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Abstract: Advances in deep learning can address a variety of computer vision problems. In particular,
deep learning has shown high performance in image processing. However, large datasets are required
to train deep learning models. Previous studies have addressed the problem of data scarcity via
the few-shot learning technique. However, a drawback of these studies is that large datasets are
required when new tasks are performed. Hence, this study uses data augmentation techniques to
address this shortcoming. Furthermore, we propose an image classification system with a few-shot
learning technique that achieves high accuracy, even on rare datasets. Compared with traditional
image classification models, the proposed system improves classification accuracy by approximately
18% using 100 data points.
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1. Introduction

Advances in deep learning have enabled the solution of various computer vision
problems. In particular, deep learning has demonstrated high performance in image
processing. However, deep learning is limited by its reliance on large, labeled image
datasets for training [1].

This presents a challenge because data collection and labeling can be costly and time-
consuming. Data scarcity is a problem in applications involving medical imaging, new
product imaging, and art from specific artists. Various data augmentation techniques have
been proposed to address this issue [2].

Data augmentation increases the amount of available data by augmenting existing
data. This technology can improve the performance of deep learning image classification
models [3]. However, if users apply such technology indiscriminately, the generated images
may fail to accurately reflect the characteristics of the original images.

The inability to properly train the characteristics of a particular image class degrades
the classification performance of a model. For rare data, the amount of actual data is limited.
Hence, if data augmentation techniques are used based on actual data, the images generated
via data augmentation techniques may differ significantly from natural images. Therefore, it
is necessary to discriminate between images generated using data augmentation techniques
and natural images [4].

This study aims to improve the classification accuracy of rare data and the classi-
fication accuracy of an image classification model by using the few-shot learning (FSL)
technique. The FSL can effectively generalize a model by using a small amount of labeled
data. FSL calculates a similarity score using the training data to obtain a final classification
prediction result. Here, we aim to address the challenge of distinguishing between fake
and real images by applying the FSL process to a real rare dataset. To verify the proposed
system, we compare the classification accuracy for images generated by the augmented
system with those of existing deep learning methods. In addition, we compare the classi-
fication accuracies of models with and without FSL to demonstrate the effectiveness and
performance of the proposed system.
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The remainder of this paper is organized as follows: Section 2 describes the tech-
nologies used in the proposed system. Section 3 describes a rare data image classification
system that uses FSL. Section 4 provides the experimental results and an analysis of the
proposed system. Section 5 concludes the paper.

2. Related Research Literature
2.1. Data Augmentation

Data augmentation improves the generalization performance of machine and deep
learning models by increasing the size of the dataset via the modification or generation
of additional image data. Techniques such as rotation, scaling, and symmetry are used to
transform the image data. In addition to these transformation techniques, other methods,
such as random cropping, flipping, and color adjustment, exist.

Data augmentation is effective when data are scarce. The collection of rare data incurs
high costs and consumes a substantial amount of time. Therefore, researchers use data
augmentation to increase the dataset size. Recent studies have employed generative deep
learning techniques, such as generative adversarial networks (GANs) [5], to augment
datasets by generating new images that are similar to existing images. This study uses data
augmentation techniques to create a test dataset of generated and original images to verify
the discrimination of rare data.

2.2. Convolutional Neural Networks

Convolutional neural networks (CNNs) are deep learning models [6] used in image
processing and computer vision. CNNs primarily use convolutional layers to scan and
extract features from images. They use small filters to scan an image and combine low-level
features through convolution to understand high-level features in the image. In addition to
convolutional layers, CNNs use activation functions, pooling layers, and fully connected
layers to extract image features. This study used a CNN as the foundation for FSL to extract
features from images.

2.3. Few-Shot Learning

FSL is a machine learning technique that can effectively learn from a few labeled data
samples [7]. FSL was inspired by human learning abilities and employs meta-learning,
which is a learning method that distinguishes between the known and unknown. FSL uses
this meta-learning approach to make predictions using learning and query data [8]. In this
study, FSL was used to classify fake and existing data using a small amount of data.

2.4. Related Works

Recently, researchers have proposed image and video classification models that use
FSL to solve rare data problems.

Zhmoginovet et al. [9] proposed an FSL-based image classification model based on
a transformer with a HyperTransformer. This model generates weights through high-
dimensional embeddings, generates low-dimensional embeddings, delivers them to a
trainable model, and learns weights to classify images. Owing to its high-dimensional
embedding capabilities, the HyperTransformer model learns with little data when new
tasks arise. However, if the model does not have sufficient data to learn high-dimensional
embeddings, its performance degrades.

