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Abstract: Facial expression recognition (FER) plays a crucial role in various applications, including
human–computer interaction and affective computing. However, the joint training of an FER network
with multiple datasets is a promising strategy to enhance its performance. Nevertheless, widespread
annotation inconsistencies and class imbalances among FER datasets pose significant challenges to
this approach. This paper proposes a new multi-dataset joint training method, Sample Selection and
Paired Augmentation Joint Training (SSPA-JT), to address these challenges. SSPA-JT models annota-
tion inconsistency as a label noise problem and selects clean samples from auxiliary datasets to expand
the overall dataset size while maintaining consistent annotation standards. Additionally, a dynamic
matching algorithm is developed to pair clean samples of the tail class with noisy samples, which
enriches the tail classes with diverse background information. Experimental results demonstrate
that SSPA-JT achieved superior or comparable performance compared with the existing methods by
addressing both annotation inconsistencies and class imbalance during multi-dataset joint training. It
achieved state-of-the-art performance on RAF-DB and CAER-S datasets with accuracies of 92.44%
and 98.22%, respectively, reflecting improvements of 0.2% and 3.65% over existing methods.

Keywords: facial expression recognition; joint training; annotation inconsistency; class imbalanced;
learning with noisy label; long-tailed learning

1. Introduction

Facial expression recognition (FER) is a critical research topic in computer vision
and affective computing, as it has a wide range of applications in human–computer in-
teraction [1], sentiment analysis [2], security monitoring [3], healthcare [4,5], and other
practical implementations. Depending on the scenarios of data collection, FER datasets can
be categorized into lab-controlled FER datasets [6–8] and in-the-wild FER datasets [9–14].
Rather than acquiring samples from controlled environment, in-the-wild FER datasets
collect facial expression samples in natural, unconstrained environments. Compared to lab-
controlled FER datasets, in-the-wild datasets typically include more samples and present
more complex scenarios, which provide diversified training data for FER tasks.

In recent years, deep neural networks (DNNs)-based FER methods have obtained
remarkable success on many in-the-wild datasets. In general, the performance of a DNN
is dependent on the amount of training data, and increasing the size of the training set is
usually an effective way to improve model performance [15]. Combining the training sets
from different datasets focused on the same task is a straightforward approach to enlarge
the training set. However, due to the diversity of facial expressions and the subjective
nature of their interpretation, along with factors such as image quality and annotator
discrepancies, inconsistent annotation standards (a.k.a. annotation inconsistency) often
exist among different in-the-wild FER datasets [16]. Additionally, these datasets typically
exhibit an imbalanced class distribution with a long tail [17], where a few classes (known
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as head classes) contain the majority of the data, while most classes (known as tail classes)
have very few samples. This imbalance arises because certain facial expressions naturally
occur more frequently in real life [11]. Affected by these two factors, directly combining
these in-the-wild FER datasets leads to a significant change of distribution between the
combined training set and the original target validation set, which may negatively impacts
the performance of the network [18].

To address the problem of annotation inconsistency among FER datasets, researchers
have proposed various approaches. Zeng et al. proposed to improve the annotation
consistency by combining human-annotated labels with network-predicted labels [16].
Wang et al. employed a self-attention mechanism to evaluate the annotation quality and
applied a regularized ranking and label correction strategy to progressively standardize
the annotations within the training set, reducing labeling discrepancies [19]. Yu et al. [18]
utilized continuous expression labels and aligned the discrete labels across different FER
datasets with techniques of subset selection, continuous label mapping, and discrete label
re-annotation. These methods alleviated the annotation inconsistencies among FER datasets
and improved FER performance through dataset joint training.

However, a significant limitation of existing methods is that they do not account
for the impact of class imbalance on the effectiveness of joint training. Our exploratory
experiments found that increasing the numbers of samples from different classes may
exert a distinct influence in the training of an FER network; e.g., increasing the number
of tail class samples has a more substantial effect on improving model performance than
increasing the number of head class samples. Figure 1 shows the class distribution in
the training sets of two commonly used FER datasets, RAF-DB [9,10] and AffectNet [11]
(7-class). As illustrated in Figure 1, the samples of fear, anger, disgust, and surprise are only
a very small proportion in both datasets, collectively accounting for less than one fourth of
the total samples. In this paper, we consider these four expression classes as tail classes,
while the remaining three expressions—sadness, neutrality, and happiness—are treated as
head classes.

Figure 1. Class distribution of RAF-DB and AffectNet training sets.

To better understand the challenges posed by class imbalance, we conduct experiments
using the two datasets mentioned above. We designate RAF-DB as the target dataset, which
serves as the primary dataset for training and evaluation. AffectNet is utilized as the auxil-
iary dataset, providing additional samples to augment the training data. Figure 2 illustrates
the impact of augmenting different class samples on model performance evaluated on
the test set of RAF-DB. When the model is trained solely on the training set of RAF-DB,
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the recognition accuracy on the test set of RAF-DB is 86.25%. However, when the training
sets of RAF-DB and AffectNet are directly combined for training, the recognition accuracy
decreases by 1.63% due to annotation inconsistencies between the two datasets. Merging
the training set of RAF-DB with only the samples in the head class and tail class from the
training set of AffectNet, the recognition accuracy decreases by 1.15% and increases by
0.21%, respectively. These results indicate that enlarging the target dataset with tail class
samples from the auxiliary dataset improves the model performance on the validation set
of the target dataset. Conversely, directly combining the target and auxiliary datasets or
augmenting only the head class samples may harm the model performance, as it does not
take account of the class imbalance. Given the prevalent issue of class imbalance in FER
datasets, where head and tail classes are generally consistent across datasets, neglecting this
imbalance may significantly undermine the effectiveness of dataset joint training. Therefore,
addressing both annotation inconsistency and class imbalance remains a critical challenge
for improving the effectiveness of dataset joint training in FER tasks.

Figure 2. The performance of classification on the RAF-DB test set with different training sets. A
denotes a training set of AffectNet while R denotes a training set of RAF-DB. head denotes head
classes (sadness, neutral and happiness), tail denotes tail classes (fear, anger, disgust and surprise).

In this paper, we propose a new joint training method for FER multi-dataset joint
training. To tackle the problem of annotation inconsistency among different FER datasets,
we model it as a label noise problem. We assume that the labels in the training set of the
target dataset are accurate or clean, whereas the auxiliary dataset may contain noisy labels
due to varied annotation standards. Inspired by label noise handling techniques [20], we
implement a sample selection process to identify clean samples from the auxiliary dataset
as they are consistent with the annotation standard of the target dataset. These selected
samples are then directly merged with the training set of the target dataset to expand the
overall dataset size while maintaining annotation consistency. For the problem of class
imbalance, we recognize that the noisy samples from the auxiliary dataset, although not
being selected due to annotation inconsistency, still contain valuable information related to
facial expressions. We argue that noise is not always detrimental if used appropriately; it
can enhance the robustness of model and mitigate class bias. To address class imbalance,
we propose a dynamic matching algorithm that pairs the clean samples from tail classes
with noisy samples from the auxiliary dataset. Data augmentation is then performed on
these matched sample pairs to create new tail class samples with additional background
noise. This approach not only leverages the auxiliary dataset more effectively but also
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alleviates the class bias by enriching the tail classes with diverse background information,
improving the overall accuracy of joint training.

