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Abstract: The task of camouflaged object segmentation (COS) is a challenging endeavor that entails
the identification of objects that closely blend in with their surrounding background. Furthermore,
the camouflaged object’s obscure form and its subtle differentiation from the background present
significant challenges during the feature extraction phase of the network. In order to extract more
comprehensive information, thereby improving the accuracy of COS, we propose a diffusion model
for a COS network that utilizes frequency domain information as auxiliary input, and we name
it FreDiff. Firstly, we proposed a frequency auxiliary module (FAM) to extract frequency domain
features. Then, we designed a Global Fusion Module (GFM) to make FreDiff pay attention to
the global features. Finally, we proposed an Upsample Enhancement Module (UEM) to enhance
the detailed information of the features and perform upsampling before inputting them into the
diffusion model. Additionally, taking into account the specific characteristics of COS, we develop
the specialized training strategy for FreDiff. We compared FreDiff with 17 COS models on the four
challenging COS datasets. Experimental results showed that FreDiff outperforms or is consistent
with other state-of-the-art methods under five evaluation metrics.

Keywords: camouflaged object segmentation; diffusion model; frequency domain; global feature;
computer vision

1. Introduction

Camouflage involves an object altering its color, texture, shape, and behavior to re-
duce the likelihood of detection, thus achieving self-protection or misleading the enemy
in both natural and artificial environments. In nature, many animals possess exceptional
camouflage abilities, mimicking the colors or textures of their surroundings to conceal
themselves [1]. For example, antelopes utilize their spiral-shaped horns, which resemble
the vines of shrubs, to evade predators and approach prey. In the military domain, cam-
ouflaging objects plays a crucial role, with military facilities, equipment, and personnel
often requiring camouflage to blend into their surroundings, thus decreasing the likeli-
hood of being detected by the enemy [2]. The task of camouflaged object segmentation
(COS) aims to segment camouflaged objects from complex scenes where they are highly
integrated with the environment. COS finds extensive downstream applications, such as in
medical segmentation [3], industrial quality inspection [4], agricultural pest detection [5],
and remote sensing [6].

In recent years, with the development of deep learning, researchers have pushed the
performance of COS algorithms to new heights. For instance, most existing COS models
adopt a multi-stage learning approach [7-10], where they first make a coarse prediction
of the overall region and then refine the preliminary results obtained from the previous
stage using various methods to arrive at the final prediction. It is also feasible to combine
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auxiliary tasks with the COS task. Similar to COS, Salient Object Segmentation (SOS) [11]
requires extracting object attributes, but one focuses on extracting salient objects while the
other focuses on extracting camouflaged objects. Although COS and SOS differ in terms of
the distinguishability between the target and the background as well as their application
scenarios, the similarities and complementarities between SOS and COS can be leveraged to
enhance each other’s performance. Li et al. proposed UJSC [12], which combines SOS and
COS tasks by treating simple samples from the camouflaged dataset as difficult samples
in the SOS task, utilizing the contradictory information between them to enhance their
respective segmentation capabilities. CamDiff employs a diffusion model to synthesize
salient objects in camouflaged images, thereby increasing image diversity and improving
the model’s robustness and segmentation performance [13]. Some studies attempt to utilize
depth information [14] and boundary information [15] to reduce background interference
and determine object contours, thereby guiding the model to precisely locate camouflaged
objects.

Most COS methods are primarily built upon general semantic segmentation, employ-
ing a single network to specifically extract object features and subsequently utilizing a
decoder to directly obtain the predicted segmentation mask. However, this paradigm
tends to overlook global information and confuse the subtle boundary features between
camouflaged objects and their environments, resulting in unsatisfactory segmentation
predictions. Furthermore, these methods heavily rely on pre-annotated ground truth (GT)
masks, which may lead to the model becoming overly sensitive and dependent on detailed
features, thereby causing a high false alarm rate in segmentation. In recent years, guided
diffusion models have developed rapidly, which guide the generation process of diffu-
sion models by adding auxiliary information such as text, physics, boundaries, and other
conditions [16-18].

Addressing the aforementioned challenges, we propose a frequency-guided camou-
flaged object segmentation network based on a diffusion model, termed FreDiff. Specifically,
this approach leverages the frequency information of images to extract more comprehen-
sive details, thereby tackling the issue where similar features are easily confounded in
existing frameworks. By leveraging a diffusion model, the task of image segmentation is
transformed into an image generation task. Through continuous iterative refinement and
denoising of the prediction maps, the high false alarm rate problem inherent in COS models
is alleviated. Figure 1 elucidates the distinctions between the COS network grounded on
the diffusion model and conventional COS networks.

Specifically, we design the frequency auxiliary module (FAM) and simultaneously
input the image into both the object segmentation network and the frequency feature
extraction module. Subsequently, we design the Global Fusion Module (GFM) to focus
on global information during feature extraction, thereby enhancing the understanding of
object relationships within the images. Furthermore, we propose the Upsample Enhance-
ment Module (UEM) that focuses on detailed information such as object boundaries and
textures, aiming to reduce the probability of missed detections. Lastly, we optimize the
noise schedule of the diffusion model specifically for the characteristics of the COS task,
improving the overall segmentation performance of the model by accelerating the noise
injection process during training. To summarize, the main contributions of this paper are
as follows:

1. We construct a diffusion model for the COS network with the frequency domain,
FreDiff. We propose FAM to extract frequency domain information from images and
achieve feature alignment through the feature fusion module, thereby obtaining more
comprehensive information about camouflaged objects.