Alayrac et al. [10] proposed Flamingo, a classification model that is pre-trained using
video–text pairs. The Flamingo model improved the performance of multi-model learning
by analyzing the relationship between video data and text. In the learning process, FSL is
used to design various models that can learn from examples and adapt to new tasks. This
approach eliminates hyperparameter adjustment and demonstrates adequate performance,
even under limited data conditions. Flamingo models require large-scale datasets in the pre-
learning process. Therefore, when data on new tasks are insufficient, performance degrades.
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Soudy et al. [11] designed an image classification model that uses FSL to solve image
scene classification problems. Object detection and classification analyze image informa-
tion. This generic Conv model requires a large dataset to increase performance over a
specific dataset.

Previous studies [9–11] proposed a model for classifying images using machine learn-
ing and deep learning. These studies improved the performance of an image classification
model by creating a pre-learning model using large datasets. However, the classification
accuracy performance deteriorates when a novel task is required. Hence, this study secures
several rare data by using a data augmentation model to cope with novel tasks. In addition,
the use of FSL can enhance the performance of the image classification model, particularly
in the context of rare data classification.

3. Proposed System

Figure 1 depicts the rare data image classification system proposed in this study, which
utilizes FSL. The proposed system comprises data augmentation and image classification
models. The data augmentation model is used to preprocess a dataset that is then used by
the image classification model. The image classification model learns from the processed
dataset and predicts the results of fake and real images using features learned through
CNNs and FSL.
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Figure 1. Proposed system flowchart.

3.1. Data Augmentation Model

Figure 2 shows a flowchart of the data augmentation model. When inputting the
dataset, the data augmentation model selects the source image. Selected source images use
data from other images as reference images.

Object detection is performed on the selected images to obtain the location infor-
mation of objects within photos. By understanding the structures of the objects in the
images, the model combines the object location information from the source image with
the object information from the reference image to generate new images, thereby creating
additional data.

An image structure extraction process synthesizes the source and reference images to
prevent the disruption of the structural elements within them. By understanding the image
structure, the model can identify the structure and shape within the images and synthesize
the characteristics of the reference image with the source image, without significantly
damaging the structure of the source image.

The synthesis process utilizes an encoder–decoder. The encoder encodes the source
and reference images into a latent space, and the decoder reconstructs the source image
using the features obtained from the encoder. In the encoder process, the Conv2D layers
and activation functions extract the features. The decoder uses transposed convolutional
layers that oppose the convolutional layers in the encoder to reconstruct images based on
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extracted features and perform upsampling to generate images. Activation functions and
batch normalization reduce the noise that may occur during image generation and minimize
training loss in both the encoder and decoder layers. The structure of the generative model
repeats with an encoder and a decoder to achieve an optimal loss value.
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Figure 2. Data augmentation model flowchart.

The dataset obtained from the data augmentation model is then used as the test dataset
for the image classification model, which is then used to distinguish between the generated
and original images.

The data augmentation model obtains images from the peak signal-to-noise ratio
(PSNR) [12] and Structural Similarity Index Measure (SSIM) [13] quality evaluation algo-
rithms and preprocesses them to remove low-quality images and perform image scaling.
The preprocessed data serve as the dataset for the proposed system [14]. Figure 3 shows
examples of images obtained using the data augmentation model.
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3.2. Image Classification Model

Figure 4 shows the architecture of an image classification model. The image model
consists of a CNN model and an FSL model, with the CNN model serving as the basis



Electronics 2024, 13, 3923 5 of 11

for the FSL model. The CNN structure identifies features within the image by utilizing
convolution, max-pooling, and flatten layers.
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The convolution layer captures features within an image via convolution operations
for image classification. The max-pooling layer reduces the image size while accentuating
the features extracted by the convolution layer. Moreover, the results from the repeated
application of the convolution and max-pooling layers are converted to one-dimensional
data using the flatten layer. This allows for combination with a text model, as the text data
must share the same dimension [15].

The critical layers in the CNN model include Conv2D, MaxPooling2D, flatten, and
dense, arranged in a repeated pattern. Using this repeated structure, the CNN model learns
features and patterns within images. In addition, it performs binary classification, taking
an image as the input and classifying it as natural or fake.

In the convolution layer, 32 filters of size 3 × 3 pixel traverse the image to extract
features. The extracted features pass through the rectified linear units (ReLU) activation
function, and the weights update accordingly. Then, the feature maps from the convolution
layer undergo max-pooling to reduce their size. This helps prevent overfitting and improve
the generalization performance of the model.

The model repeatedly applies the convolution and max-pooling layers and converts
the resulting 2D feature maps into a 1D vector using the flatten layer, which is essential for
input to the fully connected layer. Finally, the fully connected layer with a single neuron in
the hidden layer takes the learned features as inputs to perform binary classification and
obtain the final prediction.

The CNN model shown in Figure 4 serves as the base model for the FSL model. The
FSL model extracts a feature vector from an input image using this base model. It calculates
the means of the feature vectors and assigns them as temporary data for each class. The
model then computes the cosine similarity between the feature vector and temporary data
using Equation (1):

Cosine Similarity =

→
A ·

→
B∣∣∣∣→A∣∣∣∣∣∣∣∣→B ∣∣∣∣ (1)

Cosine similarity values range from −1 to 1, with values closer to one indicating high
similarity between the two vectors [16]. The computed similarity scores then pass through
the classification layer to obtain the final prediction. The binary cross-entropy loss between
the predicted and actual labels can be used to evaluate performance.