Our contributions are summarized as follows:
(1) We provide a detailed analysis of how class distribution imbalance across different

datasets impacts the performance of joint training in FER, which is supported by empirical
evidence and experimental analysis.

(2) We propose a comprehensive framework, Sample Selection and Paired Augmenta-
tion Joint Training (SSPA-JT), that simultaneously addresses annotation inconsistency and
class imbalance. This framework introduces an innovative data augmentation method by
pairing annotation-inconsistent samples from the auxiliary dataset with tail class samples
from the target dataset, enriching the diversity of tail class samples and improving model
performance.

(3) We demonstrate through extensive experiments that the proposed SSPA-JT frame-
work achieves better or comparable performance compared to existing FER methods,
including other joint training approaches.

2. Related Work

Early FER methods primarily relied on handcrafted descriptors to extract facial
features, such as Local Binary Patterns (LBPs) [21], Histograms of Oriented Gradients
(HOGs) [22], and Scale-Invariant Feature Transform (SIFT) [23]. However, these feature
engineering-based methods suffer from limited robustness as the extracted features are sus-
ceptible to variations in image quality, lighting, angle, and occlusion. With the rise of deep
learning, FER methods based on deep learning have gradually become the mainstream
approach. Compared to traditional methods, deep learning methods significantly en-
hance recognition performance by automatically learning features. Training on large-scale
datasets enables them to capture the diversity and complexity of the data and improves
the generalization capability of the model. However, deep learning methods still face
several challenges, particularly those related to label noise and class imbalance inherent in
FER datasets.

2.1. Learning with Noisy Labels

Due to the subjectivity of manual labeling, errors during data collection, and various
other reasons, some samples are often annotated with noisy labels—labels that do not align
with the latent true values. Noisy labels may lead models to learn incorrect patterns and
reduce the generalization ability of models. This challenge has been widely studied in
recent years, leading to the development of a specialized subfield known as Learning with
Noisy Labels (LNL). Among the various approaches within LNL, sample selection has
emerged as an important and effective technique.

Sample selection methods are typically based on the small-loss assumption, which
posits that neural networks tend to fit clean samples before overfitting to noisy labels [24].
The core idea of sample selection is to identify and either remove or reweight samples
with noisy labels, reducing their impact on model training. Common approaches include
confidence-based sample selection [20,25], loss-based sample selection [26,27], and model
consistency-based sample selection. For instance, the co-teaching method trains two neu-
ral networks that mutually filter each other’s samples to avoid the influence of noisy
labels [28]. Li et al. introduced a method that dynamically sets thresholds based on
the memory strength of each instance during training, allowing the selection of reliable
instances [20]. These instances are then divided into different subsets, with distinct regu-
larization strategies applied to each, effectively enhancing the robustness of the model to
noisy labels.

In addition to sample selection, there are other strategies to address noisy labels. For ex-
ample, label correction methods improve label quality by leveraging model confidence
scores or auxiliary information from related tasks to correct potentially noisy labels [29,30].
Loss function adjustment methods, on the other hand, reduce the sensitivity of models to
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noisy labels by modifying traditional loss functions, mitigating the negative impact of label
noise [31–33]. Some approaches combine these strategies to further enhance the robustness
of the model against label noise.

Traditional active learning (AL) techniques, such as uncertainty-based sample selec-
tion [19,34], differ from threshold-based sample selection approaches. While threshold-
based selection methods can be seen as a “hard” selection strategy that either accepts or
rejects samples based on predefined rules, uncertainty-based AL adopts a “soft” selection
strategy by assigning lower weights to uncertain samples, reducing their influence during
training to avoid overfitting. The weights in AL are typically derived from the model itself,
making the method more sensitive to the current state of learning of the model. As a result,
the effectiveness of uncertainty-based sample selection can be heavily influenced by the
training dynamics of the model, in contrast to threshold-based methods, which are less
dependent on the internal biases of the model.

Due to the subjective nature of facial expression annotation and the complexity of
expression variations, the issue of noisy labels in FER is particularly severe, making it a
significant research challenge in this field. Many methods have been developed specifically
to address noisy labels in FER. For example, Zhang et al. [34] quantified the uncertainty
of samples by comparing their relative difficulty and assigned lower weights to uncertain
samples to reduce the impact of noisy labels. Wang et al. [35] employed emotion ambiguity-
sensitive learning and negative correlation diversity enhancement strategies to filter clean
and ambiguous samples from noisy datasets, promoting diverse feature representations
to enhance the robustness of the model against label noise. Zhang et al. [36] proposed a
method that randomly erases input images and utilizes flip attention consistency during
training to suppress the focus of the model on noisy labels, preventing the model from
memorizing noisy samples. Wu et al. [37] leveraged facial landmark information to mitigate
the effects of noisy labels. By incorporating key modules for label distribution estimation
and expression-landmark contrastive loss, they improved the quality of supervision under
noisy label conditions and enhanced the robustness of the expression feature extractor.

2.2. Long-Tailed Learning

Long-tailed distribution is another critical challenge in machine learning. In many
scenarios, class distributions are long-tailed, meaning that a few classes dominate the
majority of samples, while many classes have noticeably fewer samples. This imbalance
of classes usually negatively impacts model performance, leading to reduced recognition
ability for the tail classes. To address the challenges of long-tailed distribution, researchers
have proposed various long-tailed learning methods.

Data resampling is a common approach for addressing long-tailed distributions. This
technique involves either undersampling the head classes or oversampling the tail classes
to reduce class imbalance [38,39]. For instance, Kang et al. [38] achieved high performance
in long-tailed recognition by employing simple instance-balanced sampling to learn high-
quality representations and adjusting only the classifier. Similarly, Hu et al. [39] effectively
improved tail class recognition by dividing the long-tailed dataset into balanced subsets
and applying an incremental learning strategy alongside a class-incremental few-shot
learning paradigm to handle class imbalance and few-shot learning challenges in large-
scale long-tailed datasets.

Improving the loss function is another important approach to address long-tailed
problems. Classic loss functions like Focal Loss [40] and Class-Balanced Loss [41] assign
different weights to samples from different classes, enabling the model to focus more on
tail classes during training.