2. We design GFM and UEM, which allow FreDiff to focus on global features and
boundary detail features, respectively, thereby enhancing its understanding of image
information and refining edge details.
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3. We propose a noise schedule for the diffusion model tailored for COS, which improves

the model’s segmentation performance and training efficiency by increasing the speed

of noise addition during the training stage.

Network Prediction GT

(a) Normal COS paradigm

Diffusion' Mod(;I R Prediction

 Denoising

~—_ — o1, ~—— or
Reverse =

(b) Diffusion Model for COS paradigm

Figure 1. The paradigm of camouflaged object segmentation. (a) The normal COS paradigm inputs
images into the network for mask prediction. (b) The diffusion model for the COS paradigm inputs
images through the backbone to obtain features, and then utilizes the diffusion model to iteratively
refine the noisy GT image, ultimately generating the mask prediction.

The rest of this paper is structured as follows: In Section 2, we introduce the related
work. Section 3 describes the network structure of FreDiff in detail, as well as its mathemat-
ical derivation process, training, and inference strategies. Section 4 gives the discussions of
experimental results. Finally, we summarize the research content in Section 5.

2. Related Work
2.1. Camouflaged Object Segementation

COS is a task aimed at mimicking the visual system of predators to segment objects
hidden in the environment. Compared with other segmentation tasks, COS is a category-
agnostic task, where a camouflaged object refers to all pixel points in the camouflaged area
of an image. This task involves predicting the probability of each pixel in an image under
the supervision of a binary mask, requiring the COS algorithm to assign labels to each pixel
point. A label value of 0 indicates that the pixel does not belong to a camouflaged object,
while a label value of 1 indicates that the pixel fully belongs to a camouflaged object [19].
This is used to determine whether each pixel belongs to a camouflaged object. Figure 2
shows the difference between camouflaged objects and ordinary objects, with camouflaged
objects being more difficult to recognize compared to ordinary objects.
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(a) general object (b) camouflaged object

Figure 2. Difference between camouflaged object and general object.

In recent years, with the rapid development of deep learning technology, the demand
for recognizing camouflaged objects has increased significantly, leading to growing at-
tention on the task of COS. In 2019, Le et al. proposed the Anabranch Network (ANet)
architecture as a basic framework for COS [20]. In 2020, Fan et al. introduced the COS task
and developed a simple yet effective Search Identification Network (SINet) [1]. In 2021, Lv
et al. proposed the first ranking-based network, Rank-Net, for simultaneously locating,
segmenting, and identifying camouflaged objects, and released the NC4K dataset [21].
In 2022, Zhang et al. proposed the first camouflaged object segmentation network that
introduces depth prior information, which can reduce the ambiguity of RGB features in
complex scenes and mitigate camouflage effects, making it more sensitive to capturing the
true boundaries of camouflaged objects [22]. In 2023, He et al. proposed the first end-to-end
weakly supervised COS framework and released the first dataset with scribble annotations
for weakly supervised COS [23]. In 2024, Pang et al. proposed ZoomNext, which introduces
a unified collaborative pyramid network that mimics the zoom-in and zoom-out behavior
of human observers when viewing blurred images and videos [24]. Through continuous
development, COS has become an important task in the field of computer vision, spawning
novel and diverse research ideas that enhance the ability to extract features of camouflaged
objects.

2.2. Diffusion Model

The diffusion model, originating from non-equilibrium thermodynamic theory, is a
probabilistic generative model. The core idea of the diffusion model is to generate high-
quality data by gradually adding noise to the data and learning to reverse this process.
The working principle of the diffusion model is divided into two main stages: the forward
diffusion process and the reverse diffusion process. In the forward diffusion process, the
model gradually adds Gaussian noise to the data, forming a Markov chain, until the data
in the image are completely covered by noise. In the reverse diffusion process, a neural
network is trained to learn how to gradually denoise from noisy data and recover the
original data. The diffusion model has received widespread attention for its powerful
generative capabilities and ability to retain details, enabling it to demonstrate outstanding
performance in various fields such as image generation, image restoration, audio generation,
and style transfer. Since the introduction of the denoising diffusion probabilistic model
(DDPM) in 2020 by Ho et al. [25], DDPM was the first application of the denoising diffusion
probabilistic model to image generation tasks, which laid the foundation for the use of
diffusion models in the field of image generation. In 2022, Wu et al. proposed MedSegDiff,
the first network based on the diffusion probabilistic model (DPM) for general medical
image segmentation tasks [26]. In 2023, Chen et al. introduced a diffusion model for
COS named Camodiffusion, which provides a new perspective and solves many existing
problems in COS tasks [27]. In the same year, by modeling the object detection task as a
denoising diffusion process from noise boxes to object boxes, DiffusionDet successfully
introduced the advantages of generative models into object detection [28].
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2.3. Frequency-Guided Segmentation

Frequency representation, as a new paradigm for learning differences between cate-
gories, can uncover information overlooked by human vision. By utilizing more frequency
information, the differences between categories can be enhanced, making the boundaries
between each category clearer and thereby improving the effectiveness of semantic seg-
mentation. In COS tasks, it is often necessary to retain and enhance the edge information of
camouflaged objects, which is mostly located in the higher frequency range. Frequency
information reveals the frequency distribution of the image, helping to determine the target
information in the image.