4. Experimental Results and Analysis
4.1. Experimental Data

The experimental data used painting and rare plant data from the Wikiart dataset,
which contains approximately 100,000 images of artwork [17]. The Wikiart dataset includes
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various types of artwork, including painting, sculpture, graphic art, and photography. The
dataset was preprocessed for each artist among the artwork, and the experiment compared
the accuracy of a CNN and two models using the proposed system. To confirm the relation-
ship between the image classification performance and the amount of available data, we
conducted tests with 1500 and 100 samples. Plant data were collected through web crawl-
ing, matching the number of painting data entries, including 1000, 500, and 100 samples.
We then selected an appropriate number of data samples for effective image classification
to evaluate performance in scenarios involving rare data [18,19]. The experimental data for
image classification can be found in the GitHub repository [20].

We conducted an experiment to reduce the amount of available data and maximize the
features of the rare data. We aimed to confirm the difference between the training results of
the model with a large dataset of 1000 samples and the training results of the rare data. For
the cases of 500 and 100 samples, we conducted experiments to compare the classification
accuracy between the existing image classification model and the proposed system while
gradually reducing the amount of rare data. We tested all experimental datasets with
training and test data at an 8:2 ratio. In addition to the augmented system, we also tested
the ArtGAN-generated [17] images provided by Wikiart. We further experimented with
the ArtGAN data to verify whether the augmented model technology of the proposed
system could be generalized and to evaluate the generalization performance of fake image
discrimination for the generated images. Our experiment aims to determine whether the
classification accuracy of the proposed system is superior to that of the existing image
classification model, even in cases involving rare data. Based on the source images in
Figure 5a, we used the augmented dataset obtained through the proposed system in
Figure 5b and the ArtGAN dataset in Figure 5c as experimental data. The hyperparameters
were chosen using Bayesian optimization [21]. We experimented with 1000 epochs, a
batch size of 32, a learning rate of 0.001, and a dropout of 0.5 for both the CNN and the
proposed system.
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4.2. Experimental Results

We used an image classification model and a proposed system based on a CNN to confirm
the improvement in classification accuracy of the proposed system. Figures 6 and 7 show the
average accuracy of the classification of fake images for painting data. Figures 8 and 9 show
the average accuracy of the classification of fake images for plant data. Tables 1 and 2 show the
experimental results of 100 data entries augmented with the proposed system. We used the
precision, recall, and F1 scores, in addition to the accuracy of the painting and plant data, as
evaluation metrics for the image classification model.
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To validate the data, we verified the validity of the image classification model from the
ArtGAN dataset [17], augmented data from the Wikiart dataset [17], and proposed dataset
supplemented by the proposed system in Figure 5b.

As shown in Figures 6 and 7, the proposed system improved the average classification
accuracy of the 1000 painting data samples during the experiment by approximately 8%,
compared with the existing image classification model (i.e., the CNN). In the case of
100 samples, which had the least amount of data, the proposed system achieved an average
classification accuracy of approximately 15% higher than that of the CNN.

As shown in Figures 8 and 9, in the case of the 1000 plant data samples, the proposed
system was approximately 9% higher than the average classification accuracy of the CNN.
In the case of 100 samples, which had the least amount of data, the proposed system
achieved an average classification accuracy that was approximately 16% higher than that
of the CNN.

As shown in Tables 1 and 2, the proposed system showed a reproduction rate that was
approximately 19% higher than that of the CNN. The precision of the proposed system was
also approximately 20% higher than that of the CNN. Through reproduction and precision,
the prediction performance of the images classified by the proposed system improved to
match that of the CNN. The F1 score showed an improvement of approximately 22% for the
performance of the proposed system, compared with that of the CNN. Hence, based on the
reproducibility, precision, and F1 score, the problem response performance improved upon
that of the CNN, even in cases in which disproportionate data problems were present.

5. Conclusions

In this study, we propose a rare data image classification system using FSL. Dataset
design processes for rare data incur considerable time and costs. We use data augmentation
technology to solve this problem; however, it poses a challenge in distinguishing between
generated fake images and existing authentic images. To overcome this limitation, we
increase the classification accuracy of the fake and authentic photos using FSL techniques.
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The classification accuracy of rare data is compared using the Wikiart artwork dataset,
which shows the distinct characteristics of each image among many rare data samples.
Experiments show that the lower the number of data points, the higher the classification
accuracy of the proposed system, compared with traditional image classification models. In
addition, we will study different FSL techniques related to the proposed system and system
optimization. Furthermore, we will examine how the proposed system can be applied to
additional types of rare data, including text and audio.
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