Additionally, to enrich the information of minority classes, specific data augmentation
techniques can be used to generate additional samples [42,43]. For example, Park et al. [44]
improved the generalization capacity of classifier in long-tailed classification by enhancing
the diversity of tail class samples using the rich contextual backgrounds of head class samples.
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In the field of FER, long-tailed distribution is also a critical challenge. Due to the
varying natural occurrence rates of different expressions, FER datasets often exhibit a
long-tailed distribution. Gao et al. [45] addressed the issue of long-tailed distribution in
large-scale FER datasets by constructing multiple data subsets and applying a progressive
pruning technique, resulting in a model that performs well on imbalanced datasets. Simi-
larly, Zhang et al. [46] improved the recognition performance of minority classes without
compromising the performance on majority classes by extracting additional knowledge
related to minority classes from both major and minor class samples and using rebalanced
attention maps and label smoothing to guide the model.

The aforementioned methods demonstrate that enhancing the robustness of a model
against label noise often improves its performance, particularly in tasks where label noise
is significant, such as in FER datasets. However, current label noise learning techniques
mostly focus on training with a single FER dataset. In scenarios involving multi-dataset joint
training, label errors arising from inconsistent annotation standards can also be modeled as
label noise issues. Therefore, label noise learning methods are promising for addressing
inconsistencies in dataset annotations. Additionally, merging FER datasets with imbal-
anced class distributions may exacerbate the imbalance. Overcoming the impact of class
distribution imbalance during joint training remains a critical challenge. To address these
issues, we propose the SSPA-JT framework, which performs joint training across multiple
FER datasets with inconsistent annotations. The proposed framework integrates sample
selection-based label noise robustness techniques with data augmentation-based class
imbalance learning methods. This approach aims to alleviate the impact from annotation
inconsistency and class imbalance in joint dataset training.

3. Method

The performance of joint training with multiple FER datasets suffers from inconsistent
annotation standards and class imbalance. To address these challenges, we propose a new
joint training framework, SSPA-JT, to alleviate the influence from annotation inconsistency
and class imbalance and improve the effectiveness of joint training for FER.

First, we model annotation inconsistency as a label noise problem by treating samples
with annotation bias in the auxiliary dataset as mislabeled samples. To expand the training
dataset while maintaining annotation consistency, inspired by sample selection methods
in the Learning with Noisy Labels (LNL), we filter out clean samples that align with the
annotation standard of the target dataset from the auxiliary dataset and merge them into
the target dataset.

Next, to alleviate the negative influence of class imbalance in FER datasets, we enhance
the background diversity of tail class samples. We design a dynamic matching algorithm
that pairs noisy-labeled samples from the noisy set with samples of tail classes in the clean
set and generates new training samples through data augmentation. It fully leverages not
only all available data but also improves the robustness of the model against background
variations, and it reduces the influence of class bias as well.

We use DT to denote the target dataset and DA the auxiliary dataset. The entire dataset
D is the union of DT and DA. The clean set and the noisy set obtained by sample selection
at epoch t are denoted as Dt

C and Dt
N . The minibatch sampled from D is denoted as B. We

denote (x, y) as a sample of D, where x represents the image and y represents the label of
this sample. The feature vector extracted from x by the feature extractor is denoted as f .
The prediction of x is denoted as p = (p1, . . . , pC), where C is the number of classes.

The overview of SSPA-SJ is shown in Figure 3. The training of SSPA-SJ consists of two
stages: Sample Selection (SS) and Paired Augmentation (PA). The model is composed of
a feature extractor module, Mixture of Experts (MoE) module, Sample Selection Module
(SSM), and Paired Augmentation Module (PAM). In our implementation, we utilize two
different backbones for feature extraction: ResNet-18 and ARM. The feature extractor and
MoE are used in both stages, while the SSM and PAM are specific to the SS stage and PA
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stage, respectively. Additionally, LCE in the figure refers to the cross-entropy loss used for
training the model.

In the SS stage, the MoE provides k predictions for each sample. The SSM assigns
a set of dynamic thresholds to each sample in D with each threshold corresponding to a
specific prediction made by the MoE, and these thresholds change in each training epoch
to determine whether a sample is clean. Based on this threshold and the predictions of
MoE, the SSM classifies samples into the clean set or noisy set in each epoch. Only the clean
samples from the clean set are used for model parameter optimization. At the end of the SS
stage, a clean sample set DC, comprising samples from both the target and a portion of the
auxiliary datasets, and a noise sample set DN , comprising the remaining auxiliary dataset
samples, are created. These two sets are kept constant and used for training in the PA stage.

In the PA stage, each minibatch B, randomly sampled from D and used for training,
contains both clean and noisy samples. The PAM pairs each noisy sample in B with a
clean sample using a designed dynamic matching algorithm, and then it replaces the noisy
sample with new samples through data augmentation to form a new minibatch B̃. Owing
to the designed dynamic paired algorithm and data augmentation, B̃ is more balanced in
class distribution.

Figure 3. Overview of our proposed SSPA-JT joint training framework.

3.1. Mixture of Experts Module

Inspired by recent advancements in large language models (LLMs) and ensemble
learning techniques in LNL, we designed a Mixture of Experts (MoE) module to enhance
our framework. The MoE module leverages multiple specialized sub-networks, or experts,
to increase the model’s capacity and provide a broader perspective for subsequent sample
selection. As illustrated in Figure 4, the MoE module consists of a gating mechanism and a
set of feedforward networks (FFNs), where each FFN is implemented as a single-layer fully
connected network that acts as an individual expert.
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Figure 4. The structure of the MoE.

Given an input feature vector f , the MoE module first processes this input with the
gating mechanism. The gate determines the relevance of each expert to the given input by
computing a set of importance weights. Specifically, the gate assigns a weight to each of
the k experts, indicating how much each expert contributes to the final output. The outputs
of these experts will be multiplied by their corresponding computed weights.

Each expert processes the input independently. The output of each expert is scaled
by the associated weight from the gate. The weighted outputs from all experts then
pass through a Softmax function, which produces the final predictions, indicating the
classification for that sample.

w = Gate( f ) =
(

w1, . . . , wk
)

(1)

pi = Softmax(FFNi( f ) · wi), ∀i ∈ [1, . . . , k] (2)

where w denotes the weight vector, pi denotes the prediction of the i-th FFN, and k denotes
the number of experts.

By dynamically adjusting the weights of different experts for each input, the MoE
module allows the model to adapt to various input characteristics and improves its flexi-
bility and overall performance in addressing the diverse challenges inherent in FER tasks.
Additionally, this module generates multiple predictions for each sample and provides the
subsequent sample selection modules with a broader perspective to assess the cleanliness
of the sample based on these varied predictions.