In the past few years, frequency-aided techniques have been widely used in object
segmentation tasks, but their application in COS-related tasks has been relatively limited.
In 2020, Xu et al. proposed using the spatial frequency domain instead of RGB images as
input to CNNs for extracting feature vectors [29]. This method can significantly reduce
data transmission and improve model accuracy to some extent. In 2022, Zhong et al.
proposed a method that utilizes frequency domain information to assist RGB information
in the detection of camouflaged objects [30]. In 2023, Cong et al. adopted a two-stage
model, including a frequency-guided coarse localization stage and a detail-preserving fine
localization stage, to achieve the precise detection of camouflaged objects [31]. Also in 2023,
Dong et al. proposed a headless lightweight semantic segmentation-specific architecture,
AFFormer, which learns local descriptive representations of clustering prototypes from a
frequency perspective [32]. This paper extracts frequency feature information and inputs it
into a diffusion model to assist the model in generating high-quality segmentation results.

3. Methods

As illustrated in Figure 3, we propose a denoising diffusion probabilistic model for
COS network FreDiff, which is an image generation model rooted in Markov chains. This
process encompasses a forward training stage and a reverse sampling stage.

q(z, 1z

(b) Diffusion model for image generation task

mask, mask,_; mask, masky
w P4

______

(¢) Diffusion model for COS task
Figure 3. The diffusion process of DDPM for COS.

3.1. Mathematical Derivation
3.1.1. Forward Process

Given an initial data distribution, zgp ~ ¢(z), the forward diffusion process gradually
adds random noise to the original input image maskg, where the noise follows a Gaussian
distribution NV (0,I). The image mask; obtained at each step is only related to the noisy
result mask;_1 of the previous step. This noising process continues for T steps, generating a
series of noisy images, masky, masky, - - - maskr, ultimately resulting in an image that tends
to be pure noise.

In the process of adding noise to transform image data from mask;_; to mask;, the
variance of the noise is determined by a fixed value 1 within the interval (0, 1), while the
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mean is determined by both this fixed value Bt and the current image data mask;_;. The
aforementioned noise addition process can be expressed mathematically as follows:

q(mask¢|mask;_1) = N (masky; /1 — Bymask;_1, B1) 1)
q(masky.r|maskg) = 11_,q(mask;|mask;_1), ()

where t € [1, T], mask; represents the image at step t, and I represents a variance matrix
that has the same dimensions as the input image.

It is not necessary to iteratively obtain mask; from maskgy, masky, - - - step by step.
Instead, the latent variable mask; can be directly derived from masky and a fixed value

sequence, {Br € (0,1) }thl. The formula is as follows:
q(mask¢|maskq) = N (maske; /aymasko, (1 — a)1) 3)
In the formula, a; := 1 — B¢ and &; := IT},_ ;.

3.1.2. Backward Process

The reverse process is a process of continuously removing noise, which reverses the
direction of the aforementioned process. Given a noisy image maskr, it gradually denoises
and restores it until the original image mask is finally recovered. Reversing the direction
of the aforementioned process, we sample from g(mask;_1|mask;) and reconstruct a real
original sample within a random Gaussian distribution (0, I), meaning that we obtain
a real image from a completely chaotic noisy image. Therefore, it is necessary to learn a
model, py, to approximate this conditional probability, so as to run the reverse diffusion
process. The formula is as follows:

pe(masko.r) = p(maskr )1, pg(mask;_1|mask;), 4)
po(mask;_1|mask;) = N(muskt,l;ye(maskt,t),Z(maskt,t)), (5)
6

In the formula, the specific expressions of yg(mask;, t) and Yy (mask;, t) can be repre-
sented by Formulas (6) and (7):

Bt

po(mask, t) = ;E(maskt = @Sg(maskt,t)), (6)
;(maskt,t) = ,Et = (1_10:7?%)& ~ Bt (7)

where pg(mask;, t) denotes the mean, Y g (mask;, t) denotes the variance, and 6 represents
the model parameters.

The reverse process can be summarized as follows: given mask;, first predict the
Gaussian noise €y (mask, t), then calculate the mean pg(mask, t) and variance Y g(mask;, t)
of pg(mask;_1|mask;), and finally iteratively derive mask, through further steps.

3.2. FreDiff Architecture Design

The FreDiff we propose is depicted in Figure 4a. Firstly, the image is simultaneously
input into the feature extraction backbone and FAM. Then, the extracted features are fused
by FF and input into the GFM to make the model focus on global information. After that, it
is input into the UEM to enhance the detail information. Next, the feature information and
the mask image are input into the diffusion model together. Finally, the predicted mask is
generated through iterative refinement.
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Figure 4. Frequency-guided COS network based on diffusion model (FreDiff) structure. (a) FreDiff
structure. (b) Backbone PVTv2 structure.

3.2.1. Backbone

The backbone is capable of transforming data into more advanced and abstract feature
representations, capturing important information within the data. Therefore, the backbone
plays a crucial role in enhancing the performance of the entire model. This paper selects the
PVTv2 backbone for experimentation [33]. The backbone structure is shown in Figure 4b.
Specifically, given an input image of size H x W x C, it is divided into blocks of size

HW
F € R s . Convolution is applied with a stride of S, a kernel size of 2S — 1, and padding
of S — 1. Then, the unfolded blocks are fed into a linear layer to obtain embedded blocks

HW
of scale F € Rs2 *“/, Finally, the embedded blocks, along with positional embedding
information, are sent to the Transformer Encoder, whose output is reshaped to a size

of F € RS*5$*C PVTv2 introduces a linear complexity attention layer named Linear
Spatial Reduction Attention (Linear SRA), which significantly reduces the computational
complexity of the model when processing high-resolution images. Variants such as Bl, B2,
etc., in PVTVv2 represent different model versions of scales and configurations. They adapt
to different computational resources and task requirements by adjusting hyperparameters.
FreDiff selects PVTv2-B3 for the experiment.

