflect the reality
where many nodes might not significantly influence the target trajectory. For instance,
within the Argoverse dataset [29], numerous nodes do not contribute directly to tra-
jectory generation, such as lane line nodes that are distant from the predicted vehicle,
which have minimal impact on the prediction outcomes. As illustrated in Figure 1, out
of 11 nodes in the graph, only 7 are related to trajectories. Utilizing a fully connected
graph that includes all 11 nodes undeniably adds to the complexity and computational
time of the algorithm. Even when only considering the seven trajectory-related nodes,
those that are distant from the predicted vehicle still have limited influence on the
prediction results. Thus, a more precise screening of nodes that significantly impact
prediction outcomes is crucial to optimizing both the performance and efficiency of
the algorithm.

Figure 1. Map of selected map scenes and vehicle locations in the Argoverse dataset.
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(2) Enhanced focus on edges: Traditionally, research has predominantly focused on
nodes, with edges primarily viewed as mere connectors and tools for representing
neighborhood relationships during graph convolution. This perspective overlooks
the significant role that edges play within the graph. Edges do more than connect
nodes [30]; they also serve as conduits for storing and transferring information, play-
ing a crucial role in facilitating communication between nodes. Therefore, fully
leveraging the function of edges in graph convolution processes is critical for en-
hancing the performance and accuracy of algorithms and represents a novel research
direction in this paper.

(3) Refined edge construction: In the realm of edge construction, the traditional graph
attention network (GAT) approach typically calculates edge weights based on the dis-
tance between nodes. This method, however, fails to accurately represent the weight
relationships between vehicles in specific scenarios. For instance, at intersections, the
relevance of one vehicle to another depends not only on their distance but also on
their relative angles and other factors. Relying solely on distance for determining
edge weights can lead to reduced accuracy and robustness of the prediction model.
This paper advocates for a more nuanced approach that considers multiple factors
in edge construction to better capture the complex dynamics of vehicle interactions,
particularly in challenging environments like intersections.

To address the aforementioned challenges, this paper introduces a dynamic vehicle
trajectory prediction model based on adaptive edge generation. This approach mitigates
the issues associated with the large computational demand and high complexity of fully
connected graphs by implementing varied connection schemes for nodes with different
attributes. This method allows for a more efficient and targeted processing of graph
data, significantly enhancing the performance and accuracy of trajectory prediction while
reducing computational overhead.

3. Trajectory Prediction Based on Adaptive Edge Generation

The dynamic vehicle trajectory prediction method based on adaptive edge generation
constructs a new graph structure by generating first-order subgraphs of predicted vehicles
to other nodes by adopting two different edge connection strategies for static nodes and
dynamic nodes to form adaptively connected edges, which can more fully consider the
positional relationships between vehicles, improve the model’s comprehension of scenarios
such as intersections, and reduce the computational complexity of the heterogeneous graph
structure between predicted vehicles and lane lines.

3.1. Overall Workflow

The prediction of future trajectories of vehicles based on graph neural networks is
achieved by first vectorizing the traffic map and the time-series trajectory coordinates of
vehicles in a given high-resolution map scenario, where the historical trajectories of the
vehicles and the high-resolution maps are known.

In the vectorized scenario, any time point is defined as the map

G = {γ, ε} (1)

where γ denotes a point and ε denotes an undirected edge. We address the heterogeneous
nature of graphs in vehicle trajectory prediction, where the semantic information contained
in the edges between vehicles, and between vehicles and lane lines, differs significantly. The
paper introduces a method to first differentiate the static parts of the graph into dynamic
nodes and static nodes, utilizing different edge connection schemes based on their attributes.
The overarching architecture of our approach is depicted in Figure 2 and encompasses
three primary modules: the vectorization module, the encoder module, and the decoder
module, described as follows:
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(1) Vectorization module: This module is responsible for the vectorization of vehicle
trajectory and map information, transforming these elements into a format suitable
for further processing and analysis.

(2) Encoder module: Here, the adaptive edge generator strategy is introduced. For
dynamic nodes, this involves calculating the relative positions between the vehicle
(node) to be predicted and other vehicles (nodes), assigning weights based on these
relative positions through an attention mechanism, and connecting dynamic nodes
based on these weight values. For static nodes, a connection strategy that limits the
length between vehicles and static elements is implemented for edge connections.

(3) Decoder module: A multilayer perceptron (MLP) decoder is employed to achieve
accurate trajectory prediction. This module translates the encoded graph data back
into predicted vehicle trajectories, ensuring precision and reliability in the output.

Trajectories

Map

Static node edge 

generation

Static node edge 

generation

Dynamic node edge 

generation

T-2 T-1 T

Vectorized SceneVectorized Scene

Encoder:edge 

generation

GRUdecoder

Or

MLPdecoder

PredictionsPredictions

Trajectories

Map

Static node edge 

generation

Dynamic node edge 

generation

T-2 T-1 T

Vectorized Scene

Encoder:edge 

generation

GRUdecoder

Or

MLPdecoder

Predictions

Figure 2. General block diagram of adaptive edge generator; dynamic nodes include dynamic
information such as vehicles, and static nodes include static information such as lane lines; these
generate edges and weights through different rules.

The innovation of this paper lies in the adaptive edge generator (shown in Figure 3)
within the encoder module, which categorizes nodes into dynamic and static types, adopt-
ing tailored edge connection strategies for each. The input includes the vehicle’s movement
direction, calculated from the previous and current time steps, along with the vehicle’s
coordinates. Additionally, the hidden layer processes the relative angles between vehi-
cles and the hidden information from the previous layer. The hidden layer distinguishes
between dynamic and static nodes, determines how to connect the nodes, and uses the
decoder to predict the final output. The advantages of this approach are as follows:

(1) Enhanced model flexibility and adaptability: Dynamic nodes represent the current
positions of vehicles, while static nodes correspond to fixed road sections or landmarks.
By distinguishing between these node types, the model can more efficiently handle
rapidly changing road conditions, enhancing both the flexibility and adaptability of
the prediction model.

(2) Reduced computational complexity: Traditional reliance on fully connected graphs
can obscure meaningful inter-node relationships and increase computational demands.
By processing dynamic and static nodes separately, this approach reduces the graph’s
connection density, thereby decreasing computational complexity and enhancing both
the efficiency and scalability of the algorithm.

(3) Improved accuracy and stability: The relationships between vehicles differ from
those between vehicles and road markers, such as lane lines, introducing a level of
heterogeneity that complicates graph convolution computations. By implementing
different connection strategies and dynamically adjusting based on node type and
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semantic information, the model can more accurately capture the associations between
vehicle trajectories, thus improving the accuracy and stability of predictions.

t

Hiden- layer

t+1

Input

Output

Input

Output

Input

Hiden- layer

Forecast vehicle Other vehicles

Figure 3. The input includes the vehicle’s movement direction, calculated from the previous and
current time steps, along with the coordinates of the vehicle and other objects. Additionally, the
hidden layer processes the relative angles between vehicles and the hidden information from the
previous layer. The hidden layer decides how to connect the nodes and uses the decoder to predict
the final output.

3.2. Scene Construction

Vectorized traffic scene construction usually focuses on the absolute position of ve-
hicles or lane lines in the scene, and does not consider the relative positions of predicted
vehicles and other vehicles, which can better measure the relative motion relationship be-
tween vehicles and is crucial for real-time scene sensing and dynamic traffic management.
To address this issue, this paper introduces the relative angle factor between vehicles in
order to better model the spatial attributes of predicted vehicles in a dynamic traffic scene,
as shown in Figure 4. The details are as follows:

In the trajectory prediction of a vehicle, the positional feature information of vehicle i

at time t is firstly expressed as
{

pt
i − pt−1

i

}T
, where pt

i is the feature information of vehicle
i and T is the history time of the vehicle. For the lane line ξ, its geometric attributes are
given by p1

ξ − p0
ξ , where p1

ξ and p0
ξ are the end and start coordinates of ξ, respectively. The

relative position information of vehicle i and vehicle j at time t is defined as pt
i − pt

j , and the
relative position information includes the relative angle factor, distance, speed relationship,
and other information between the two vehicles.

In order to represent the relative spatial relationship between vehicle i and vehicle j,
as shown in Figure 4, the relative angle factor between the two vehicles is defined as θt

ij. In
this paper, the east direction is defined as the positive direction of the x-axis, and θt

i , θt
j is

the direction information of the vehicle, at time t, then the relative angle between the two
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vehicles at time t is defined as θt
ij =

∣∣∣θt
i − θt

j

∣∣∣(θt
ij ∈ (−π

2 , π
2 )). According to Equation (2), the

relative angle value can be calculated.

θt
ij = arctan(

xt − xt−2

yt − yt−2 ) (2)

As can be seen from Equation (2), θt
ij describes the spatial relationship and the relative

position of two vehicles, which can be used to model the spatial attributes between the
predicted vehicles and other vehicles in a dynamic traffic scenario. In the subsequent
dynamic node edge generation module, the relative angle factor is used to calculate the
attentional weights between the vehicles and realize the edge connections of the dynamic
nodes based on the weight values.

Figure 4. Vehicle scenario construction diagram for some cases.

3.3. Adaptive Edge Generator
3.3.1. Dynamic Node Edge Generation Based on Relative Angles

Dynamic nodes usually refer to mobile objects such as vehicles moving on the road. For
vehicle trajectory prediction, the positions and speeds of dynamic nodes change over time,
and their dynamics and changing trends need to be considered in trajectory prediction, so
the edge connection scheme for dynamic nodes needs to consider their node characteristics.