3.2. Sample Selection Module

Annotation inconsistencies among different datasets are a key factor that hinders the
effectiveness of joint training. Samples with annotation biases in the auxiliary dataset can
be treated as noisy label samples. To enhance annotation consistency in the combined
dataset, we design the SSM to select samples from the auxiliary dataset that are consistent
with the annotation standard of the target dataset (a.k.a. clean samples).

Research in the field of LNL found that DNNs tend to learn simple samples before
difficult ones, and their confidence on a sample reflects how well they have learned from
that sample. Since noisy labels are harder for DNNs to learn, we can filter out potential
noisy samples based on the confidence levels of DNNs [20].

SSM maintains a buffer that records k thresholds for each sample, where k corresponds
to the number of experts in the MoE described in Section 3.1. These thresholds are dynami-
cally updated during training using an Exponential Moving Average (EMA) method:

τt
i = ητt−1

i + (1 − η)Max(pt
i), ∀i ∈ [1, .., k], (3)

where τt
i is the threshold value recorded by SSM for the i-th expert at the t-th epoch, η

denotes the EMA momentum coefficient, and Max(pt
i) is the maximum value of the predic-

tion probability vector for the i-th expert at epoch t, indicating the confidence of model on
that sample. The EMA update method ensures the stability of these threshold values.
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After updating the threshold values in each epoch, SSM compares the k predictions
from the MoE with the corresponding k thresholds for each sample (x, y):

FC = [pt
i(y) > τt

i ] ∧ · · · ∧ [pt
k(y) > τt

k ], (4)

where FC ∈ {True, False}, ∧ denotes the logical AND operator. pt
i(y) is the predicted

probability of the i-th expert at epoch t on class y. A sample is considered clean if the
predicted probability for its label y exceeds the corresponding threshold for all experts.
Otherwise, it is deemed a noisy sample. By leveraging the diversity of MoE, SSM gains a
more comprehensive view of each sample, which aids in retaining more reliable samples.

Algorithm 1 describes the implementation of SSM in detail.

Algorithm 1 Sample Selection Module

Require: Predictions p1, . . . , pk of MoE for sample (x, y); thresholds τt−1
1 , . . . , τt−1

k of (x, y);
clean set Dt

C; noisy set Dt
N .

Ensure: Updated clean set Dt
C; updated noisy set Dt

N .
1: for each i in 1, . . . , k do
2: Update τt−1

i using Formula (3) to obtain τt
i ;

3: end for
4: Using Formula (4) to obtain FC
5: Dt

C = Dt
C ∪ {(x, y)} if FC is True else Dt

N = Dt
N ∪ {(x, y)}

6: return Dt
C, Dt

N

3.3. Paired Augmentation Module

Considering that class imbalance within FER datasets usually negatively affects the
performance of joint training, we propose the Paired Augmentation Module, which closely
collaborates with the SSM, to enhance the balance of class distribution and maximize the
utilization of all available training samples. Our idea is to increase the number of samples
in tail classes by enriching the background diversity.

As mentioned in Section 3.2, the SSM module divides the dataset D into two comple-
mentary subsets, i.e., the clean set DC and the noisy set DN . Consequently, a randomly
sampled minibatch B from D is also composed of two complementary subsets: BC, con-
sisting of clean samples, and BN , consisting of noisy samples. We denote the number of
samples in these subsets as NC and NN , respectively.

First, we count the number of samples in each class within BC and form a vector
h ∈ NC that represents the class distribution in BC, where C is the number of classes, and hi
denotes the number of samples in the i-th class. Next, we perform random sampling with
replacement from BC to obtain NN samples, which are then randomly paired with each
sample in BN . We use s to denote the class distribution of these sampled samples, which
are analogous to h. In this way, we obtain NN sample pairs, each consisting of a sampled
clean sample (xS, yS) from BC and a noisy sample (xN , yN) from DN .

Next, we apply the data augmentation method of Mixup [47] on each sample pair to
generate a new sample x̃ with the label ỹ inherited from the clean sample:

λ∼Beta(α, β) (5)

x̃ = λxS + (1 − λ)xN (6)

ỹ = yS (7)

where α and β are hyperparameters to control the Beta distribution, and λ is a value
sampled from this distribution. This step enriches the background diversity of the clean
samples by blending them with noisy samples while preserving the clean sample labels.
Finally, we replace the noisy samples xN in B with the newly generated samples x̃ to form
a new minibatch B̃. The batch size of B̃ is identical to B, with a class distribution of h + s,
and all samples in B̃ participate in the model training.
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However, the above steps are still not sufficient to balance the class distribution.
To increase the background diversity of tail class samples and enrich the tail class data,
the classes with fewer samples in BC should be sampled more frequently and combined
with noisy samples. Specifically, we aim to minimize the variance of the class distribution
vector h + s in B̃, which can be formulated as a constrained optimization problem:

min σ(h + s)

s.t.
C

∑
i=1

si = NN

0 ≤ si ≤
{

0, if hi = 0
NN , otherwise

, ∀ i ∈ [1, . . . , k]

(8)

In formula (8), si is 0 when hi = 0, as it is impossible to sample from BC for class i. In other
cases, si can range from 0 to NN , as sampling from BC is performed with replacement,
and the sum of all elements in s should equal the number of elements in BN , i.e., NN . We
solve this optimization problem using the Sequential Least SQuares Programming (SLSQP)
algorithm [48], and the obtained solution is discretized to yield the final class distribution
vector s to guide the sampling from BC.

Algorithm 2 describes the implementation of PAM in detail.

Algorithm 2 Paired Augmentation Module

Input: Minibatch B with a clean subset BC and a noisy subset BN .
Output: Balanced minibatch B̃.

1: Obtain class distribution vector h for BC by category count.
2: Solve Equation (8) using the SLSQP algorithm and discretize its result to obtain s.
3: Randomly sample NN clean samples with replacement from BC and ensure that their

class distribution satisfies s.
4: Pair the sampled clean samples with the noisy samples in BN , obtaining NN sample

pairs.
5: for each pair ((xS, yS), (xN , yN)) do
6: Generate a new sample x̃ using Mixup according to Equations (5) and (6).
7: Set the label of x̃ to ỹ = yS.
8: Replace (xN , yN) in BN with the newly generated samples (x̃, ỹ).
9: end for

10: B̃ = BC ∪ BN

3.4. Joint Training

We present the complete training process of SSPA-JT in Algorithm 3. Before training
begins, the target dataset DT and the auxiliary dataset DA are merged into a single dataset D.
Initially, all samples are assumed to be clean, so the clean set is defined as D−1

C = DT ∪DA,
while the noisy set D−1

N is empty, allowing the model to warm up on the entire dataset.
Throughout the training process, the samples from DT are always treated as clean, since
they are annotated according to the annotation standard of the target dataset, which ensures
consistent annotations. Additionally, all thresholds in the SSM buffer are initialized to 1

C .
SSPA-JT training is composed of two stages: the Sample Selection (SS) stage and

the Pairing Augmentation (PA) stage. During each epoch of the SS stage, the model
performs a forward pass on all samples in D, calculating k prediction probability vectors
for each sample. Then, based on the clean and noisy sets determined by the SSM in
the previous epoch, the loss is computed only for the samples in the clean set, which is
followed by backpropagation to update the model parameters. The SSM also updates the
thresholds in its buffer based on the k predictions for each sample in the current epoch
and then reclassifies the samples in DA, selecting those with consistent annotations as new
clean samples.
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After the SS stage, a fixed clean set DC and a fixed noisy set DN are obtained, which
are complementary and will be used for training in the following PA stage. In this stage,
the PAM is employed to perform paired augmentation on each minibatch B sampled from
D, yielding a class-balanced B̃. The classification loss for all samples in B̃ is calculated to
update the model parameters.

