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Abstract: One of the main security challenges when federating separate Internet of Things (IoT)
administrative domains is effective Identity and Access Management, which is required to establish
trust and secure communication between federated IoT devices. The primary goal of the work is
to develop a “lightweight” protocol to enable authentication and authorization of IoT devices in
federated environments and ensure the secure communication of IoT devices. We propose a novel
Lightweight Authentication and Authorization Framework for Federated IoT (LAAFFI) which takes
advantage of the unique fingerprint of IoT devices based on their configuration and additional
hardware modules, such as Physical Unclonable Function, to provide flexible authentication and
authorization based on Distributed Ledger technology. Moreover, LAAFFI supports IoT devices with
limited computing resources and devices not equipped with secure storage space. We implemented a
prototype of LAAFFI and evaluated its performance in the Hyperledger Fabric-based IoT framework.
Three main metrics were evaluated: latency, throughput (number of operations or transactions per
second), and network resource utilization rate (transmission overhead introduced by the LAAFFI
protocol). The performance tests conducted confirmed the high efficiency and suitability of the
protocol for federated IoT environments. Also, all LAAFFI components are scalable as confirmed by
tests. We formally evaluated LAAFFI security using Verifpal as a formal verification tool. Based on
the models developed for Verifpal, we validated their security properties, such as message secrecy,
authenticity, and freshness. Our results show that the proposed solution can improve the security
of federated IoT environments while providing zero-day interoperability and high scalability. Com-
pared to existing solutions, LAAFFI is more efficient due to the use of symmetric cryptography and
algorithms adapted for operations involving IoT devices. LAAFFI supports multiple authorization
mechanisms, and since it also offers authentication and accountability, it meets the requirements of
Authentication, Authorization and Accounting (AAA). It uses Distributed Ledger (DL) and smart
contracts to ensure that the request complies with the policies agreed between the organizations.
LAAFFI offers authentication of devices belonging to a single organization and different organi-
zations, with the assurance that the encryption key will be shared with another device only if the
appropriate security policy is met. The proposed protocol is particularly useful for ensuring the secu-
rity of federated IoT environments created ad hoc for special missions, e.g., operations conducted by
NATO countries and disaster relief operations Humanitarian Assistance and Disaster Relief (HADR)
involving military forces and civilian services, where immediate interoperability is required.

Keywords: internet of things; blockchains; authentication; distributed systems

1. Introduction

Many important applications of the Internet of Things (IoT), such as smart cities, smart
health care or hybrid military operations, increasingly rely on the concept of federation.
The purpose of forming a federation is to allow the various parties to cooperate and ex-
change information, such as the location of each other and the detected threats. An example
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of a federation is the Federated Mission Networking (FMN) environment [1], which can
support the Civil–Military Cooperation (CIMIC) of civilian emergency response services
and military forces when providing HADR, e.g., after natural disasters. In FMN, each
participant retains control over their capabilities and operations while accepting and meet-
ing the requirements outlined in earlier agreed-upon arrangements, particularly in the
joint security policy. The main idea behind FMN is to unite forces in a federated mission
environment to improve information sharing and ensure effective command and decision
making for complete control of operations. Establishing an effective Identity and Access
Management (IAM) framework across the federation of separate administrative domains is
necessary to ensure trust and secure communication between federated partners. However,
it introduces several challenges from a security perspective.

Our study focuses mainly on critical IAM issues related to the authentication and
authorization of federated IoT devices during HADR operations. To meet the requirements
of such operations, we propose a novel Lightweight Authentication and Authorization
Framework for Federated IoT (LAAFFI) that provides a flexible authentication protocol
based on DL, leverages the unique configuration fingerprint of an IoT device, and can also
accommodate IoT devices not equipped with secure storage space. Compared to existing
solutions, the LAAFFI enables the authorization and establishment of a secure connection
between any organization’s IoT device and a DL and between two federated IoT devices
with reduced data overhead and number of messages exchanged. We see our contribution
in this work as follows:

• Firstly, we have developed a novel effective authentication and authorization protocol
of IoT devices in a federated environment using the IoT devices fingerprint and the
Hyperledger Fabric as DL.

• Secondly, we formally evaluated the security of LAAFFI using Verifpal as formal
verification tool. Based on the models developed for the Verifpal, we validated
message secrecy, authenticity, and freshness of LAAFFI protocol.

• Thirdly, we implemented a prototype of LAAFFI and evaluated its performance
metrics such as latency, throughput (number of operations or transactions per second),
and transmission overhead introduced by the LAAFFI protocol.

The remainder of the paper is organized as follows. Section 2 describes an operational
scenario and identifies the design requirements for a federated civil-military IoT environ-
ment. Section 3 introduces the LAAFFI protocol for the authentication and authorization
of IoT devices based on DL and demonstrates how the framework meets the requirements
introduced by federated IoT scenarios. Section 4 analyzes the entropy and security of
three different sources of cryptographic material proposed for use in LAAFFI. Section 5
discusses the results of a formal security validation of the proposed protocol. Section 6
analyzes the resilience of LAAFFI to various security attacks. Section 7 introduces the
implementation of the proof of concept of our framework, while Section 8 presents the
results of the performance evaluation, and Section 9 discusses related works. Section 10
summarizes our main results and identifies possible directions for future work.

2. Operational Scenario and Requirements

A specific situation where an organization needs to use data from IoT devices belonging
to other organizations is an exchange of information between organizations, such as military
forces, municipal services, volunteer firefighters brigades, and the International Committee
of the Red Cross (ICRC) providing humanitarian assistance in response to a natural disaster
or an armed conflict. As the experience of the war in Ukraine shows, hostilities are often
accompanied by attacks on civilian infrastructure and facilities far from the front line,
usually located in highly urbanized areas. These attacks can be carried out, for example,
by drones, missiles, or other means of aerial assault, and result in the destruction of residen-
tial buildings and civilian institutions, involving numerous human casualties. Preserving
the lives of the victims can depend on their rapid localization and the provision of first
aid. Furthermore, the war in Ukraine shows that the use of the civilian communications
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infrastructure makes sense in such warfare scenarios since even in the case of the large-scale
destruction of infrastructure, a wireless network is often still partially functional or can
be restored rapidly. