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Abstract: Autonomous driving has long grappled with the need for precise absolute localization,
making full autonomy elusive and raising the capital entry barriers for startups. This study delves
into the feasibility of local trajectory planning for Level-2+ (L2+) semi-autonomous vehicles without
the dependence on accurate absolute localization. Instead, emphasis is placed on estimating the
pose change between consecutive planning timesteps from motion sensors and on integrating the
relative locations of traffic objects into the local planning problem within the ego vehicle’s local
coordinate system, thereby eliminating the need for absolute localization. Without the availability
of absolute localization for correction, the measurement errors of speed and yaw rate greatly affect
the estimation accuracy of the relative pose change between timesteps. This paper proved that the
stability of the continuous planning problem under such motion sensor errors can be guaranteed
at certain defined conditions. This was achieved by formulating it as a Lyapunov-stability analysis
problem. Moreover, a simulation pipeline was developed to further validate the proposed local
planning method, which features adjustable driving environment with multiple lanes and dynamic
traffic objects to replicate real-world conditions. Simulations were conducted at two traffic scenes
with different sensor error settings for speed and yaw rate measurements. The results substantiate
the proposed framework’s functionality even under relatively inferior sensor errors distributions, i.e.,
speed error verr∼N (−0.1, 0.1) m/s and yaw rate error θ̇err∼N (0.57, 1.72) deg/s. Experiments were
also conducted to evaluate the stability limits of the planned results under abnormally larger motion
sensor errors. The results provide a good match to the previous theoretical analysis. Our findings
suggested that precise absolute localization may not be the sole path to achieving reliable trajectory
planning, eliminating the necessity for high-accuracy dual-antenna Global Positioning System (GPS)
as well as the pre-built high-fidelity (HD) maps for map-based localization.

Keywords: semi-autonomous driving; local trajectory planning; relative localization

1. Introduction
1.1. Background

Over the years, fully autonomous driving has struggled to achieve reliability and large-
scale implementation. Even today, leading representatives in autonomous driving, such
as Waymo and Cruise, face challenges navigating urban environments like San Francisco,
with their driverless vehicles occasionally clogging traffic in the middle of the road [1,2].
Despite more than a decade of industry R&D, driverless autonomous solutions appear
far from successful business applications based on current performance. Meanwhile,
autonomous driving startups are rapidly consuming investments. Uber alone reportedly
spent an annual $457 million on self-driving R&D before selling its unit to Aurora [3].
Over time, investors have become less attracted to driverless technology and increasingly
hesitant about the technology’s potential business yields in the near future. The landmark
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shutdown of the star unicorn startup Argo AI [4] and the closure of the first public self-
driving truck company Embark Technology [5] both reflect the struggles of Level-4 (L4)
startups to secure capital funding. The heightened global economic uncertainty, along with
potential recession, exacerbates this struggle. L4 providers like Waymo and TuSimple have
reportedly laid off large numbers of employees to cut operating costs [6,7].

The valuation of autonomous driving startups has plummeted drastically in recent
times. Waymo’s valuation dropped 80% from $200 billion to $30 billion in just 18 months.
TuSimple’s stock, which once peaked above $60, now stands at slightly above $1 as of
April 2023. In contrast, Tesla’s Autopilot driver assistance system, first deployed in 2014,
has been a significant feature that greatly promotes the sale of Tesla vehicles. Its so-called
Full Self-Driving (FSD) add-on package, though questionably named, directly contributed
$324 million in revenue for the fourth quarter alone in 2022 [8]. The FSD package is so
popular that 19% of Tesla owners opted in despite the price hike from an initial $5000 in
2019 to $15,000 in 2022 [9]. The debate over the autonomous driving development strategy
between Tesla and Waymo has persisted for years [10]. Tesla insisted on a progressive
evolution path with a vision-based solution that emphasizes cost reduction and mass
production application, while Waymo aimed for an all-in-one driverless solution from day
one, incorporating advanced and expensive sensors like LiDAR and relying heavily on
detailed prerequisite information, such as high-definition (HD) maps. As of now, it seems
that the Tesla approach prevails in the industry, generating continuous cash flow to back
support its own progression.

The classification of autonomous driving from levels 0 to 5, as defined by the SAE [11],
ranges from full human control (Level-0) to complete automation without any human inter-
vention (Level-5). Level-4, which is closest to full autonomy, operates within a predefined
operational design domain (ODD) and does not guarantee autonomous operation outside
these boundaries, such as beyond a geofenced area or in severe snow conditions. Currently,
production vehicles equipped with Advanced Driver Assistance Systems (ADAS) already
reach Level-2 (L2), offering partial automation features like adaptive cruise control (ACC)
and lane keeping assist (LKA) under limited driving conditions. The enhanced L2+ ADAS
further expands the operational scope of L2, enabling complex tasks like lane changes and
handling intersection scenarios in both urban and highway settings through features such
as Navigate on Autopilot (NOA).

The autonomous vehicle industry has quietly but largely shifted interest towards the
cost-efficient L2+ semi-autonomous driving solutions. Semi-autonomous driving, ranging
from L2 to L3, still requires close human supervision and timely intervention, which is
distinct from fully autonomous driving solutions operating without the need for human
intervention. OEMs are especially interested in the potential highway and urban NOA
feature [12], an L2+ feature that traditional Level-1 suppliers are unable to provide, to assist
driver navigate in complex urban scenarios. L2+ solutions do not guarantee driving safety
and demand human attention and intervention during driving. In such applications, “The
driver is still responsible for, and ultimately in control of, the car”, as Tesla stated [13].
This easing of liability and the compromise on fully self-driving realization provide L4
startups a midway transition to package their solutions into a viable product. However, this
transition is not merely a hardware downgrade and algorithm transplant. The lite version
of hardware may imply fewer available resources, such as weaker computing power, the
unavailability of sensor data, or less accurate measurement data, among others. As a result,
transplanting L4 algorithms, which are designed for data-abundant hardware platforms, to
fit L2+ applications is not as simple as it may seem [14].