Throughout the training, all loss computations are based on the cross-entropy
loss function.

Algorithm 3 Joint Training

Input: Target dataset DT ; auxiliary dataset DA; sample selection epoch TS; max epoch
Tmax.

Output: Trained model M(·) with a feature extractor denoted E(·) and a mixture of expert
module denoted MoE(·).

1: Initialize D−1
C = DT ∪DA, D−1

N = ∅; Fix DT in DC; D = DT ∪DA;
2: Initialize threshold τ−1

1 , . . . , τ−1
k for each sample (x, y);

3: Initialize E with pre-training parameters, initialize MoE with random values;
4: for t = 0 in Tmax do
5: if t < TS then
6: Dt

C = ∅, Dt
N = ∅;

7: for B in D do
8: for (x, y) in B do
9: p1, . . . , pk = MoE(E(x))

10: if (x, y) ∈ Dt−1
C then

11: L = 1
k ∑k

i=1 LCE(pi, y)
12: Update parameters of M by minimizing L
13: end if
14: Update Dt

C and Dt
N by Algorithm 1

15: end for
16: end for
17: else
18: for B in D do
19: Get B̃ by Algorithm 2
20: for (x̃, ỹ) in B̃ do
21: p1, . . . , pk = MoE(E(x̃))
22: L = 1

k ∑k
i=1 LCE(pi, ỹ)

23: Update parameters of M by minimizing L
24: end for
25: end for
26: end if
27: end for

4. Experiments
4.1. Experiment Settings
4.1.1. Datasets

In this study, we evaluated our proposed method using three widely recognized
in-the-wild FER datasets: RAF-DB, CAER-S, and AffectNet.

• RAF-DB: The RAF-DB [9,10] dataset consists of 30,000 facial images annotated with
either basic or compound expressions. Following previous works, we only use the
images with seven basic expression categories, utilizing 12,271 training samples and
3068 test samples. The annotations in RAF-DB were created through a combination of
40 human coders and crowdsourcing techniques, providing a diverse and reliable set
of expression labels.

• CAER-S: Derived from the CAER [12] dataset, the CAER-S subset includes 65,983
images. This dataset is split into a training set with 44,996 images and a test set with
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20,987 images. Each image in CAER-S is labeled with one of seven basic expressions:
neutral, happiness, sadness, surprise, fear, disgust, and anger.

• AffectNet: AffectNet [11] is among the largest FER datasets, containing over one
million images obtained from the Internet using 1250 emotion-related keywords. Out
of these, 450,000 images have been manually annotated with 11 discrete labels. For
our experiments, we concentrate on the seven basic expression categories, consistent
with those in RAF-DB and CAER-S, utilizing a total of 283,721 samples corresponding
to these seven expressions.

Figure 5 presents some sample images from the these three datasets.

(a) (b) (c) (d) (e) (f) (g)

Figure 5. Facial expression samples from three datasets: the first row corresponds to the RAF-
DB dataset, the second row to the AffectNet dataset, and the third row to the CAER-S dataset.
The columns represent the seven emotion categories: (a) Anger, (b) Disgust, (c) Fear, (d) Happiness,
(e) Neutral, (f) Sadness, and (g) Surprise.

4.1.2. Evaluation Protocol and Metrics

In this section, we introduce the evaluation protocol and metrics used to assess the
performance of our proposed framework. The joint training algorithm is designed to train
on the combined training sets of both the target dataset and the auxiliary dataset. However,
validation is performed exclusively on the validation (or test) set of the target dataset. This
approach is essential because it ensures that the evaluation remains consistent by using a
fixed validation dataset, allowing us to accurately measure whether the expanded training
set leads to performance improvements on the target data.

We utilize four evaluation metrics to measure the effectiveness of our method: Ac-
curacy, Macro-Precision, Macro-Recall, and Macro-F1 Score. These metrics are chosen to
provide a comprehensive evaluation, particularly in terms of addressing the challenges
posed by class imbalance, which often moves the model bias toward majority classes.

• Accuracy is the proportion of correctly classified samples to the total number of samples:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

where TP stands for the number of true positives, TN stands for the number of true
negatives, FP stands for the number of false positives, and FN stands for the number
of false negatives.

• Macro-Precision evaluates the precision across all classes and then averages them,
giving equal weight to each class. It is calculated by
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Macro-Precision =
1
C

C

∑
i=1

TPi
TPi + FPi

(10)

where C represents the number of classes, and TPi and FPi are the numbers of true
positives and false positives for each class i, respectively. Macro-Precision helps
with understanding how well the model can avoid false positives across all classes,
particularly the tail classes.

• Macro-Recall calculates the recall for each class independently and then takes the
average. This metric is crucial for understanding how well the model can identify all
instances of each class, including the minority ones:

Macro-Recall =
1
C

C

∑
i=1

TPi
TPi + FNi

(11)

where FNi stands for the false negatives for each class i.
• Macro-F1 Score is the harmonic mean of Macro-Precision and Macro-Recall, providing

a balanced measure of the performance of models across all classes:

Macro-F1 Score =
1
C

C

∑
i=1

2 × Precisioni × Recalli
Precisioni + Recalli

(12)

where Precisioni and Recalli are the precision and recall for each class i, respectively.

The aforementioned metrics evaluate not only the overall accuracy of the model but
also the capability of the model to mitigate the class bias caused by class imbalance. The use
of Macro-Precision, Macro-Recall, and Macro-F1 Score ensures that the performance is mea-
sured fairly across all classes and gives particular attention to how well the model handles
the minority classes. In contrast, Macro-Accuracy may give a misleading impression of
performance, as the true positives for minority classes may be very limited, while true
negatives can be large, resulting in artificially inflated accuracy that does not accurately
reflect the model’s predictive capability for those categories. Therefore, we did not choose
Macro-Accuracy as a metric.