3.2.2. FAM

Camouflaged objects are adept at utilizing colors and textures that are highly similar
to their backgrounds to deceive the visual system. However, frequency information has the
ability to uncover subtle differences between camouflaged objects and their backgrounds
that are hard to detect in the spatial domain. For this purpose, we propose the frequency
auxiliary module (FAM), which aims to extract frequency information from images and
use it as auxiliary information for segmenting camouflaged objects.
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W

The specific frequency auxiliary module is shown in Figure 5. Firstly, the input
image is processed using the YCbCr color space, which can fully utilize its characteristics
of separating luminance and chrominance, improve compression efficiency, and more
accurately reflect the detailed features of the image while maintaining image quality. Then,
the block processing and discrete cosine transform (DCT) are performed to obtain spectral
information. The spectral information is integrated and output, which can be divided
into high-frequency and low-frequency components. The high-frequency information
fn enhances the detailed features such as edges and textures of the objects in the image,
while the low-frequency information f] forms the overall framework of the image. These
two components are separately input into two multi-head self-attention modules, and
their outputs are concatenated and reshaped to restore the original shape. Subsequently,
multi-head self-attention is used to harmonize all frequency band information, and finally,
frequency feature information x is obtained through upsampling operations. The formulas
for the progress are as follows:

fl; = M(fh) S uP(M(fl—M)IZ)r 8)
fl = M(fy) @ down(M(f,1),2), )
Xp= Re(M (Re(Concat(f], f;)))), (10)

where “up” represents the upsampling operation, “down” represents the downsampling
operation, Re represents the reshape operation, and M denotes processing by the multi-
head self-attention mechanism.

Patch. . .DCT . . .
(B BN | B e
—_— —

ﬁ ‘ 41 Multi-head

¥ Attention By
Reshape ey (CT TSR Reshape T
PP i— Multtahead Pri—
e . 2
) . /i Multi-head - J?

77 - Attention
T EEREEs
Figure 5. Frequency auxiliary module (FAM) structure.

To ensure the integrity of extracted features, we designed feature fusion (FF) to align
frequency features with extraction from the backbone features, facilitating better integra-
tion into the network. Firstly, frequency features undergo frequency domain adjustment
learning through an adaptive filter, which effectively eliminates noise components. Sub-
sequently, features from the spatial and frequency domains are concatenated, and their
common features are processed through a two-dimensional convolution with a kernel size
of 3 and a sigmoid function to obtain x.. The feature information from the two domains
is separately merged with x..;;, and finally, an addition operation is performed to obtain
the ultimate fused features f. The formulas for the progress are as follows:

Xeon = (0(Conv(Concat(xy, x7)))), (11)

f=(xcon ® Xf) + (Xcon ® x7). (12)
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3.2.3. GFM

Global features can capture the overall shape, contour, and position distribution of
the target in the image, helping the model to identify camouflaged objects holistically and
reducing the misidentification of the background or other non-target objects as camouflaged
objects, thereby improving the accuracy of segmentation. Therefore, we propose GFM,
which performs feature enhancement learning in the spatial domain.

As shown in Figure 6, GFM captures further spatial information from shallow local
detail features using 3 x 3 convolutions to obtain initial enhanced features. Next, multi-
scale convolution processing is performed, generating richer and more comprehensive
feature representations by convolving with different kernel sizes. Then, channel attention is
obtained through one-dimensional convolution operations and the sigmoid function, and
spatial information is aggregated by the global average pooling layer; this process reduces
the number of parameters, thereby reducing overfitting. Finally, the channel attention is
multiplied with the input features, and the channels are reduced by a 1 x 1 convolution
layer to obtain the final output. This process can be expressed mathematically as

feonvs = Feonvs(f) ® f, (13)
feat = Concat(Feonvs(feonvs), Feonvs (feonvs), Feonvz (feonvs)), (14)
f1 = Feono1 (GAP(0(Fconv1a(feat))) @ feat), (15)
3x3 Conv
@ » 5x5 Conv Concat |-»  —| Convid _.@_. GAP Cl(:(riv L.
L 7x7 Conv

Figure 6. Global Fusion Module (GFM) structure.

In the formula, GAP is the abbreviation for global average pooling, o represents
the sigmoid activation function, ® denotes element-wise multiplication, F.onyi repre-
sents i X i convolution, and F 14 denotes the one-dimensional convolution operation
and @ denotes element-wise addition.

3.2.4. UEM

Feature enhancement can highlight the detail information in images, which is crucial
for COS. We design the Upsample Enhancement Module (UEM), which can enhance the
representation learning of feature details of camouflaged objects. Since some redundant
information is introduced during feature extraction, UEM can make the model focus more
on effective information such as the boundary feature and texture feature. The UEM
structure is shown in Figure 7.

First, the feature f’ is input into a two-dimensional convolution layer, processed
through a BN layer and ReLU function. Subsequently, the feature is fed into both an
average pooling layer and a max pooling layer, and then we perform the concat operation.
This approach effectively pays attention to the edge and texture details of the feature while
preserving its background information. Finally, the fused feature is processed through a
1 x 1 convolution layer, a BN layer, and a sigmoid function to obtain f"’':

f// = RELU(BN(]:conde (f/)))/ (16)
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f"" = o(BN(Feonor (Concat(AP(f"), MP(f")))), (17)

where BN denotes Batch Normalization, F ony24 represents two-dimensional convolution,
ReLU denotes the ReLU activate function, and AP and MP represent average pooling and

maximum pooling, respectively. LN denotes the Layer Norm and o represents the sigmoid
activate function.

3
%
X
<
> —
o i 5)
% =1
o .
-—8' o
[y S—
=
< e |
= =
X X
=l [EE
5] & &
@) o

Figure 7. Upsample Enhancement Module (UEM) structure.

Subsequently, the feature f’ is processed through a 1 x 1 convolution layer, a BN layer,
and a ReLU function to obtain f/. Then, the previously processed feature /" is fused with
f{, and the fused result is further processed through a linear operation and a SiLU activation

function. Finally, the upsampling process is used to output the features as x; € RY*%.
This process can alternatively be represented mathematically as follows:

le = BN(]:convl (RELU(BN(]:convl (f,)))))/ (18)

xj = Up(L(SILU(L(f" ® f1)))), (19)

In the formula, Fony1 represents 1 x 1 convolution, SiLU denotes the SiLU activate
function, £ represents the linear operation, and UP represents the upsampling process.

3.3. Training and Sampling Strategies
3.3.1. Training Strategy

Algorithm 1 represents the pseudocode for the training process of FreDiff. During the

training phase, the diffusion process of generating noisy image samples from the ground
truth (GT) masks is first constructed, and then FreDiff is trained to perform the reverse process.

Algorithm 1: Training Stage

Input: Image, mask
ddpm_training_loss (Image, maskg):
Repeat

step ~ Uniform ({1, ..., T})

Image ~ q (Image)

mask ~ q (maskg)

e~ N(0,1)

mask; = \/aymaskg + oe

# € noise vector

Take gradient descent step on:

Vo L(maskg, FreDiff(mask;, Image, t))
Until converged

The Signal-to-Noise Ratio (SNR) measures the proportion between the signal and
noise levels. SNR refers to the ratio between signal strength and noise strength. When SNR
is high, denoising is easier because noise is relatively small compared to the effective signal.
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In the diffusion model, a series of intermediate states are constructed by gradually adding
noise, ultimately converting the image into noise, and then training the model to gradually
eliminate this noise. When the domain information between datasets differs significantly,
the complexity and diversity of the information that the model needs to process increase.
In such cases, the model may be more susceptible to noise interference because noise may
exist in different forms in different datasets. According to the definition of SNR,

SNR; = % (20)
t

In the formula, unweighted loss is commonly used, where a? = sigmoid(log SNR(t))
and 07 = sigmoid(—log SNR(t)).

The noise schedule used in this paper is a-cosine, where a; = cos(7tt/2) and 0; =
sin(7rt/2) are specified. Given the Signal-to-Noise Ratio (SNR),

1

The expression of the SNR-shifted variance schedule [34] is
log SNR; = —210g(tan( 5 )) + shift. (22)

The noise schedule can be defined relative to a reference resolution. Based on experi-
ence, the reference resolution is chosen as 64 x 64. Since the input image resolution in this
paper is 384 x 384, the noise schedule equation for FreDiff can be expressed as

64
log SNR; = —210g(tan( 5 )) +2lo g(384) (23)

In the COS task, when the domain information between datasets differs significantly,
and the noise-added images are ground truth (GT) images with less information and a
pronounced contrast between the foreground and background, it is desirable to make the
variance schedule decrease faster during the training of the diffusion model. This allows for
quicker noise addition and avoids redundant operations. Based on the existing framework,
this paper introduces a regularization term specifically for the COS task. This term can
accelerate the decrease in the variance schedule, thereby optimizing the design of a new
noise equation. We found that using linear functions is more efficient than other functions
in accelerating the process of SNR decline; the expression for this equation is

- L. (24)

log SNR; = —210g(tan( (384) 3

> )) +2log

The regularization linear function can accelerate the decrease in the SNR. However,
this does not mean that a faster decrease in SNR is always better. Instead, it requires a
comprehensive evaluation based on the specific model architecture, training strategy, and
dataset characteristics. We experimentally verify the impact of different SNR change rates
on model performance, and Table 1 presents our experimental data.

Table 1. Regularization setting.

Regularization MAE | Sm T Fgt E., 1T F‘I}’ 0
2t 0.031 0.840 0.764 0.912 0.752

t 0.030 0.843 0.771 0.919 0.755

1/2t 0.025 0.858 0.779 0.924 0.760
1/3t 0.024 0.866 0.784 0.929 0.763
1/4t 0.026 0.845 0.775 0.920 0.758

The values in bold are the optimal segmentation results, 1 denotes higher metrics are better, | denotes lower
metrics are better.
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3.3.2. Sampling Strategy

The inference stage of FreDiff is a denoising sampling process. The model iteratively
converts a Gaussian pure noise image into a camouflaged object segmentation prediction
mask. After obtaining the result of the current stage, DDPM is used to optimize and esti-
mate the prediction segmentation mask for the next stage. Each prediction mask generated
during the sampling process also possesses valuable features. We aggregate the prediction
results obtained each time and use them as the condition for the next stage of prediction,
which can improve the accuracy and reliability of the prediction results. Algorithm 2 is the
pseudocode for the FreDiff sampling process.