1.2. Related Work

The centimeter-level accuracy of absolute localization is essential for L4 driving, which
relies on detailed lane information available in HD maps. Several mature localization tech-
niques exist in the L4 driving system to achieve this high precision. The Global Navigation
Satellite Systems (GNSS)-based method, such as dual-antenna GPS enhanced by real-time
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kinematic (RTK) systems, is the most straight-forward and widely adopted solution for L4
vehicles [15,16]. The GNSS-based method, however, suffers from performance degradation
in urban areas with satellite signal obstructions [17]. The high-precision solution such as
RTK-GPS products are also prohibitively expensive. An alternative approach is map-based
localization, wherein sensors such as LiDAR or camera continuously scan the environment
and match the collected data against a pre-built HD map to localize the vehicle with high
accuracy [18,19]. This technique gained popularity in L4 systems, as HD maps provide
rich details such as lane markings and traffic signs, thereby reducing the burden on its
perception system. However, the pre-built HD maps require continuous updates to align
with the ever-changing road environment. The lack of the map’s widespread coverage
also limits the adoption of the map localization method. The SLAM technique, originally
introduced in robotics [20], is well-suited for low-speed unstructured driving environments
like parking garages [21,22]. SLAM allows the vehicle to construct and update its own map
in real time as it moves through the environment. However, SLAM is computationally
intensive and requires substantial memory to store the constructed maps, making it less
practical for high-speed or large-scale environments [23,24]. In L4 driving, these local-
ization methods are often used in combination, leveraging the strengths of each method
through sensor fusion to achieve the necessary accuracy and robustness.

However, in cost-sensitive mass production, L2+ vehicles may not come equipped with
an expensive dual-antenna GPS or LiDAR sensor. HD maps are also not available to cover
every traffic route to work with map-based localization. Therefore, in L2+ applications,
the centimeter-level accuracy of absolute localization is not available, making it one of
the key challenges for semi-autonomous driving. Now the following question arises:
without this critical absolute localization information, is semi-autonomous driving still
technically feasible?

Consider the following case of human driving: human drivers do not necessarily need
to be aware of their absolute localization in terms of centimeter-level accuracy. Humans also
do not have the detailed lane-to-lane transition routes at an intersection beforehand, as HD
maps provide. They are more aware of the surroundings, such as the distance from other
traffic objects or whether they are in the correct lane. This analogy to human driving may
seem simplistic, but it implies that L2+ semi-autonomous driving may be feasible without
accurate absolute localization, by instead using relative localization. Relative localization
refers to the process of determining the relative position and orientation of the ego vehicle
with respect to the surrounding environment, including other vehicles, pedestrians, and
obstacles. The relative localization is typically achieved from perception system using a
combination of sensors such as cameras, radars, and possibly LiDARs, which are available
for L2+ ready vehicles.

But how does the local trajectory planning work with relative localization? During
planning, one consideration is the trajectory consistency, meaning the trajectories planned
in consecutive timesteps must maintain or approximate the spatial and temporal continuity.
This is achievable for absolute localization, since the ego vehicle localization, planned
trajectories, and traffic object movements are all under the same global coordinate system.
However, for relative localization, there is no way to accurately reflect all these information
under the global coordinate system. Few research studies have been addressed this practical
problem. To ensure the consistency of the planned trajectory, we emphasized that relative
localization with respect to surrounding traffic between adjacent timesteps must be taken
into account. The relative motion of the ego vehicle between adjacent timesteps can be
estimated by the existing odometry method, including inertial measurement unit (IMU)-
based and visual odometry methods. The IMU-based odometry integrates acceleration and
yaw rate data from the IMU sensor to estimate motion [25]. The visual odometry technique
uses images from onboard cameras to track feature points in the environment and estimate
the vehicle’s movements by analyzing the relative changes of these feature points [26]. Both
methods will inevitably introduce errors in the estimation of position and posture changes.
The inertial navigation system (INS) is based on exactly this idea to estimate absolute
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localization, but it needs periodic correction/fusion with GNSS data to avoid the build-up
of the integration errors. In the L2+ semi-autonomous driving case, there is no accurate
source to correct the estimate of absolute localization. Therefore, instead of choosing global
coordinates, trajectory planning for L2+ semi-autonomous driving was carried out under
the local vehicle coordinates. The trajectory from last timestep was projected to the local
vehicle coordinate at the current timestep to ensure planning consistency. In this way, the
localization error is limited between timesteps and will not accumulate.

Although the trajectory planning topic is not new in research fields with different
approaches based on spline[27,28], potential fields[29], a sampling method [30,31], a graph
search [32], optimization [33], and so on, few have evaluated the dynamic stability of the
continuously changing planned trajectories. Trajectory planning is usually continuously
ongoing in cycles and may be subject to change in response to perturbations, including
changes in the environment, sensor noise, execution errors from control, and model uncer-
tainties from vehicle dynamics and the environment. It is important to ensure the planned
trajectory is stable and feasible under such perturbations. Ref. [34] presented a learning-
based motion planning with stability guaranteed by designing a differential Lyapunov
function using contraction theory. In [35], a motion planning framework was designed to
maximize a marine vehicle’s stability margins against ocean disturbances. However, few
comparable analysis have been seen for trajectory planning in autonomous driving field.
Ref. [36] demonstrated the stability of the cost-based lattice controller in event of dynamic
environment change but limited to simulation without rigorous theoretical proof. Under
the context of trajectory planning without absolute localization, the drift and offset errors
from the IMU sensor could build up the estimated relative localization error and affect
the continuously planning stability. Hence, this paper specifically considers perturbations
from relative localization and proves the necessary conditions under which the trajectory
planning could maintain dynamic stability.

1.3. Present Contribution

One major contribution from this paper is the proposal of a local trajectory planning
framework that works without the availability of absolute localization, which is challenging
for L2+ semi-autonomous driving applications with limited hardware. Another contri-
bution comes from the proof and conclusion that the stability of the dynamic trajectory
planning subject to motion-sensor errors could be ensured under certain easy-to-meet
conditions. The stability of the proposed local trajectory planning framework is also further
validated under different simulation scenarios given the drifting and offset noise from the
IMU sensor. This paper could provide some insights and prove the validity for an L2+
semi-autonomous application development with limited hardware equipment.

The structure of this paper is as follows: In Section 2, the methodology of L2+ local
trajectory planning without absolute localization was introduced. This is followed by proof
and a discussion of the effects of the relative localization error on the trajectory planning
stability in Section 3. A simulation pipeline was built based on the proposed L2+ trajectory
planning framework. The effects of drifting and offset noise from the IMU sensors on the
continuous trajectory planning results were shown in simulation results and discussed
in Section 4. Based on the theoretical analysis as well as simulation results under the
measurement errors of speed and yaw rate, it is concluded that local trajectory planning
for semi-autonomous driving without absolute localization is feasible.

2. Methodology
2.1. Planning Framework

For the purpose of this study, the vehicle state x can be represented by the projection
of its position and heading in the XY plane, x ∈ R3. The trajectory planning problem for
the semi-autonomous driving vehicle is to determine its trajectory as a function of time
to avoid collisions with obstacles or intrusions into untraversable areas as determined by
traffic rules.
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Let T = [t0, t f ] represent the time interval over which the trajectory of the semi-
autonomous vehicle is to be planned, where t0 and t f denote the planning initial time
and terminal time, respectively. The vehicle position is represented as x ∈ R3, with
x0 and x f indicating the position at time t0 and t f separately. Let O denote the set
of road objects (obstacles, other road users, illegal traffic area) that are not traversable.
O(t) = {O1(t) ∪ O2(t) ∪ . . . ∪ On(t)} ⊂ R3 is the space occupied by all road objects at time
t. The vehicle trajectory can be interpreted as the continuous mapping T from T to R3 that
does not overlap with O(t). Note that the map T has to be continuous to be physically
realizable. The trajectory planning problem can be formally stated as [37]:

Find a mapping T : T → R3 with x(t0) = x0, x(t f ) = x f , such that ∀t ∈ T,
x(t)|T /∈ O(t).

During driving, the complex and dynamic-changing traffic environment demands the
planning to continuously update the trajectory. To ensure the continuity of the planned
trajectories between timesteps, the planning at the current timestep usually sets the initial
start point x0 from the last planning result. This would also have the benefit of decoupling
the planning process from the execution result of its downstream control module. The
diagram in Figure 1 shows the implementation of the trajectory planning proposed for
Level-2+ semi-autonomous driving.

Figure 1. Proposed local trajectory planning framework for Level-2+ semi-autonomous driving
without absolute localization.

As shown in Figure 1, at timestep tk, the new trajectory Tk is planned under the local
vehicle coordinate system Pk from a planning initial state given the obstacle set O(t) from
the perception results. The perception result O(t) itself is determined with respect to local
vehicle coordinate system Pk and does not need coordinate transformation. The planning
initial state xk|Tk−1 represents the planned-ahead state for time tk by the last trajectory
Tk−1. Its projection to the current local coordinate system Pk, however, requires coordinate
transformation, as follows:

PkTk =
Pk−1 Tk−1 −Pk−1 Pk (1)

≈Pk−1 Tk−1 − ∆P̂k, (2)

where ∆P̂k is the estimation for state change Pk−1 Pk. ∆P̂k could be derived from the onboard
IMU sensor and/or wheel-speed sensors:
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∆P̂k =

∆x̂
∆ŷ
∆θ̂

 =



tk∫∫
tk−1

(
ax cos ∆θ̂ − ay sin ∆θ̂

)
dt2

tk∫∫
tk−1

(
ax sin ∆θ̂ + ay cos ∆θ̂

)
dt2

tk∫
tk−1

θ̇dt


, (3)

or more simply

∆P̂k =

∆x̂
∆ŷ
∆θ̂

 =



tk∫
tk−1

v cos ∆θ̂dt

tk∫
tk−1

v sin ∆θ̂dt

tk∫
tk−1

θ̇dt


, (4)

where v is the deduced speed from the wheel-speed sensors and the vehicle lateral speed
is ignored.

Compared with Level-4 planning, because of the unavailability of absolute localization
information, the proposed planning for Level-2+ semi-autonomous driving is carried out
under the local vehicle coordinate system, which makes the relative state change estimation
and coordinate transformation process necessary to associate the planning result from last
timestep to the current timestep.

2.2. Validation Pipeline

In this work, a validation pipeline is developed to further validate the proposed
local trajectory planning methodology without absolute localization in the simulation
(the code for this work is available at https://github.com/codezs09/l2_frenet_planner.git,
accessed on 22 September 2024).

The local trajectory planning method used in the validation pipeline is based on the
sampling-based approach proposed by Werling et al. in [38], as shown in Figure 2. The
main idea is to generate a series of quintic polynomials in the lateral and longitudinal
directions, respectively, under the Frenet coordinate system, and are then combined to form
a pool of candidate trajectories. The “best” collision-free trajectory is then selected from
this pool from a defined cost function which considers driving comfort and safety with
respect to road objects. In detail, this process can be broken down into four key steps:

1. Generation of Candidate Trajectories in the Frenet Frame: Quintic polynomials are
generated for both the lateral and longitudinal motion in the Frenet coordinate system.
The Frenet frame represents the vehicle’s motion along the curvilinear road geometry,
where the lateral and longitudinal dimensions are decoupled. These polynomials
capture various driving behaviors, such as maintaining velocity, following, merging,
or stopping. The polynomials are then combined to form a set of candidate trajectories,
which are transformed into the Cartesian frame for further analysis.