4.1.3. Details of Implementation

In our experiments, we used RAF-DB or CAER-S as the target datasets and AffectNet
as the auxiliary dataset. For the RAF-DB dataset, we used aligned images with seven
basic discrete labels, which were resized to 224 × 224 pixels. For the CAER-S dataset, we
detected and aligned all faces using similarity transformation and then resized them to
224 × 224 pixels. For the AffectNet dataset, we cropped the face images using the provided
bounding boxes, applied similarity transformation for alignment, and resized them to
224 × 224 pixels. We employed random cropping and random horizontal flipping as data
augmentation. We used ResNet-18 [49] pretrained on MS-Celeb1M [50] and ARM [51]
pretrained on ImageNet [52] as the backbones.

During training, we set the batch size to 128 and used the SGD optimizer with an
initial learning rate of 0.01, momentum of 0.9, and weight decay of 0.005. These values
were chosen based on preliminary experiments, which indicated that they provide a good
balance between convergence speed and stability. We trained the models for 80 epochs on
all datasets, employing a cosine annealing learning rate scheduler [53] to gradually decrease
the learning rate from the initial value to zero, which has been shown to improve training
efficiency. We set the number of sample selection epochs to 40, as this duration effectively
balances exploration and exploitation during the training process. The number of experts (k)
in the Mixture of Experts (MoE) was set to 3, which allows for sufficient diversity in expert
predictions without introducing excessive complexity. The EMA momentum coefficient in
the Sample Selection Module (SSM) was set to 0.95, facilitating stable updates of sample
selection while retaining important historical information. Finally, the beta distribution



Electronics 2024, 13, 3891 14 of 23

parameters α and β in the Paired Augmentation Module (PAM) were chosen as 5 and 1,
respectively, based on empirical results that indicated these values enhance the variability of
the sampled data while maintaining a strong representation of the underlying distribution.
All experiments were implemented on NVIDIA TITAN Xp GPU and PyTorch 1.12.1.

4.2. Comparisons with the State-of-the-Art FER Methods

We compare the performance of SSPA-JT with various state-of-the-art methods on two
target datasets, RAF-DB and CAER-S, using ResNet18 [49] and ARM [51] as backbones.
For the experiment on RAF-DB, SSPA-JT employed 10% of AffectNet as the auxiliary
dataset, while for the experiment on CAER-S, 20% of AffectNet was used. The reason for
using specific proportions of AffectNet as the auxiliary dataset for SSPA-JT is to avoid the
performance degradation caused by introducing too much auxiliary data, which will be
discussed in detail in Section 4.6.

As shown in Table 1, SSPA-JT obtained the highest accuracy of 92.44% on RAF-DB.
Compared with other joint training methods, such as IPA2LT [15], SCN [19], and DCJT [18],
which also incorporate extra data during training, SSPA-JT outperformed all in recognition
accuracy, which highlights its superior efficiency in using auxiliary data. Notably, while
other approaches like APViT [54] and LA-Net [37] have achieved high accuracies of 91.98%
and 91.56%, respectively, by employing different strategies to enhance FER performance,
SSPA-JT still surpassed them. This suggests that our joint training framework, combined
with the careful management of auxiliary data, provides a competitive advantage in FER
tasks. Among the compared methods, ARM [51] achieved an accuracy of 90.42% without
using any extra data because of its strong feature extraction capability. Including samples
from auxiliary datasets into the training process with the methods like DCJT and SSPA-JT
further improves the performance of ARM.

Table 1. Comparison with state-of-the-art methods on RAF-DB. SSPA-JT uses ARM as the backbone,
RAF-DB as the target dataset, and 10% of AffectNet as the auxiliary dataset. The best and second best
are bolded and underlined, respectively.

Backbone Acc. (%)

IPA2LT [15] 86.77 With extra data
SCN [19] 88.14 With extra data
RUL [34] 88.98
ARM [51] 90.42
EASE [35] 89.56
EAC [36] 89.99

APViT [54] 91.98
LA-Net [37] 91.56
DCJT [18] 92.24 With extra data
SSPA-JT 92.44 With extra data

Table 2 compares our method with multiple state-of-the-art methods on the CAER-S
test set. As the table indicates, SSPA-JT achieved the highest accuracy of 98.22%, signif-
icantly outperforming all other methods. This remarkable result further highlights the
effectiveness of our joint training framework in improving FER performance. Overall,
the comparison demonstrates that SSPA-JT is highly effective and achieves state-of-the-art
results, making it a promising approach for improving FER performance through the
integration of auxiliary data.
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Table 2. Comparison with state-of-the-art method on CAER-S. SSPA-JT uses ARM as the backbone,
CAER-S as the target dataset, and 20% of AffectNet as the auxiliary dataset. The best and second best
are bolded and underlined, respectively.

Backbone Acc. (%)

ResNet18 [49] 84.67
ResNet50 [49] 84.81

CAER-NET-S [12] 73.51
Res2Net [55] 85.35
MANET [56] 88.42

ARM [51] 91.54
EASE [35] 90.95

EAC [18,36] 91.33
DCJT [18] 94.57 With extra data
SSPA-JT 98.22 With extra data

Overall, the comparison demonstrates that SSPA-JT is highly effective and achieves
state-of-the-art results, making it a promising approach for improving FER performance
through the integration of auxiliary data.

4.3. Comparison with Other Joint Training Methods

To further demonstrate the effectiveness of SSPA-JT, we conducted additional experi-
ments to specifically compare its performance with other FER joint training methods using
RAF-DB and CAER-S as the target datasets. We employed ResNet18 and ARM as back-
bones and compared SSPA-JT with four other joint training strategies: (1) training solely on
the target dataset without extra datasets; (2) training on the dataset that combines the target
and auxiliary datasets; (3) the training strategy of SCN, which employs uncertainty-based
weighting for sample learning; and (4) the training strategy of DCJT, which aligns different
datasets using both discrete and continuous labels. Similar to the setting in Section 4.2,
SSPA-JT used 10% of AffectNet as the auxiliary dataset for the experiment on RAF-DB and
20% for CAER-S. In contrast, other methods employed the entire AffectNet dataset as the
auxiliary dataset by default. The experimental results are presented in Tables 3 and 4.

Table 3. Comparison of different joint training methods on the test set of RAF-DB based on the
ARM and ResNet18 backbones. * denotes that all of AffectNet is used as DA, † denotes only 10% of
AffectNet is used as DA. The best and second best are bolded and underlined, respectively.