GAT is a commonly used graph neural network model that is widely used for trajectory
prediction tasks. GAT can learn the dynamic relationships between nodes (e.g., vehicles or
pedestrians) in a traffic network and predict the motion trajectories [31]. In the GAT model,
nodes denote traffic vehicles and edges denote interactions between nodes. Through a
multilayer attention mechanism, GAT can dynamically learn the importance between each
node and its neighboring nodes in the graph and perform information aggregation and
trajectory prediction accordingly [32]. The learning formula is as follows:

eij = ϕrel(W pt
i , W pt

j) (3)

aij = so f tmax(eij) =
exp(eij)

∑k∈Ni
exp(eik)

(4)

In Equations (3) and (4), W is the learnable matrix, ϕrel is the activation function, which
is generally a two-layer multilayer perceptron in a graph neural network, after calculating
the weights of the edges, the operation of normalization is carried out and its required
attention is calculated according to Equation (5), and the overall formula is as follows:

aij = so f tmax(
FQ

t−1(FK
t−1)

T

√
dk

)FV
t−1 (5)
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FQ
t−1, FK

t−1, FV
t−1 is a linear transformation of the pt−1

i feature at the previous moment.
It can be seen that Equation (5) focuses on the influence of distance dk on the attention
coefficient, while in the actual traffic scene, distance is not the only key factor. And under
the GAT formula, every point is involved in the calculation of the graph, which leads to
problems such as distraction of attention and increase in calculation cost.

In this paper, we address this problem by introducing the relative position factor
on the basis of the above GAT equation. The relative position information between
vehicles is integrated into the calculation process of the attention weight according to
Equations (6) and (7), and the angular relationship between the dynamic vehicles is added
into the model as a characteristic factor. The specific formulas are as follows:

Zt
i = ϕrel [(pt

i − pt−1
i ), ai] (6)

Zt
ij = ϕrel [(pt

i − pt−1
i ), (pt

j − pt−1
j ), ai] (7)

where ϕrel is the activation function, which is generally a two-layer multilayer perceptron
in a graph neural network, then the three values of Q, K, and V in attention are

FQ
i = WQzt

i FK
ij = WKzt

ij FV
ij = WVzt

ij

where WQ, WK, and WVare learnable matrices, according to Equation (8). The weights of
the edges are

at
ij = so f tmax[

FQ
i (FK

ij )
T

√
dk

+ A(FQ
i , FK

ij )]F
V
ij (8)

where A(FQ
i , FK

ij ) is the angular characterization as defined in Equation (9):

A(FQ
i , FK

ij ) = FQ
i · (FK

ij )
T · | sin θt

ij| · Wθ (9)

where Wθ is the learnable matrix, sin θt
ij is the role of the relative angle factor, according

to the understanding of the remote interaction between vehicles; when the relative angle
between the two vehicles is smaller (such as 0—the vehicles are parallel at this time), the
attention required at this time is smaller; while when the relative angle factor between the
two vehicles is larger (such as π

2 ), the attention required is larger.
The original Transformer model is optimized and improved by introducing the angle

characteristics between vehicles. In the original model, the attention mechanism only relies
on the variable of distance, which makes it difficult to pay full attention to the intersection
state of vehicles. The introduction of the relative angle factor enables the model to more
fully consider the positional relationship between vehicles, and the weight of the edges is
thus improved, which in turn improves the model’s understanding of scenarios such as
intersections as a way to increase the accuracy and robustness of trajectory prediction.

As shown in Figure 5, three vehicles can be observed from the figure, green vehicle
A, blue vehicle B, and orange vehicle C. Vehicle A is closer to vehicle B. According to the
traditional attention mechanism, when calculating the attentional weights of the edges of
vehicle B that needs to be predicted, the weights of vehicle A and vehicle B will be heavier
than those of vehicle B and vehicle C. Vehicle A is closer to vehicle B than vehicle B is to
vehicle C. Vehicle A is closer to vehicle B than vehicle B and vehicle B. However, in real
traffic scenarios, vehicle B needs to pay more attention to the trajectory of vehicle C to
avoid possible collisions and adjust its position to obtain a reasonable turning path. The
figure shows that the angle between vehicle A and vehicle B is approximately θ1 = π

4 ,

and |sin θ1| =
√

2
2 , the angle between vehicle B and vehicle C is approximately θ2 = π

2 ,
|sin θ2| = 1. By calculating the angle of vehicle B with vehicle C and vehicle A and adding
it to the attention mechanism, their attention weights can be adjusted and the attention
between vehicle b and vehicle C is increased by a moderate amount.
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A

A

B

C

 1
 2

Figure 5. Schematic of dynamic edge generation for specific scenarios.