Algorithm 2: Sampling Stage

Input: Image, step, T
ddpm_sampling (image, steps, T):
maskr ~ N(0,1)

mask =[]

#[]: array of masks

# steps: number of sampling steps
#T: time steps

for step, tin [T, ..., O]

masky = FreDif f(mask;, Image, step)
Ift>0,z ~ N(0,I),elsez=0
masky ~ N (mask;_1; pg(masks 1), Y9 (masky, t))
return maskpr,

4. Results
4.1. Experimental Platform Configuration

The hardware platform configuration used in the experimental training and testing
phase is shown in Table 2. The input image resolution is 384 x 384 and the Adam optimizer
is used for network optimization during training. In Table 2, The manufacturer of the
NVIDIA GeForce RTX 3090 device is NVIDIA Corporation, which is headquartered in Santa
Clara, California, United States. The manufacturer of the Xeon Gold 6148 and CUDA12.2
device are Intel, which is headquartered in Santa Clara, California, United States. Windows
10 is an operating system developed by Microsoft Corporation, which is headquartered
in Redmond, Washington, USA. PyTorch is an open-source deep learning framework
developed by Facebook Al Research, with its development team located in Menlo Park,
California, United States.

Table 2. The hardware Platforms for model training.

Names Related Configurations
GPU NVIDIA GeForce RTX 3090
CPU Xeon Gold 6148/128G
Computer platform CUDA 12.2
Operating system Windows 10
Deep learning framework Pytorch
GPU memory size 24 G

4.2. Datasets and Evaluation Metrics
4.2.1. Dataset Settings

In our experiments, we used four publicly available COD datasets: CAMO [35],
COD10K, CHAELEON [36], and NC4K. Specifically, we used a training set consisting
of 4040 images, which included 1000 images from the CAMO dataset and 3040 images
from the COD10K dataset. To ensure that the model exhibits good performance and
generalization ability in practical applications, our test set consisted of 2026 images from
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the COD10K dataset, 250 images from the CAMO dataset, 76 images from the CHAELEON
dataset, and 4121 images from the NC4K dataset.

4.2.2. Evaluation Metrics

To facilitate comparison with existing methods, this paper adopts the following five
evaluation metrics: Mean Absolute Error (MAE) [37], S-Measure (Sm) [38], F-Measure (Fp),
Weighted F-Measures (F5;) [39], and E-measure (E,,) [40]. Moreover, as shown in Figure 8,
we use precision—-recall (PR) curves, Fﬂ curves, and E;; curves to visualize the algorithm
performance.

== == = Camoformer-R PopNet == SL.SR == === DTINet SINet-V2 == w=w= DGNet

e PreyNet PENet == === SINet = ZoomNetms e m MGL-R == TPRNet
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Figure 8. Curves on the four COS datasets.

4.3. Comparison Algorithms

Tables 3 and 4 present the experimental comparison results of the proposed FreDiff
algorithm with the other 17 algorithms on the camouflaged object dataset, mainly demon-
strating the feature extraction capability of this network and the accuracy of segmenting
camouflaged objects. As can be seen from Tables 3 and 4, the FreDiff algorithm achieves the
best performance in five evaluation metrics, indicating the best overall ability to segment
camouflaged objects.



Electronics 2024, 13, 3922 14 of 20
Table 3. Comparative experiment result on the COD10K dataset and NC4K dataset.
COD10K NC4K
Methods Pub-Year MR S 1 Fg Ent Fg 1 MAE| S 1 Fgt Eut Ryt
SINet CVPR-20 0.043 0.776 0.679 0.867 0.631 0.058 0.808 0.769 0.883 0.723
PFNet CVPR-21 0.040 0.800 0.701 0.868 0.660 0.053 0.829 0.784 0.894 0.745
UGTR ICCV-21 0.036 0.817 0.711 0.850 0.666 0.052 0.839 0.787 0.888 0.746
UJsc CVPR-21 0.035 0.809 0.721 0.882 0.684 0.047 0.842 0.806 0.906 0.771
MGL-R CVPR-21 0.035 0.814 0.710 0.864 0.666 0.053 0.833 0.782 0.889 0.739
SINet-V2 TPAMI-22 0.037 0.815 0.718 0.864 0.680 0.048 0.847 0.805 0.901 0.770
PreyNet MM22 0.034 0.813 0.736 0.894 0.697 0.050 0.834 0.803 0.899 0.763
BSANet AAAI-22 0.034 0.818 0.738 0.894 0.699 0.048 0.841 0.808 0.906 0.771
ZoomNet CVPR-22 0.029 0.838 0.766 0.893 0.729 0.043 0.853 0.818 0.907 0.784
DTINet ICPR-22 0.034 0.824 0.702 0.881 0.695 0.041 0.863 0.818 0.914 0.792
SLSR TCSVT-23 0.037 0.804 0.715 0.883 0.673 0.048 0.840 0.804 0.904 0.766
TPRNet TV(CJ-23 0.036 0.817 0.724 0.869 0.683 0.048 0.846 0.805 0.901 0.768
PopNet ICCV-23 0.028 0.851 0.786 0.910 0.757 0.042 0.861 0.833 0.915 0.802
FEDER CVPR-23 0.032 0.822 0.751 0.901 0.716 0.044 0.847 0.824 0.913 0.789
DGNet MIR-23 0.033 0.822 0.728 0.879 0.693 0.042 0.857 0.814 0.910 0.784
CamoFormer-R ArXiv-23 0.029 0.838 0.753 0.900 0.724 0.042 0.855 0.821 0.913 0.788
FSPNet CVPR-23 0.026 0.851 0.769 0.900 0.735 0.035 0.879 0.843 0.923 0.816
FreDiff Ours 0.024 0.866 0.784 0.929 0.763 0.030 0.886 0.844 0.936 0.827
The values in bold are the optimal segmentation results, the values in blue are the suboptimal segmentation
results, T denotes higher metrics are better and | denotes lower metrics are better.
Table 4. Comparative experiment result on the CAMO dataset and CHAMELEON dataset.
CAMO CHAMELEON
Methods Pub.-Year MAE| St Fst Ep Fy 1 MAE| S 1 Fpt Ep 1 Fy 1
SINet CVPR-20 0.092 0.745 0.702 0.825 0.644 0.034 0.872 0.827 0.938 0.806
PFNet CVPR-21 0.085 0.782 0.746 0.855 0.695 0.033 0.882 0.828 0.942 0.810
UGTR ICCV-21 0.086 0.784 0.735 0.858 0.684 0.031 0.888 0.819 0.921 0.794
uJsC CVPR-21 0.073 0.800 0.772 0.872 0.728 0.030 0.891 0.847 0.943 0.833
MGL-R CVPR-21 0.088 0.775 0.726 0.848 0.673 0.031 0.893 0.833 0.923 0.812
SINet-V2 TPAMI-22 0.070 0.820 0.782 0.884 0.743 0.030 0.888 0.835 0.930 0.816
PreyNet MM22 0.077 0.790 0.757 0.856 0.708 0.028 0.895 0.859 0.951 0.844
BSANet AAAI-22 0.079 0.794 0.763 0.866 0.717 0.027 0.895 0.858 0.946 0.841
ZoomNet CVPR-22 0.066 0.820 0.794 0.883 0.752 0.023 0.902 0.864 0.952 0.845
DTINet ICPR-22 0.050 0.856 0.823 0.918 0.796 0.033 0.883 0.827 0.928 0.813
SLSR TCSVT-23 0.080 0.787 0.744 0.859 0.696 0.030 0.890 0.841 0.936 0.822
TPRNet TVC]-23 0.074 0.807 0.772 0.880 0.725 0.031 0.891 0.836 0.930 0.816
PopNet ICCV-23 0.077 0.808 0.784 0.871 0.744 0.020 0.917 0.885 0.957 0.875
FEDER CVPR-23 0.071 0.802 0.781 0.877 0.738 0.030 0.887 0.851 0.943 0.834
DGNet MIR-23 0.057 0.839 0.806 0.906 0.769 0.029 0.890 0.834 0.934 0.816
CamoFormer-R ArXiv-23 0.076 0.816 0.745 0.863 0.712 0.026 0.898 0.863 0.951 0.844
FSPNet CVPR-23 0.050 0.856 0.830 0.919 0.799 0.023 0.908 0.867 0.945 0.851
FreDiff Ours 0.043 0.870 0.836 0.934 0.763 0.020 0.902 0.878 0.966 0.860