Backbone Joint-Learning Method Acc. (%)

ResNet18

Without auxiliary dataset [18] 86.25
Combination straightly * [18] 84.62

SCN * [19] 88.14
DCJT * [18] 88.48
SSPA-JT † 88.23

ARM

Without auxiliary dataset [18] 90.42
Combination straightly * [18] 89.27

SCN * [18,19] 91.06
DCJT * [18] 92.24
SSPA-JT † 92.44

When evaluated on the test set of RAF-DB with ResNet18 as the backbone, the strategy
trained solely on the target dataset achieved an accuracy of 86.25%. However, combining
the two FER datasets directly for joint training led to a 0.63% decrease in accuracy compared
to using only the target dataset. The SCN method improved these results, reaching an
accuracy of 88.14%, which was a significant enhancement over the previous two methods
without any special design. DCJT further increased the accuracy to 88.48%, achieving the
best result with ResNet18. SSPA-JT obtained the accuracy of 88.23%, which was slightly
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lower than the performance of DCJT. For the experiments using ARM as the backbone,
a similar trend was observed. The model trained solely on the target dataset obtained an
accuracy of 90.42%. Directly combining the datasets caused a 1.15% drop in accuracy. SCN
improved this to 91.06%, and DCJT obtained a higher accuracy of 92.24%. Notably, SSPA-JT
achieved comparable accuracy (92.44%) with DCJT.

Similar results were observed from the experiment on the CAER-S dataset. These
results demonstrate that SSPA-JT effectively enhances the performance of FER joint training
particularly when using backbones with stronger feature extraction capabilities.

Table 4. Comparison of different joint training methods on the test set of CAER-S based on the ARM,
ResNet18 backbones. * denotes that all of AffectNet is used as DA, † denotes only 20% of AffectNet is
used as DA. The best and second best are bolded and underlined, respectively.

Backbone Joint-Learning Method Acc. (%)

ResNet18

Without auxiliary dataset [18] 84.67
Combination straightly * [18] 81.45

SCN * [18,19] 84.31
DCJT * [18] 86.39
SSPA-JT † 84.69

ARM

Without auxiliary dataset [18] 91.54
Combination straightly * [18] 84.36

SCN * [18,19] 90.39
DCJT * [18] 94.57
SSPA-JT † 98.22

4.4. Ablation Study

To further explore the contributions of each module in the SSPA-JT framework, we
conducted ablation experiments to assess the impact of individual components on overall
performance. We focused on four key components of SSPA-JT: (1) Sample Selection Module
(SSM), (2) fixing the target dataset to clean set (DT fixed), (3) Mixture of Experts module
(MoE), and (4) Paired Augmentation Module (PAM). The experiments were carried out
using ResNet18 and ARM as backbones, RAF-DB as the target dataset and 10% of AffectNet
as the auxiliary dataset. In addition to accuracy, we evaluated the performance in terms
of Macro-Precision, Macro-Recall, and Macro-F1 Score to provide a more comprehensive
assessment of the model. The experimental results of the ablation study are shown in
Table 5.

As shown in Table 5, joint training based on a direct combination of the target and
auxiliary datasets, i.e., none of the evaluated modules were employed, leads to a limited
performance, with accuracy being lower than that achieved by training on the target dataset
alone. Introducing the SSM module resulted in a slight improvement in accuracy, indicating
that the sample selection module enhances the quality of the dataset and improves the
performance of the model. However, in this case, the target dataset was not fixed as clean
set, the standard for samples selection during joint training was ambiguous, making the
selection process disturbed by the auxiliary dataset, which affects the effectiveness of
the selection.

When both SSM and fixed DT were employed, the accuracy of the model on both
backbones slightly exceeded the accuracy obtained by training solely on the target dataset.
This suggests that selecting samples from the auxiliary dataset in accordance with the
annotation standard of the target dataset improves the joint training and model perfor-
mance. The combination of SSM and fixed DT is particularly effective because it establishes
a clear standard for sample selection, making the process more targeted. As shown in
Figure 6, we provided visual examples of samples with consistent annotations and those
with inconsistent annotations, offering an intuitive understanding of the impact of SSM.
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Table 5. Ablation study on RAF-DB as the target dataset DT and 10% of AffectNet as the auxiliary
dataset DA using ResNet18 and ARM backbones. DT fixed denotes always fixing DT to the clean
set DC. Macro-P denotes Macro-Precision, Macro-R denotes Macro-Recall, and Macro-F1 denotes
Macro-F1 Score. All results are presented as percentages. The best and second best are bolded and
underlined, respectively.

Modules MetricsBackbone SSM DT Fixed MoE PAM Acc. Macro-P Macro-R Macro-F1

85.06 78.36 75.93 76.92
✓ 86.53 82.53 77.07 78.92
✓ ✓ 86.76 81.10 78.31 79.37
✓ ✓ 86.51 83.99 75.95 78.15
✓ ✓ 85.27 79.84 74.64 75.67
✓ ✓ ✓ 87.35 83.02 78.67 80.28
✓ ✓ ✓ 87.28 81.52 79.99 80.51
✓ ✓ ✓ 83.71 78.02 68.19 68.08

ResNet18

✓ ✓ ✓ ✓ 88.23 81.78 81.80 81.76

89.84 84.24 83.65 83.91
✓ 90.29 85.32 82.94 83.85
✓ ✓ 90.75 85.10 83.87 84.00
✓ ✓ 90.03 84.89 81.53 82.80
✓ ✓ 87.53 84.11 75.44 77.50
✓ ✓ ✓ 91.33 85.94 85.40 85.61
✓ ✓ ✓ 91.63 88.41 86.10 87.14
✓ ✓ ✓ 88.41 83.94 76.80 79.05

ARM

✓ ✓ ✓ ✓ 92.44 89.18 86.46 87.66

Incorporating MoE or PAM alongside SSM and fixed DT led to further accuracy
improvements. The MoE module increased the model capacity and provided SSM with
diverse predictions, which allowed the model to better capture the characteristics of each
sample and improved the selection of samples with consistent annotation. Table 5 also
shows that PAM alleviated the class bias caused by the imbalance in the FER datasets and
enhanced the overall model performance. In the case DT was fixed, training incorporating
PAM consistently led to significantly higher Macro-Precision, Macro-Recall, and Macro-F1
Score values compared to other designs.

(a) (b)
Figure 6. Visualization of sample selection via SSM at the final epoch. (a) Samples with consistent
annotations; (b) samples with inconsistent annotations.

When all modules were employed, forming the complete SSPA-JT, the model achieved
the best performance on both backbones. The ablation experiments demonstrate that
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each module in SSPA-JT plays a crucial role, working synergistically to produce superior
performance. These results also indicate that addressing both label inconsistency and
class imbalance is essential to significantly improve the effectiveness of joint training on
FER datasets.

4.5. Hyperparameter Experiments

To analyze the sensitivity of SSPA-JT against the variation of the hyperparameters,
we conducted experiments where we set different values to the number of experts k in
the MoE and the parameters α and β of the beta distribution used for Mixup in the PAM.
The experiments were carried out using ARM as backbones, RAF-DB as the target dataset
and 10% of AffectNet as the auxiliary dataset.