After calculating the weights of the edges at
ij, a first-order subgraph centered on the

vehicles to be predicted is generated according to Equations (10)–(12) as follows:

mt
i = ∑

j∈Ni

at
ij · Ft

i (10)

gt
i = sigmoid(Wgate[Zt

i , mt
i ]) (11)

Z̃t
i = gt

i ⊙ Wsel f Zt
i + (1 − gt

i )⊙ mt
i (12)

where Ni is the set of neighbors of the predicted vehicles, Wgate, Wsel f is a learnable matrix
that fuses the weight features mt

i between the vehicles and their own features Zt
i through

a sigmoid activation function, and finally, connects the edges through a selection gate
function [33], and the output is Z̃t

i . The graph generated after filtering through the gate
function is a first-order adjacency graph centered on the predicted target. With the gate
function, the number of edges can be controlled and the rationality of the generated edges
can be increased.

Graph neural networks suffer from state-space explosion when dealing with large-
scale data. This is because graph convolutional computation in graph neural network
graphs is achieved by nodes aggregating information from the domain as a means of
updating their own nodes, and a linear increase in the number of nodes and edges in the
graph may lead to an exponential increase in computation. The dynamic edge generation
module limits the number of edges generated by updating the physical state of the vehicle
(e.g., speed, relative angle, etc.) and filters the number of edges that need to be generated
by applying a gate function to compute the weight of the edges in order to compute the
dynamic part of an object such as a vehicle. If the number of connected edges is reduced,
the number of updates is greatly reduced and the amount of floating point operations and
training time required is correspondingly reduced, thus reducing the state-space explosion
problem. In the subsequent experimental section, the floating point operations and testing
times before and after applying the method are compared. Also, a comparison graph
comparing the number of updated nodes and total points is given.

3.3.2. Static Node Edge Generation Based on Length Thresholding

In traffic scenarios, static nodes are objects or locations with a fixed position in space,
which are objects or locations that do not move, such as road junctions, buildings, and
traffic signs. Unlike dynamic nodes, the positions of static nodes do not change over time,
so their motion characteristics usually do not need to be considered in trajectory prediction
or other related tasks. In static nodes, local map information, such as the position and
direction of lane lines, has a greater impact on the future trajectory of the vehicle; i.e., local
map information can represent the future intention of the vehicle. According to the above
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characteristics, in the edge generation of static nodes, the distance between the static node
and the predicted object is an important factor for the vehicle trajectory prediction, and
the length threshold is adopted as the strategy for the edge generation of the static node;
i.e., the maximum length of the connected edges between the vehicle and the lane lines is
measured to decide whether to connect the edges between the vehicle and the lane lines or
not. The specific steps are as follows:

First, the relative position information between the vehicle and the map lane lines is
calculated, as shown in Equation (13):

ziξ = ϕlane[(p1
ξ − p0

ξ), (p0
ξ − pT

i ), aξ ] (13)

ϕlane is the MLP encoder of the lane segment, (p1
ξ − p0

ξ), (p0
ξ − pT

i ), and aξ are the
start position, end position, and feature vector of the lane segment ξ, respectively. The
spatio-temporal features of the predicted vehicles are used as query inputs [34] and the
MLP-encoded lane segment features are used as key/value inputs, and the weights between
the vehicles and lane lines are calculated.

Next, a hyperparameter threshold L is used to measure the maximum length of the
connecting edges between the vehicle and the lane line; l indicates the length between the
vehicle and the lane line. When l < L, the weight bij between the vehicle and the lane line
is computed by softmax, and the edges of the nodes of the vehicle and the lane line are
generated based on the weight bij between the vehicle and the lane line, and the first-order
subgraph centered on the predicted vehicle is built.

Compared with the traditional GAT, this static edge generation strategy determines
the edge connection relationship between vehicles and lane lines by setting a certain length
threshold. This static edge connection strategy based on a length threshold has obvious
advantages in computational efficiency. In addition, the use of hyperparameters can
flexibly control the distance of the connecting edges between vehicles and lane lines, thus
controlling the number and distance of the generated static edges, which further optimizes
the performance of the prediction model.

3.4. MLP Decoder and Loss Function

In this paper, a two-layer MLP is used as a tool for decoding. The MLP receives as
input the representation of the edge generator and outputs the position ht

i of the vehicle
in the local coordinate frame that needs to be predicted for each future time step and its
associated uncertainty ct

i .
In the subsequent experimental sections, the experimental results of the commonly

used GRU decoder [35], MLP decoder [36], and LSTM decoder [37] are compared to verify
the performance of the MLP decoder.

Diversity loss was used to promote diversity in trajectory predictions, and the training
process was optimized only on the best prediction in each prediction. Prior to optimization,
the error between the model-predicted mixture component and the ground truth position
was first calculated for each predicted vehicle at each time step. Subsequently, the errors for
all time steps were summed to form a matrix of dimension [F; N]. Based on this matrix, the
trajectory with the smallest error in each predicted vehicle was selected, i.e., the minimum
value of each column in the error matrix was found. The final loss function consists of a
regression loss Lreg and an equally weighted classification loss Lcls:

L = Lreg + Lcls (14)

In practice, the optimal balance between these terms may vary depending on the
specific task or dataset. Different scaling of the two terms could affect model performance.