The values in bold are the optimal segmentation results, the values in blue are the suboptimal segmentation
results, 1 denotes higher metrics are better and | denotes lower metrics are better.

These 17 algorithms are specifically SINet [1], PFNet [7], UGTR [41], UJSC [12], MGL-
R [42], SINet-V2 [8], PreyNet [9], BSANet [43], ZoomNet [10], DTINet [44], SLSR [45],
TPRNet [46], PopNet [14], FEDER [47], DGNet [15], CamoFormer [48], FSPNet [49].

4.4. Analysis of the Comparative Experimental Results
4.4.1. Quantitative Comparison

In this section, we present the quantitative comparison results of our proposed FreDiff
with 17 state-of-the-art COS algorithms on four COS datasets. Table 3 showcases the
comparison results of FreDiff with other algorithms on the COD10K dataset and the NC4K
dataset, while Table 4 displays the comparison results on the CAMO dataset and the
CHAMELEON dataset. It can be observed that most of the metrics of our proposed FreDiff
significantly outperform the other 17 algorithms, with the MAE and Em metrics being
better than those of the other algorithms across all four datasets. On the COD10K dataset,
FreDiff’s E,, is 1.9% higher than that of the second-best PopNet, and S, is 1.5% higher than
that of PopNet. On the NC4K dataset, FreDiff outperforms the other algorithms in five
evaluation metrics, with its E;; being 1.3% higher than FSPNet. On the CAMO dataset,
FreDiff’s S, is 1.4% higher than that of the second-best algorithm, and E;, is 1.6% higher.
On the CHAMELEON dataset, FreDift’s Fg is 1.1% higher than FSPNet.
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The radar chart on the four datasets is shown in Figure 9, where the values of FreDiff
are marked in red. It can be seen that FreDiff achieves overall better performance, which
also indicates that this algorithm has stronger generalization ability.
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Figure 9. Radar plots for the evaluation metrics on the four COS datasets. (a) CAMO; (b) COD10K;
(c) NC4K; (d) CHAMELEON.

4.4.2. Qualitative Comparison

As shown in Figure 10, FreDiff can effectively separate camouflaged targets from the
background. FreDiff uses frequency information to assist in feature extraction and then
iteratively denoises the camouflaged segmentation map, endowing the model with more
complete semantic information. As shown in the fourth column of the figure, other methods
are unable to accurately distinguish the camouflaged objects in the image, but our proposed
FreDiff can recognize the camouflaged objects completely and clearly, especially the detailed
edge information of the targets. Furthermore, we can observe that when there are multiple
targets in the third column of images, our method can effectively segment the camouflaged
objects among them. GFM provides the rich global information and understanding of
contextual relationships, as shown in the last column; FreDiff can segment the camouflaged
objects more accurately without being disturbed by non-camouflaged objects.