Table 6 shows the impact of the number of experts in MoE. When the value of k was
set to 3, SSPA-JT obtained the best performance in all metrics. However, the performance
decreased when k was either too large or too small. Our opinion is that a small k limits the
capacity of model to leverage diverse expert opinions, which leads to underfitting. On the
other hand, a large k may introduce redundancy and increase the complexity of the model,
which results in overfitting or difficulty in effectively combining the outputs of multiple
experts. Therefore, a moderate value of k strikes a balance between model complexity and
representational capacity, provides richer information for sample selection, and leads to
improved performance.

Table 6. The results of SSPA-JT using different numbers of experts in MoE. The best and second best
are bolded and underlined, respectively.

k Acc. Macro-P Macro-R Macro-F1

1 91.34 87.08 84.77 85.79
2 91.63 87.69 84.39 85.86
3 92.44 89.18 86.46 87.66
5 91.47 87.70 84.12 85.69
10 90.46 85.69 80.93 82.92

Table 7 indicates the impact of different beta distribution parameters α and β in the
PAM. It shows that SSTA-JT obtained the highest Accuracy, Macro-Recall, and Macro-F1
Score, and it obtained the second highest Macro-Accuracy when α and β were set to 5 and
1, respectively. The performance declined when α or β values deviated significantly from
this configuration. For example, the performance metrics decreased when α was set to
10 and β to 1, since Mixup does not provide sufficient augmentation diversity by producing
samples similar to the original samples. On the other hand, when α was set to 1 and β to
10, the generated samples may be too noisy or dissimilar, leading to degraded performance.
Therefore, it is crucial to find an appropriate balance in the beta distribution parameters to
achieve effective augmentation and improved model performance.

Table 7. The results of SSPA-JT using different beta distribution in PAM. The best and second best are
bolded and underlined, respectively.

β α Acc. Macro-P Macro-R Macro-F1

1

1 91.79 88.21 83.97 85.81
3 91.53 87.69 83.96 85.60
5 92.44 89.18 86.46 87.66
10 91.24 85.99 84.70 85.27

3

1 91.14 86.64 84.48 85.47
3 91.79 89.09 84.51 86.55
5 91.43 87.65 84.22 85.78
10 91.82 87.84 85.00 86.28
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Table 7. Cont.

β α Acc. Macro-P Macro-R Macro-F1

5

1 90.36 86.08 83.85 84.72
3 91.50 88.14 84.40 86.07
5 91.34 87.20 83.48 85.17
10 91.82 88.43 84.57 86.27

10

1 91.11 86.08 85.08 85.36
3 91.05 87.01 84.38 85.50
5 91.34 86.59 83.93 85.14
10 91.86 89.25 84.75 86.73

4.6. Discussion on the Impact of Auxiliary Dataset Scale

In our experiments, we observed that the scale of the auxiliary dataset significantly
impacted the performance of SSPA-JT. Contrary to common assumptions, a larger auxiliary
dataset does not always lead to better performance. To further investigate this pattern in
detail, we conducted experiments using ARM as the backbone, with RAF-DB as the target
dataset and varying the proportions of AffectNet as the auxiliary dataset.

Table 8 shows the accuracy of SSPA-JT using different proportions of the AffectNet
training set as the auxiliary dataset while keeping RAF-DB as the target dataset. The data re-
veal that SSPA-JT achieved the best performance when the scale of the auxiliary dataset was
comparable to or slightly larger than that of the target dataset. Specifically, with ResNet18
as the backbone, the best accuracy (88.23%) was obtained when 10% of AffectNet was used.
Once the proportion increased beyond this point, the performance of SSPA-JT declined.
For example, the accuracy of SSPA-JT dropped to 83.50% when 100% of AffectNet was used.
This suggests that a moderate amount of auxiliary data provides beneficial information.
Too much auxiliary data may introduce additional noise or domain discrepancies that
hinders generalization.

Table 8. Results of SSPA-JT on RAF-DB as the target dataset and different proportions of AffectNet
as the auxiliary dataset. Percentage denotes the proportion of AffectNet training set used. The best
is bolded.

Backbone Percentage (%) Acc.

0 86.25
3 87.18
5 87.41

10 88.23
20 86.36
50 85.88

ResNet18

100 83.50

0 90.42
3 91.47
5 91.99

10 92.44
20 91.57
50 91.30

ARM

100 89.09

A similar trend is observed when using ARM as the backbone with the highest
accuracy of 92.44% achieved when 10% of AffectNet was used. Increasing the amount of
auxiliary data beyond this scale again led to a decline in performance.

To further illustrate the effectiveness of SSPA-JT, we also conducted experiments where
the target and auxiliary datasets were directly merged for joint training without the SSPA-JT
framework. The results of these experiments are shown in Table 9. For both backbones,
the best performance was achieved when the target dataset was used alone without any
auxiliary data. In the case of ResNet18, the performance consistently deteriorated as the
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size of the auxiliary dataset increased. Although the trend is less pronounced for ARM, the
direct merging of datasets still led to a decline in performance. This might result from the
powerful feature extraction capability of ARM, which makes ARM more robust to label
noise introduced by annotation inconsistencies among datasets. However, even with ARM,
a large auxiliary dataset without proper handling also led to degraded performance.

Experimental results of Tables 8 and 9 indicate choosing an appropriate proportion
of the auxiliary dataset and employing a robust joint training framework like SSPA-JT are
crucial for achieving improved FER performance.

Table 9. Results of directly merging RAF-DB with different proportions of AffectNet. Percentage
denotes the proportion of AffectNet training set used. The best is bolded.

Backbone Percentage (%) Acc.

0 86.25
3 86.21
5 86.04

10 85.06
20 84.87
50 84.97

ResNet18

100 84.62

0 90.42
3 89.52
5 89.71

10 89.84
20 89.48
50 89.42

ARM

100 89.27

5. Conclusions

In this study, we propose the SSPA-JT framework to address the challenges of annota-
tion inconsistency and class imbalance in multi-dataset joint training for FER. By modeling
annotation inconsistency as a problem of label noise and incorporating sample selection
alongside a dynamic matching algorithm for tail class augmentation, our method effectively
mitigates the negative impact of these issues on model performance. Experimental results
confirm that SSPA-JT not only improves FER accuracy but also enhances the robustness of
models against background noise and class bias. The proposed framework offers a viable
solution to improve the effectiveness of joint training across multiple datasets with diverse
annotation standards and imbalanced class distributions.

Future work could focus on adapting the SSPA-JT framework for additional domains,
such as emotion recognition in video or integrating multi-modal data. Exploring its
potential in combination with advanced techniques like self-supervised learning and
adaptive data augmentation could further enhance its performance and adaptability. These
directions hold promise for advancing the field and developing more robust and versatile
FER systems.
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