Overweighting the regression loss might improve the trajectory prediction but reduce
the model’s ability to promote diverse trajectory predictions. Overweighting the classifica-
tion loss could encourage more diverse trajectories but might compromise the accuracy of
the predicted positions. The equal weighting is empirically optimal [38].
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A negative log-likelihood [39] was used as the regression loss:

Lreg = − 1
NH

N

∑
i=1

T+H

∑
t=T+1

log P((pt
i − pT

i )|ût
i , b̂t

i ) (15)

P(·|·) in Equation (15) is the probability density function of the Laplace distribution,
ut

i and bt
i are the location and uncertainty of the best predicted trajectory of vehicle i. We

optimize the mixing coefficients using the cross-entropy loss as the classification loss.

4. Experimental Results and Analysis

In order to verify the accuracy and lightness of this design in vehicle trajectory predic-
tion, experiments are conducted on the Argoverse dataset, and the ablation experiments
analyze the impact on model performance of different modules, and the experimental
results prove the effectiveness of the method in this paper. In the comparison experiments,
our method outperforms some current mainstream algorithms in terms of comprehensive
performance. Finally, the corresponding visualization analysis is carried out to show the
experimental results more intuitively.

4.1. Datasets and Evaluation Indicators

The Argoverse motion prediction dataset provides detailed trajectory data and high-
definition map information for vehicles. The dataset comprises 323,557 real-world driving
scenarios, which are divided into training (205,942 samples), validation (39,472 samples),
and test (78,143 samples) sets.

The trajectory data in the Argoverse dataset mainly include the x- and y-coordinates of
vehicles, which are sampled at 0.1 s intervals. The dataset also contains high-precision map
information that provides details about roads, lane boundaries, stop signs, traffic signals,
and other related features. All training and validation scenarios consist of 5 s sequences
sampled at 10 Hz, which corresponds to 50 time steps per scenario. For the test set, only
the first 2 s (i.e., 20 time steps) of the trajectory data are publicly available, and the task
requires predicting the vehicle’s motion for the subsequent 3 s (i.e., 30 time steps). This
setup mimics real-world applications, where only partial observations are available and
the goal is to predict future trajectories.

To ensure the quality and accuracy of the data used in our experiments, the dataset
applied rigorous filtering methods to remove missing or noisy data points. For instances
with minor missing values, linear interpolation was used to maintain the continuity of
the trajectory. This cleaning process ensured that only the most relevant and challenging
driving scenarios were included, providing a robust testing ground for motion predic-
tion algorithms.

Performance metrics for motion prediction typically include minimum average dis-
placement error (MinADE), minimum final displacement error (MinFDE), and missing rate
(MR), which allow the model to make six predictions for each trajectory. MinADE is the
average distance (in meters) between the best predicted trajectory and the ground truth
trajectory for all future time steps; MinFDE is the future error for the final time step, the
best predicted trajectory is defined as the trajectory with the smallest endpoint error; and
MR is the ratio of scenarios in which the distance between the ground truth endpoint and
the best predicted endpoint is greater than 2 m.

Let there be a predicted trajectory P and a true trajectory F, where a trajectory is a
series of positional points in a time series. For each time step t, the predicted location is
Pt = (ptx, pty); ptx represents the predicted x -coordinate of the vehicle’s position at time
step t, and pty represents the predicted y-coordinate of the vehicle’s position at time step
t. The true location is Ft = ( ftx, fty); ftx represents the true x-coordinate of the vehicle’s
position at time step t, and fty represents the true y-coordinate of the vehicle’s position at
time step t. N represents the total number of time steps used in the trajectory prediction;
the average displacement error (ADE) is defined as
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ADE =
1
N ∑N

t=1

√
(ptx − ftx)

2 + (pty − fty)
2 (16)

the final displacement error (FDE) is defined as

FDE =
√
(ptx − ftx)

2 + (pty − fty)
2 (17)

MR is the missing rate, which is a measure of the number of true targets that the model
fails to correctly predict or detect as a proportion of the total number of true targets, and is
defined as follows:

MR =
Number of real targets not detected

Total number of real targets
(18)

4.2. Experimental Environment and Hyperparameter Settings

In this paper, we use the AdamW optimizer to train on RTX 4070 super GPUs and
the VectorNet encoder for data preprocessing. The experimental environment is shown in
Table 1.

Table 1. Experimental environment.

Configuration Parameter

Operating System Linux
CPU Intel i5-13600KF
Memory 32 G
GPU NVIDIA RTX4070 super
Software Platform Python 3.10, PyTorch 2.2.0, CUDA 12.1

The learning rate determines the step size for parameter updates. A higher learning
rate can lead to unstable training, where parameters oscillate around the optimal value and
fail to converge. In most deep learning tasks, especially for trajectory prediction involving
complex multi-modal data, a small learning rate (3× 10−4) tends to work well. Both weight
decay and dropout rate serve as regularization techniques to prevent overfitting. A dropout
rate of 0.2 and weight decay of 1 × 10−4 is a reasonable balance, constraining the model
enough to avoid overfitting while still allowing it to adapt to complex patterns in the
data. The use of 64 epochs and a batch size of 32 in deep learning models is not arbitrary
but has been validated in a wide range of experiments across various domains, including
trajectory prediction.