2. Object Representation and Prediction: Traffic objects, such as other vehicles, are also
represented in the Frenet frame per lane. This simplifies the prediction of their future
movements, as road geometry is straightened in this frame. For instance, models like
the Intelligent Driver Model (IDM) can be applied to predict object motion, which is
then converted back into the Cartesian frame.

3. Feasibility and Collision Checks: The generated candidate trajectories are subjected
to the two following checks: (1) dynamic feasibility, ensuring that the trajectories are
physically realizable by the ego vehicle, and (2) collision checks in the Cartesian frame,
where box-based safety checks are performed, considering the shapes and predicted
positions of both the ego vehicle and surrounding objects.

https://github.com/codezs09/l2_frenet_planner.git
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4. Cost Evaluation and Optimal Trajectory Selection: The remaining feasible trajectories
are evaluated using a cost function. This function accounts for factors such as collision
risk, efficiency, driving comfort, and deviation from the centerline. The trajectory with
the lowest cost is selected as the final, optimal path for the vehicle to follow.

Figure 2. The sampling-based local trajectory planning method under the Frenet frame [38] used in
the validation pipeline.

The trajectory pool is generated within the Frenet frame for each lane, providing
the vehicle with the flexibility to select the most suitable trajectory from among different
lanes. This approach proves advantageous in dynamic scenarios involving unexpected
road obstacles, as it allows the vehicle to switch to feasible trajectories in alternative lanes
if those in the current lane prove suboptimal or unviable [28,38]. Additionally, a cost
associated with lane changes is incorporated into the evaluation to penalize frequent lane
switching, thereby promoting stability and safety in the vehicle’s navigation strategy.

To simplify the validation pipeline, the control module is not included, and hence
the tracking errors are not included in the discussion. As previously noted, the proposed
local planning method is decoupled from the downstream control module, and thus, this
simplification will not impact the final results. Instead, it is assumed that the trajectory is
executed based on the corresponding timestamps during execution.

The estimation error of the state change is partly because of measurement errors from
the sensors. The following measurement models are assumed for vehicle speed, derived
from wheel speed sensors, and yaw rate, obtained from the yaw rate sensor:

vm = voffset + ṽ, where ṽ ∼ N (v, σv). (5)

θ̇m = θ̇offset +
˜̇θ, where ˜̇θ ∼ N (θ̇, σθ̇). (6)

3. Stability Analysis
3.1. Problem Description

Equations (3) and (4) give an approximation of the relative motion change between
consecutive planning timesteps. However, due to the integrals in the equations, the
estimation of vehicle position and posture changes since the first timestep could build up
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as time progresses. The accumulated error could have adverse effects on the proposed local
trajectory planning method, making it infeasible to reach the desired destination.

To simply the analysis, the terminal destination x f of the trajectory planning for
consecutive timesteps is assumed unchanged in order to show the stability concept for
continuous planning. This simplification is feasible for consecutive timesteps in scenarios
like traffic stop, lane changing, etc.

The diagram in Figure 3 illustrates the potential effect of the accumulated estimation
error on the continuous trajectory planning results at timestep tk−1 and the subsequent
timestep tk. To clearly demonstrate the drift of the trajectory due to the estimation error, the
trajectories Tk−1 and Tk, planned in their respective local coordinate systems, are represented
under the same global coordinate system, where the terminal destination is set to 0.

(a) Estimation error ε = 0 (b) Estimation error ε ̸= 0

Figure 3. An illustration of the effects of an estimation error of state change ε on continuous planning
results at timestep tk−1 and tk.

Figure 3a shows that without an estimation error of the state change, trajectory Tk’s
start point xk|Tk

has the same state as the planned next-timestep state xk|Tk−1
by last trajectory

Tk−1, which is the prerequisite to realize the consistency of planning between timesteps.
This can be proved as follows. From Equation (1), we have

Pk xk|Tk−1
=Pk−1 xk|Tk−1

−Pk−1 Pk, (7)
Pk x̂k|Tk−1

=Pk−1 xk|Tk−1
− ∆P̂k, (8)

The estimation error of the state change between neighboring timesteps thus comes from:

ε =Pk−1 Pk − ∆P̂k. (9)

In the case of Figure 3a, when estimation error ε = 0, ∆P̂k =
Pk−1 Pk. In this case, x̂k|Tk−1

,
used as the initial planning start state xk|Tk

at time tk, has the following relationship:

xk|Tk
= x̂k|Tk−1

= xk|Tk−1
. (10)

In the case og ε ̸= 0 in (9), minus Equation (7) from (8), we have:

Pk x̂k|Tk−1
=Pk xk|Tk−1

+ (Pk−1 Pk − ∆P̂k), (11)

=Pk xk|Tk−1
+ ε, (12)
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and therefore
x̂k|Tk−1

= xk|Tk−1
+ ε, (13)

under the global coordinate system.
Under this case in Figure 3b, the start state xk|Tk

for Tk deviates from the planned
next-timestep state xk|Tk−1

at Tk−1. The deviation between xk|Tk
and xk|Tk−1

is exactly the
estimation error ε of state change.

Also note that both trajectories lead to the same terminal state x f despite the existence
of the error term ε. This is because the terminal state is assumed fixed for stability analysis
purposes, as mentioned before. Although different local vehicle coordinate systems are
used to represent the terminal state at each timestep during planning, i.e., Pk−1 x f vs Pk x f ,
the coordinate transformation itself does not change any global object’s state, including x f .
Hence, x f is not affected by the estimation error ε of state change, and every trajectory at
each timestep attempts to reach this destination x f .

It is likely that under the case Figure 3b, if the error term ε is large enough, the
continuously planned trajectory may never converge to the terminal state x f , as ε may drag
the planning start point further and further away from x f . This inference is intuitive but
lacks theoretical support. The questions of interest are as follows: Is the terminal state
reachable during continuous planning, given the estimation error ε of state change? What
are the permissible bounds for ε?

3.2. Stability Analysis

In the presence of estimation error ε, it is proven in last subsection that:

xk|Tk
= x̂k|Tk−1

= xk|Tk−1
+ ε, (14)

= xk−1|Tk−1
+ ∆xk|Tk−1︸ ︷︷ ︸

Planned state change
at trajectory Tk−1

+ ε︸︷︷︸
Estimation error of

the state change

, (15)

as illustrated in Figure 3b.
Denote xk|Tk

by xk in the above equation, then we have the following discrete-time
system, described by:

xk = f (xk−1) = xk−1 + ∆xk|Tk−1
+ ε︸ ︷︷ ︸ (16)

= xk−1 + ρk−1, (17)

where f : D → R is locally Lipschitz in D ⊂ R3, and D is an open set containing the origin
0 ∈ D.

The stability problem of the continuously trajectory planning then becomes the stability
analysis for the discrete-time orbit, i.e., the sequence of state xk starting from an initial
state x0.

Suppose f has an equilibrium at x f = 0; then, the equilibrium 0 is said to be locally
Lyapunov stable if:

For every r > 0, there exists a δ > 0, such that, if ∥x0 − 0∥ < δ, then ∥xk − 0∥ < r for
every k >= 0.

Figure 4 shows an exemplary sequence of discrete state x(·) confined in the open ball
of radius r, Br = {x ∈ R3 | ∥x∥ < r}, projected in a 2D plane.

Define a Lyapunov-alike function V : D → R locally Lipschitz in D with the form:

V(x) = xTx, x ∈ D, (18)

which satisfies the following properties:

V(0) = 0, and V(x) > 0, ∀x ∈ D − 0. (19)
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Figure 4. Stability in the sense of Lyapunov for discrete-time system projected in 2D plane.

Given the (k − 1)-th state xk−1, the value change of function V : D → R from xk−1 to xk is:

∆V(xk−1) = V( f (xk−1))− V(xk−1) (20)

= (xk−1 + ρk−1)
T(xk−1 + ρk−1)− xT

k−1xk−1 (21)

= (2xk−1 + ρk−1)
Tρk−1. (22)

The following prerequisite is assumed to be satisfied for ∆V(xk−1):

Prerequisite 1. ∃η > 0, such that ∀xk−1 ∈ {x ∈ D | ∥x∥ > η}, ∆V(xk−1) ≤ 0 is always
satisfied, given the Lipschitz-continuous function V : D → R defined in Equations (18) and (19).

Remark 1. Prerequisite 1 is not stringent in the context of the continuous trajectory planning
problem. It will be demonstrated in the following that, under certain easily met conditions, the
assumed prerequisite can be ensured.

To satisfy ∆V(x) ≤ 0, from Equation (22) the inner product of (2x + ρ) and ρ have to
be no greater than 0. Figure 5 shows the physical meaning of this in the Euclidean plane. It
shows different possibilities of ρ and how it affects the 2x + ρ and, correspondingly, their
inner product.

Figure 5. Inner product of ρ and 2x + ρ at different combinations in Euclidean plane.

Of the three examples given in the figure, either ρ is too long or a wrong direction
leads to

−−−→
2x + ρ · −→ρ > 0. It is straightforward that two conditions have to be met to satisfy

the non-positive inner product in Euclidean plane: (1) −→ρ · −→x ≤ 0; and (2)
∣∣−→ρ ∣∣ should be
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less than the projection of 2−→x on −→ρ . For the vector space R3, similarly, it is concluded that
the following conditions have to be satisfied to ensure ∆V(x) ≤ 0:

xTρ ≤ 0, and ρTρ < −2xTρ. (23)

It will be demonstrated in the following discussion that condition (23) can be met. The
term ρ contains the estimation error of state change, ε, as seen from Equations (15) and (17).
The error ε is in probabilistic distribution due to noise and error from the motion sensors.
Sensor noise and error is usually small and hence it is safe to assume a upper bound that:

∃ε̄, such that ε is bounded ∥ε∥ < ε̄.

The other term contained in ρ is ∆xk|Tk−1
, which is the planned next-step state change

at Tk−1. Figure 6 shows a possible vector of ∆xk|Tk−1
given the (k − 1)-th step’s planning

initial point xk−1 under Euclidean plane as an example. Due to the nature of trajectory
planning, the planned trajectory steps towards the terminal state 0. Consequently, the
following relation may be assumed:

∆xT
k|Tk−1

xk−1 < 0. (24)

Figure 6. Example of ∆xk|Tk−1
and bounds of ε in Euclidean plane.

In Figure 6, the open ball of radius ε̄ is shown in the grey shaded area atop the tip of
∆xk|Tk−1

. Then, the vector ρ, i.e., the sum of ∆xk|Tk−1
and ε, is known to be confined in this

shaded area. If for any ε that is bounded in ∥ε∥ < ε̄, the condition (23) could be satisfied,
then ∆V(x) ≤ 0 can be guaranteed.

This is very likely to be satisfied when the error bound ε̄ is significantly smaller
compared to the norm ∥xk−1∥ or

∥∥∥∆xk|Tk−1

∥∥∥ if the relation (24) is met. Consequently, it
can be assumed that ∃η > 0, for any xk−1 ∈ D that satisfies ∥xk−1∥ > η, condition (23) is
always met, and hence ∆V(xk−1) ≤ 0. The above discussion shows how the Prerequisite 1
is made.

Prerequisite 2. In the discrete system (17), ρ is bounded within an open ball with radius ρ̄, i.e.,
∥ρ∥ < ρ̄.

Proof. During planning, the vehicle’s own physical motion capabilities would be consid-
ered to limit the planned state change ∆xk|Tk−1

, i.e.,∥∥∥∆xk|Tk−1

∥∥∥ < ∆x̄. (25)

And hence,
∥ρ∥ ≤

∥∥∥∆xk|Tk−1

∥∥∥+ ∥ε∥ < ∆x̄ + ε̄ (26)
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Therefore, there must exist a ρ̄, such that ∥ρ∥ < ρ̄ and ρ̄ ≤ ∆x̄ + ε̄.

Remark 2. For the trajectory planning problem, the terminal state x f = 0 may not be an equilib-
rium point, since f (0) = 0 is not guaranteed due to the term ρ in Equation (17). However, according
to Prerequisite 2, it is known that the next state from 0 is in close proximity, i.e., ∥ f (0)∥ ≤ ρ̄.

Claim 1. For the discrete system described in Equation (17), with Prerequisites 1 and 2, the
Lyapunov stability could not be achieved; but a weaker conclusion could be drawn: there exists a
δ > 0, if ∥x0 − 0∥ < δ, then xk is bounded in the sense that ∥xk − 0∥ < r for every k ≥ 0 for
some r.

Proof. Choose s = max{η, ρ̄} where η and ρ̄ are declared in Prerequisites 1 and 2, such
that the open ball Bs =

{
x ∈ R3 | ∥x∥ < s

}
⊂ D. Then, choose r > s + ρ̄ > 0 that Br ={

x ∈ R3 | ∥x∥ < r
}
⊂ D. Let α = min∥x∥=r V(x), then we know α > 0 due to (19). Take

β ∈ (0, α), the set Ωβ = Br ∩ V−1([0, β]) ⊂ Br could have several connected components,
as indicated in Figure 7.

Figure 7. Illustration of the sets’ projection to 2D plane

Consider Cβ ⊂ Ωβ is the connected component that contains Bs, i.e., Bs ⊂ Cβ. Since
the function has the same form as in (19), this can be ensured with a chosen β ≥ (s + ρ̄)2.
In the following, it will be proven that f n(Cβ) ⊂ Cβ for every n ≥ 0.

First, it is demonstrated that the next discrete state from 0 remains within Cβ, i.e.,
f (0) ∈ Cβ. According to prerequisite 2, it follows that ∥ f (0)∥ < ρ̄ ≤ s. Thus, f (0) ∈ Bs ⊂ Cβ.

Next, we prove that f (Cβ) ⊂ Br ∩ V−1([0, β]). This has to be discussed for Bs and
Cβ\Bs separately. For x ∈ Bs,

∥ f (x)∥ ≤ ∥x∥+ ∥ρ∥ < s + ρ̄ < r, (27)

and hence,
f T(x) f (x) < (s + ρ̄)2 ≤ β. (28)

Therefore, f (Bs) ⊂ Br ∩ V−1([0, β]) .
Then, since f : D → R3 is Lipschitz in D, f (Cβ) is also connected and f (Bs) ⊂ f (Cβ).

This implies that at least a portion of f (Cβ\Bs) is also a subset of Br. It can further be
concluded that f (Cβ\Bs) ⊂ Br. If this is not true, then f (Cβ\Bs) overlaps with Br. There is
a point x ∈ Cβ\Bs such that ∥ f (x)∥ = r. Then, the Lyapunov-alike function

V( f (x)) ≥ α > β ≥ V(x). (29)

This is contradictory to the non-increasing characteristics of V(x) in Prerequisite 1.
Thus, f (Cβ) is connected and a subset in Br ∩ V−1([0, β]). Meanwhile, f (0) ∈ f (Cβ)

and f (0) ∈ Cβ. This implies that f (Cβ) ⊂ Cβ. Consequently, it can be concluded that
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f n(Cβ) ⊂ Cβ for any n ∈ N. Therefore, a δ > 0 can be chosen such that {x ∈ D | ∥x∥ < δ} ⊂
Cβ, if ∥x∥ < δ, then ∥ f n(x)∥ < r.

Claim 2. If ∆V(x) is strictly decreasing in Prerequisite 1, for the system (17) along with Prerequi-
site 2, there exists δ > 0, such that if ∥x0 − 0∥ < δ, then limn→∞ ∥xn − 0∥ < η + ρ̄. This means
that the state xk will be contained in Bη+ρ̄ = {x ∈ D | ∥x∥ < η + ρ̄} at some point, and its orbit
will remain inside thereafter.

Proof. From the proof part for Claim 1, choose the δ that satisfies {x ∈ D | ∥x∥ < δ} ⊂ Cβ,
if ∥x∥ < δ, then f n(x) ∈ Cβ for every n ≥ 0.

First, it is shown that for x ∈ Cβ\Bη , there exists some point, k, such that f k(x) ∈ Bη ,
where Bη = {x ∈ D | ∥x∥ < η}. For the sake of contradiction, suppose that this is not the
case; then, for all k ≥ 0 we have

f k(x) ∈ Cβ\Bη . (30)

Since Cβ\Bη is compact, and ∆V is continuous and ∆V(x) < 0 for x ∈ Cβ\Bη , then
from the Weierstrass theorem, we know ∆V attains a negative maximum −µ, i.e.,

∆V(x) ≤ −µ < 0, if x ∈ Cβ\Bη , (31)

and hence,

V( f n(x)) = V( f n−1(x)) + ∆V( f n−1(x)) (32)

= V( f n−2(x)) + ∆V( f n−2(x)) + ∆V( f n−1(x)) (33)

. . . (34)

= V(x) +
n−1

∑
k=1

∆V
(

f k(x)
)

(35)

≤ V(x)− (n − 1)µ. (36)

Letting n → +∞, the right-hand side tends to −∞. This contradicts V(x) > 0 for
x ∈ D − 0. Therefore, for x ∈ Cβ\Bη , there must exist some k, such that:

f k(x) ∈ Bη . (37)

For x ∈ Bη ,

∥ f (x)∥ ≤ ∥x∥+ ∥ρ∥ (38)

< ∥x∥+ ρ̄. (39)

This shows that f (x) ∈ Bη+ρ̄ if x ∈ Bη . Together with the summary made in (37), the
Claim 2 can be proved.

Remark 3. Claim 2 further extends the boundedness conclusion made in Claim 1, and shows that
for the trajectory planning problem, as k → +∞, the planned state will eventually contained in
Bη+ρ̄, despite the state change estimate error. The Bη+ρ̄ is a relatively small area and should satisfy
the need for the trajectory planning problem.

4. Results and Discussions

Two scenarios are designed to experiment the local planning method without global
positioning information. The simulations of two scenes were conducted with the validation
pipeline developed in Section 2.2.

To experiment the effects of sensor drift and noise to the planning results, the mea-
surement errors of the speed and yaw rate sensor in (5) and (6) are set to under normal
distributions, with the values of offsets and standard deviations shown in Table 1.
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Table 1. Experimental settings of measurement errors.

Measurements Error Distribution

Speed v verr∼N (−0.1, 0.1) m/s
Yaw rate θ̇ θ̇err∼N (0.57, 1.72) deg/s

These errors are intentionally set to large values to validate the stability of the proposed
local planning methodology. Normally, the speed and yaw rate sensor would achieve more
accurate readings with respect to the ground truth.

4.1. Moving Traffic Scene

In this scene, the ego car is set to run in a double-lane road with other moving vehicles.
Figure 8 shows the the continuous local planning results under the measurement error
settings in Table 1. The moving vehicles are shown in blue bounding boxes, which are
enlarged to ensure safe distance is maintained from the ego car. The dashed-line boxes
represent the predicted motions for these vehicles. The ego vehicle is represented in a green
box in this figure. The candidate trajectory planned for each lane (left lane in blue, right
lane in orange) with a planning horizon of 5.0 s is also displayed extended from the tail
of the ego vehicle. The selected trajectory is highlighted in red points, with each point
representing an increment of 0.1 second per timestep. This helps visualize the speed change
by observing the density and spread of the selected trajectory.

Figure 8. Local planning in a moving traffic scene (The animation gif is available at https://bit.ly/
3L4QSHB, accessed on 22 September 2024).

In Figure 8, the ego car performs a right lane change first, and then follows the car in
front until the gap in the left lane is safe enough for it to make another lane change back
to the left lane. The safety distance in both the longitudinal and lateral directions of the
ego car are well maintained. The ego car centers well within the lane bounds when not
changing lanes. This demonstrates that despite the unavailability of global localization
information and the not-so-accurate sensor readings of speed and yaw rate to estimate
the relative motion, the continuous planning remains highly feasible under the proposed
methodology in Figure 1.

Figure 9 shows the change in the speed and yaw rate of the ego car during the moving
traffic scene, as well as the measurement readings in the blue-cross line. The time plots of
the measurement errors are also displayed in the right-hand subplots to show the deviation
and noise of the sensor readings under the sensor noise settings in Table 1.

https://bit.ly/3L4QSHB
https://bit.ly/3L4QSHB
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Figure 9. Time plots of vehicle speed, yaw rate and measurement errors under settings in Table 1.

It is also examined how the measurement errors from the speed and yaw rate affect
the relative motion estimate between the planning timesteps. In Figure 10, the top two
plots shows the box plot as well as the scattering of the measurement errors. The bottom
plots show how the above measurement errors, which resulted in the estimated errors ε in
Equation (9) for the pose change between planning timesteps, i.e., ∆x, ∆y, and ∆θ, under
the local coordinate system.

Figure 10. Box plots of measurement errors (upper plots) and the resulted estimation errors of relative
motion between planning timesteps (bottom plots) under settings in Table 1.

4.2. Stop Scene

Another scene where the vehicle has to stop to wait in traffic was ran with the same
measurement error settings for the speed and yaw rate. It is of interest to see how the
vehicle will perform under low speed or at static. In this scene, a fixed stop distance was set
to observe whether the ego car could reach and maintain the target pose under the impact
of measurement errors.

Figure 11 shows that the traffic in both lanes is blocked by a long semi-truck and a
sedan in front. The ego car decelerates to a full stop. The bottom subplots demonstrate that
the ego car is capable of maintaining the stop pose despite the estimation error of relative
motion change between timesteps caused by the sensor errors. Interested readers can refer
to the animation (the animation gif is available at https://bit.ly/3sFb1hk, accessed on
22 September 2024) to see how the planning compensates the estimation error and get a
sense of how the condition (23) is met under this error setting.

https://bit.ly/3sFb1hk
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Figure 11. Local planning in a stop scene (The animation gif is available at https://bit.ly/47XMcxg,
accessed on 22 September 2024).

Note that the planned speed is negative in both bottom plots in Figure 11 when the
vehicle is stopped. This is due to the fact that negative speed error offset voffset = −0.1 m/s
leads to a positive estimation error offset of ∆x along the longitudinal direction, as can be
seen in Figure 10. From Equation (13), the planned start point for the next timestep will be
further ahead, due to the positive estimation error of the pose change; thus, making the
start point being moved back under the local coordinate system.