4.5. Ablation Experiments

In this section, ablation experiments are designed to verify the effectiveness of the key
components of FreDiff, including FAM, GFM, UEM, and training strategy. All experiments
are conducted on the COD10K dataset, where the baseline network is PVTv2-B3 with a
UNet model. The experimental results are shown in Table 5.

Table 5. Ablation experiment on COD10K dataset.

Baseline FAM GFM UEM Strategy MAE| Sm T Fg? En 1 P‘B’ T
i 0.029 0.858 0.767 0.915 0.744
Vv Vv 0.027 0.861 0.773 0.912 0.749
Vv Vv Vv 0.025 0.863 0.780 0.922 0.753
i i i i 0.024 0.860 0.780 0.926 0.758
Vv Vv Vv Vv Vv 0.024 0.866 0.784 0.929 0.763

The values in bold are the optimal segmentation results, 1 denotes higher metrics are better and | denotes lower
metrics are better.
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Figure 10. Visual comparison results of camouflaged object segmentation maps with other methods.

Table 5 comprehensively presents the vertical comparison results of the ablation
experiments performed using FreDiff, verifying the effectiveness of each submodule in
enhancing model performance through separate testing of FAM, GFM, UEM, and training
strategy. It can be observed that compared to the baseline, FreDiff’s performance improves
when using FAM, GFEM, UEM, and the specific training strategy. Experimental tests were
conducted on each module separately. We add FAM to make the network focus on ex-
tracting frequency features of images to obtain more comprehensive semantic information,
resulting in improvements in five evaluation metrics. After adding GFM, this allows the
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network to focus more on the global information, reducing the cases of false segmentation
to non-camouflaging objects; the E,; improved by 1%. The detail information is enhanced
by adding UEM to further distinguish the detail features that are not obvious between
the camouflaged object and its environment; the Fg increased by 1.3% compared to the
baseline. The training strategy we designed by changing the noise schedule, and speeds up
the process of adding noise so that FreDiff can achieve better segmentation results. The
results also show that this method is important to improve the segmentation accuracy.

5. Discussion

The benchmark tests detailed in Section 4 demonstrate that our method has exhibited
outstanding efficacy in the field of camouflaged object segmentation. However, several
aspects still warrant further discussion.

5.1. Advantages of FreDiff

Although the current COS models have achieved impressive performance, they still ex-
hibit deficiencies in capturing the subtle differences between camouflaged objects and their
backgrounds. We propose a camouflaged object segmentation method based on DDPM,
named FreDiff. By leveraging frequency information guidance, it extracts more comprehen-
sive information from images, enhancing the model’s feature extraction capabilities and
thereby mitigating the issue of blurred boundaries in COS results.

The diffusion model for a COS network can randomly sample from the mask distri-
bution to generate multiple possible prediction results, which helps capture the subtle
differences between camouflaged objects and their backgrounds, improving the accuracy
and robustness of COS. Furthermore, FreDiff can generate the final segmentation mask
by combining the prediction results from multiple sampling steps, alleviating the issue of
overconfident point estimates. Through an experimental analysis, FreDiff has been shown
to reduce the high false alarm rate for camouflaged objects and achieve clear and accurate
segmentation results in complex environments.

5.2. Limitations and Challenge

From the experiments conducted in the previous section, it can be observed that
the COS network FreDiff based on the diffusion model outperforms most existing COS
models in segmentation performance. However, there are still some issues that need to be
addressed. During model training, we found that our model is slower in training speed
and requires more computational resources.

Specifically, due to the inherent structural complexity of the diffusion model, a large
number of parameters and computations need to be processed during model training to
generate high-quality COS mask images. The complexity of the algorithm directly affects
the training speed of the model. Furthermore, this is due to the need for thousands of
denoising iteration steps during the training process of the diffusion model to gradually
refine the sample distribution and generate the optimal COS mask image. This iterative
process not only increases computation time but also raises the demand for computational
resources. The inference speed of the COS framework based on the diffusion model cannot
meet real-time requirements, thereby limiting the wide application of this framework.

Additionally, the size of the input image affects the inference time. The larger the image
pixel values, the more pixel points the model needs to process, resulting in a slower training
speed for the entire network. The diffusion model for a COS network faces significant
computational challenges in high-resolution applications.

Therefore, in the future, we will further investigate how to reduce the complexity and
sampling steps of this framework, optimize the computational efficiency of the diffusion
model, and conduct research on its lightweighting.
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6. Conclusions

This paper proposes a camouflaged object segmentation method based on a diffusion
model, which incorporate frequency domain information as auxiliary features, and con-
structs the FreDiff to address the phenomenon of overconfidence and improve the accuracy
of COS. The FAM extracts frequency information from images and we propose FF to better
integrate it into the network, thereby obtaining more plentiful image feature information.
The GFM focus on global information of the fused features enables the network to un-
derstand the contextual information of the image and discern the relationship between
camouflaged objects and the background, thereby reducing the likelihood of identifying
non-camouflaged objects. The UEM enhances the detailed features of camouflaged objects.
This is because the features of camouflaged objects and their backgrounds are highly similar.
Enhancing boundary, texture, and other detailed features can improve the accuracy of
the COS results and better reveal the details of the objects. Due to the special nature of
COS task training, which involves inputting the corresponding ground truth (GT) image
into the diffusion model for training, we have designed a linear regularization function to
accelerate the noising process, reducing redundant information and enhancing training
speed. FreDiff is compared with 17 COS models on four challenging COS datasets, and
its performance is superior to or comparable with the best results. Specifically, the metrics
of MAE and E,, values outperform other algorithms on all datasets. Finally, we design
ablation experiments to demonstrate the effectiveness of each module.
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