The choice of a two-layer edge generator and one-layer decoder suggests that the
model designers aimed to keep the model architecture simple while ensuring it effectively
captures both local and global interactions in trajectory prediction. Fewer layers reduce
computational complexity and increase model efficiency, while having enough layers
ensures the model can still capture complex interaction patterns. This setup is a compromise
between computational cost and model complexity. The radius of the region at the number
of static node connections L = 20 m. The parameters are set as shown in Table 2.

Table 2. Experimental parameterization.

Parameter Setting Parameter

Epoch 64
Batch size 32
Initial learning rate 3 × 10−4

Weight decay 1 × 10−4

Dropout rate 0.2
L 20 m
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4.3. Ablation Experiment

In this study, ablation experiments are conducted on the Argoverse motion prediction
dataset to assess the contribution of each module to the overall prediction performance.
By systematically removing one component at a time—specifically the dynamic edge
generation module, the static edge generation module, and the map information—we
evaluate the effectiveness of each part. Each ablation configuration is trained and tested
three times to ensure stability and reliability in the results. The mean and standard deviation
of each performance metric (ADE, FDE, and MR) are presented in Table 3 to reflect the
consistency of the outcomes.

Table 3. Ablation experiment.

Dynamic Edge
Generation Module

Static Edge
Generation Module

Map
Information ADE (mean ± std) FDE (mean ± std) MR (mean ± std)

√ √
0.902 ± 0.015 1.574 ± 0.022 0.138 ± 0.005√ √
0.681 ± 0.012 1.039 ± 0.018 0.102 ± 0.004√ √
0.73 ± 0.010 1.16 ± 0.020 0.122 ± 0.003√ √ √
0.663 ± 0.009 0.973 ± 0.013 0.094 ± 0.002

As can be seen from Table 3, each module improves performance to some extent. After
removing the dynamic edge generation module, the structure of the model is basically
similar to that of VectorNet, and therefore, has the lowest accuracy. After removing the static
edge generation module, the model performance remains basically unchanged because the
principle of static edge generation is similar to that of GAT, except that a range threshold
is added as a way to reduce the complexity of the update ratio In addition, the map
information is crucial in motion prediction, and the accuracy decreases significantly after
removing the map information.

In this paper, an experiment is also performed to compute the number of floating
point numbers as well as the computation time to verify the effect of the adaptive edge
generation module of this paper on the model’s floating point computation volume and
test time, as shown in Table 4.

Table 4. Floating point computation volume and test time.

Dynamic Edge
Generation Module Floating Point Capacity Time Required for

Individual Scenario Testing
GPU
Memory

√
0.7 M 0.04 s 5.2 G
2.6 M 0.08 s 8.4 G

As can be seen from Table 4, the experimental data show that there is a significant
reduction in the floating point computation of the model after the introduction of the
dynamic edge generation mechanism. Further, in the comparison experiments for the
testing time of individual scenarios, the method proposed in this paper also shows some
advantages compared to the traditional fully connected graph method.

In addition, this paper provides an in-depth analysis of the impact of the edge gen-
eration mechanism on the node update strategy in graph neural networks (GNNs), due
to the core mechanism of GNNs aggregating neighborhood information to update node
states through graph convolution operations, and the inherent characteristics of scene
independence and randomness in dynamic scenes, e.g., generation also exhibits significant
randomness and dynamics characteristics. Therefore, by counting the ratio of the number
of updated nodes to the total number of nodes in a single scene, it is possible to intuitively
quantify the number of edges generated under each scene, as shown in Figure 1, from
which it can be seen that, compared to the inherent pattern that all nodes participate in
updating (i.e., the number of updated nodes equals the number of summarized points)
under the traditional fully connected graph architecture, this paper’s experiments have
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been exhaustively analyzed for 2242 independent dynamic scenes. The results show that
the average number of total nodes in these scenarios is 55.21, while the average number
of update nodes is only 28.07, which is much lower than the update ratio in the fully
connected graph. This illustrates the effectiveness of the dynamic edge generation mecha-
nism in this paper in reducing unnecessary node updates and optimizing the allocation of
computational resources, and shows the advantages and efficiency enhancement of this
paper’s method in coping with complex dynamic graph processing tasks.

In order to deeply analyze the node update characteristics of each independent sce-
nario, we adopted a sampling analysis method, randomly selected 40 sample scenarios to
explore, and compared the number of summary points with the number of updated nodes,
as shown in Figure 6.