4.3. Stability Limits at Sensor Offset Errors

As discussed in Section 3, Prerequisites 1 and 2 have to both be satisfied to ensure
the stability of the local planning problem, as stated in Claim 2. The experiments were
conducted under larger sensor offset errors to check the stability limits for the tested
two scenes.

Figure 12 shows the screenshots for the two scenes at a much larger speed measure-
ment offset error, voffset = −1.0 m/s. Figure 12a shows at timestamp 11.5 s, the ego car
reaches to a farther position compared to Figure 8 and starts a third lane-change to sur-
pass the vehicle in the left lane. Figure 12b, on the other hand, shows that the ego car
keeps creeping forward until it crashes into the front car. This is due to the fact that the
estimate error of the pose change between timesteps is too large for the planning motion
to compensate, which then gradually accumulated to larger deviations from the target
pose, essentially drifting away from the target pose. Claim 2 would not be valid, as the
Prerequisite 2 is not satisfied under such cases.

Figure 13 are time frames of the two scenes under yaw rate offset θ̇offset of 2.29 deg/s
and 5.73 deg/s, respectively. At θ̇offset = 2.29 deg/s in Figure 13b, the ego car is not
capable of centering itself in the middle of the lane and almost drives on the edge of the
right lane compared to Figure 11. Considering that a yaw rate offset of 2.29 deg/s is
already abnormally large, it shows that the proposed local planning framework is very
robust in maintaining the stability of continuous planning. Under an even larger error
θ̇offset = 5.73 deg/s in Figure 13c,d, the ego car drifts right so much that it eventually
crosses over the lane bound and leads to a potential crash or fails in both scenarios.

https://bit.ly/47XMcxg
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(a) (b)

Figure 12. Effects of significant speed offset error: verr∼N (−1.0, 0.1) m/s. (a) Traffic scene at
voffset = −1.0 m/s (The animation gif is available at https://bit.ly/3EqyTb4, accessed on 22 September
2024). (b) Stop scene at voffset = −1.0 m/s (The animation gif is available at https://bit.ly/3sAavkt,
accessed on 22 September 2024).

(a) (b)

(c) (d)

Figure 13. Effects of significant yaw rate offset error at (a,b): θ̇err∼N (2.29, 1.72) deg/s;
(c,d) θ̇err∼N (5.73, 1.72)deg/s. (a) (Traffic scene at θ̇offset = 2.29 deg/s (The animation gif is available
at https://bit.ly/3qRgSj7, accessed on 22 September 2024). (b) (Stop scene at θ̇offset = 2.29 deg/s (The
animation gif is available at https://bit.ly/3P4hMAT, accessed on 22 September 2024). (c) (Traffic
scene at θ̇offset = 5.73 deg/s (The animation gif is available at https://bit.ly/3ErwE7e, accessed
on 22 September 2024). (d) (Stop scene at θ̇offset = 5.73 deg/s (The animation gif is available at
https://bit.ly/44DSjUB, accessed on 22 September 2024).

https://bit.ly/3EqyTb4
https://bit.ly/3sAavkt
https://bit.ly/3qRgSj7
https://bit.ly/3P4hMAT
https://bit.ly/3ErwE7e
https://bit.ly/44DSjUB
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5. Conclusions

Overcoming the challenge of Level-2+ semi-autonomous driving without relying on
highly accurate absolute localization has been the focal point of this study. This paper
has explored the feasibility of local trajectory planning based solely on a vehicle’s local
coordinate system, without the need for global localization. The proposed trajectory plan-
ning methodology leverages pose change estimation between planning timesteps derived
from motion sensors, as well as the relative positions of traffic objects and lane markings
with respect to the ego vehicle within this local coordinate framework. Additionally, the
stability of the planning method under sensor errors was modeled as a Lyapunov stability
problem, with the stability proven under certain conditions (as discussed in Section 3).
A validation pipeline was constructed, simulating two scenarios under varying levels of
sensor errors related to speed and yaw rate measurements. The simulation results strongly
support the theoretical stability analysis, demonstrating that continuous trajectory plan-
ning can function robustly even in the presence of significant sensor noise, as detailed in
Table 1 with speed error distribution verr∼N (−0.1, 0.1) m/s and yaw rate error distribution
θ̇err∼N (0.57, 1.72) deg/s.

One major contribution of this paper is the introduction of a local trajectory planning
framework that operates without the requirement for absolute localization, addressing a
critical challenge in L2+ semi-autonomous driving, where the available hardware is often
limited. Another key contribution is the proof that the dynamic trajectory planning method,
subject to motion sensor errors, maintains stability under conditions that are practical and
feasible for real-world systems. The stability of this approach was further validated through
a series of simulations involving sensor drift and offset errors, particularly from IMU sen-
sors. These findings provide valuable insights into the potential of L2+ semi-autonomous
driving applications under hardware constraints, presenting a practical approach for future
development in this domain.

Despite its contributions, the proposed methodology does have limitations. The as-
sumption of certain noise characteristics in the sensors (as modeled in Table 1) may not
fully capture the complexities of real-world sensor behavior, including more extreme or
intermittent failures. Moreover, the proposed framework assumes idealized environmen-
tal conditions, and further testing is required in more complex, dynamically changing
environments involving highly congested traffic or unpredictable road conditions.

Regarding future work, further refinement of the proposed methodology is needed to
address these limitations. Extending the validation scenarios to include more dynamic and
unstructured environments, as well as integrating more sophisticated models for sensor
failure modes, would offer a more comprehensive evaluation of the system’s robustness. Fu-
ture research could also explore real-world deployment and testing to evaluate the practical
application of this framework in mass-market vehicles with cost-sensitive hardware setups.
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