In the bar chart presented in Figure 6, the blue bar represents the number of summary
points in a single scene, while the red bar corresponds to the number of nodes actually
updated in that scene. The comparative analysis shows that the number of updated nodes
is generally significantly lower than the total number of summary points in different
dynamic scenarios.
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Figure 6. The number of total nodes compared with the number of updated nodes.

4.4. Decoder Module Comparison

Since vehicle trajectory prediction is characterized by complex tasks, a large amount of
data, and high real-time requirements, this paper compares and analyzes the performance
of the MLP decoder and the GRU decoder in terms of the number of parameters and
accuracy, and the results are shown in Table 5.

Table 5. Comparison of MLP, GRU, and LSRTM decoders’ performance.

ADE FDE Param.

MLP Decoder 0.668 0.986 2360 K
GRU Decoder 0.663 0.973 3156 K
LSTM Decoder 0.665 0.965 4820 K

From Table 5, it can be seen that the GRU and LSTM decoders need more resources
to calculate the gate states in terms of the number of parameters. In this paper, the test
is carried out on the 4070 super platform; using the ordinary MLP decoder, the video
memory used is about 5.2 G, and the epoch time is about 40 min; if the GRU decoder is
used, the video memory used is about 8 G, and the epoch time is about 50 min; meanwhile,
if the LSTM decoder is used, the video memory used is about 10 G, and the epoch time
is about 60 min. The latter two encoders do not show stronger performance compared to
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the ordinary MLP decoder while increasing the parameters and running cost. Therefore,
this paper finally adopts the MLP encoder with relatively faster decoding speed and lower
number of parameters.

4.5. Baseline Models

In this section, we provide detailed descriptions of the baseline models used for
comparison on the Argoverse dataset, as shown in Table 6. These models represent state-
of-the-art approaches to motion prediction tasks, each with different architectures and
parameter complexities.

Table 6. Comparison with models on other Argoverse datasets.

Model ADE FDE MR Param.

VectorNet (baseline) 0.9260 1.8623 0.2736 12,651 K
Scene Transformer 0.8026 1.2321 0.1255 15,296 K
LaneGCN 0.8679 1.3640 0.1634 3710 K
DenseTNT 0.8817 1.2815 0.1258 1130 K
Ours 0.6681 0.9864 0.0952 2360 K

4.5.1. VectorNet [13] (Baseline)

VectorNet is a graph-based motion prediction model designed for autonomous driving
tasks. It represents each object’s trajectory as a series of vectorized points and uses a
hierarchical graph neural network (GNN) to capture both local interactions between objects
and global scene information. The model uses the form of a fully connected graph and
aggregates information from the entire scene to predict future trajectories. In this study,
VectorNet is used as a baseline, demonstrating the effectiveness of graph neural networks
in trajectory prediction tasks.

4.5.2. Scene Transformer [40]

Scene Transformer leverages a Transformer-based architecture to model interactions
between objects in a scene. By using attention mechanisms, it captures the importance of
different entities in the scene for motion prediction. Transformers have been widely adopted
in sequence modeling tasks due to their ability to capture long-range dependencies.

4.5.3. LaneGCN [23]

LaneGCN is specifically designed to capture lane-level interactions between vehicles
in driving environments. It uses a graph convolutional network (GCN) to represent the
lane structure and vehicle interactions. LaneGCN performs particularly well in scenarios
with dense traffic, as it can effectively model the lane topology and vehicle dynamics.

4.5.4. DenseTNT [41]

DenseTNT is an advanced motion prediction model that extends the TNT (Target-
Driven Trajectory Prediction) framework by incorporating dense goal candidates. This
model predicts future trajectories by first identifying potential goal points, and then,
generating feasible trajectories that lead to these goals. DenseTNT leverages both trajectory
and goal prediction tasks to enhance accuracy.

4.6. Comparison with Advanced Methods

As demonstrated in Table 6, our proposed method outperforms the baseline models,
including VectorNet, Scene Transformer, LaneGCN, and DenseTNT, across all key metrics
such as ADE, FDE, and MR.

Specifically, our method shows significant improvements across key metrics while
maintaining a much smaller model size compared to other approaches.
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VectorNet: VectorNet leverages vector representations for trajectory prediction but
struggles with accuracy over extended sequences. It achieves an average displacement error
(ADE) of 0.9260, which is considerably higher than our model’s 0.6681, indicating lower
prediction accuracy over time. In terms of miss rate (MR), VectorNet has a rate of 0.2736,
much higher than our method’s 0.0952, demonstrating our model’s robustness in reducing
missed targets. VectorNet’s parameter count is 926 K, making it significantly larger than
our model’s 2360 K, yet our method outperforms it in both accuracy and efficiency.

Scene Transformer: Scene Transformer relies on attention mechanisms to capture
long-range dependencies, excelling in modeling global interactions. However, it comes
with a large parameter count of 15,290 K, which increases computational overhead. Scene
Transformer’s ADE is 0.8026 and final displacement error (FDE) is 1.2815, both higher than
our model’s (ADE 0.6681, FDE 0.9864), indicating that our method offers better trajectory
accuracy and final position prediction. Additionally, Scene Transformer’s MR is 0.1255,
while our model’s MR is only 0.0952, showing our approach’s superior performance in
reducing missed targets while using significantly fewer parameters (2360 K).

LaneGCN: LaneGCN uses graph structures to model lane interactions effectively but
suffers from high complexity and a large parameter count of 3710 K. LaneGCN achieves
an ADE of 0.8679 and an FDE of 1.2815, both of which are higher than our method’s
performance. Moreover, LaneGCN’s MR is 0.1255, further indicating its limitations in
handling complex interactions as efficiently as our model. Our approach combines dynamic
edge generation with static edge information, resulting in higher predictive accuracy while
being more parameter-efficient.

DenseTNT: DenseTNT focuses on goal-directed trajectory prediction but sacrifices
accuracy in multi-modal scenarios due to its dense candidate sampling strategy. It records
an FDE of 1.2815, significantly higher than our model’s 0.9864. While DenseTNT per-
forms well in goal-oriented predictions, its inability to manage diverse interactions in
dynamic environments limits its overall performance. In contrast, our method handles
multi-modal interactions effectively, maintaining superior accuracy in final position predic-
tion. DenseTNT’s parameter count is 1281.5 K, which is still higher than the 2360 K used by
our method.

In summary, our model demonstrates superior performance across ADE (0.6681),
FDE (0.9864), and MR (0.0952) while keeping the parameter size minimal at 2360 K. This
efficiency makes our model well suited for dynamic, multi-modal trajectory prediction in
resource-constrained environments, outperforming other models that require significantly
more parameters.

4.7. Visualization of Results

The results of vehicle trajectory prediction on the Argoverse dataset are shown in
Figure 7. The red trajectory represents the known trajectory of the vehicle in the first
two seconds given by the dataset, which is the historical trajectory; the green trajectory
represents the real trajectory of the vehicle in the last three seconds; the blue trajectory
represents the predicted trajectory using the method of this paper; and the black trajectory
represents the predicted trajectory using the VectorNet method. The prediction of the
adaptive edge generator method can accurately predict the turning performance of the
vehicle as well as the acceleration performance of the vehicle, which are difficult to realize
in the VectorNet method. Overall, the method in this paper shows a great improvement in
the accuracy of prediction compared to VectorNet.
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Figure 7. Qualitative results of the adaptive edge generator, with past trajectories shown in red, real
trajectories in green, the method in this paper in blue, and the VectorNet method in black. Compared
with the VectorNet method, the method proposed in this paper can successfully predict the turning
and acceleration performance of complex intersections. (a) Predicted intersection turn; (b) prediction
of complex intersections; (c) predicted intersection turn; (d) prediction of acceleration.

5. Conclusions and Future Work

Vehicle trajectory prediction in dynamic traffic scenarios is challenging due to in-
adequate modeling of dynamic traffic elements and complex interactions and requiring
high computational complexity and a long training time. Traditional graph neural net-
works (GNNs) are inefficient in dealing with these complexities due to their reliance on
fully connected graphs, which cannot effectively represent the sparsity and localization of
traffic data.

In this paper, we introduce an adaptive edge generator that dynamically constructs
and optimizes connected edges between nodes in high-definition vectorized maps by fusing
map features and applying differentiated edge construction strategies to different types
of nodes. For dynamic nodes, this paper generates first-order subgraphs for nodes that
need to be predicted for edge connection. In the calculation of the weights of the connected
edges, different from the traditional Transformer module, the angle factor is added to make
the weights of the generated dynamic edges more reasonable. And through the gating
function, the number of generated edges is controlled. For static nodes, this paper adopts
the method of limiting the length of edges for edge connection. The method is realized
within the framework of a traditional graph neural network, which reduces the complexity
of the algorithm and improves the computational speed.

Tested on the Argoverse motion prediction dataset, this method shows superior per-
formance compared to existing techniques, achieving a lower average displacement error
(ADE), final displacement error (FDE), and missing rate (MR), indicating high prediction
accuracy and stability. The adaptive edge generator effectively solves the core problem
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of vehicle trajectory prediction, demonstrating its potential for practical application in
intelligent driving systems.

Future research could focus on further optimizing the interaction between dynamic
and static nodes. While the current approach utilizes relative angles to generate edges
between dynamic nodes, exploring more complex features such as rate of speed changes or
environmental factors could enhance prediction accuracy. Additionally, for static nodes,
moving beyond distance-based thresholds to incorporate more geographical features could
better capture the relationships between trajectories and the environment. Moreover,
integrating multi-modal data, including camera images, LiDAR, and radar data, can
significantly improve robustness and accuracy. This would be particularly beneficial
for autonomous driving and intelligent traffic systems, where a more comprehensive
understanding of the environment is critical for accurate vehicle trajectory predictions.
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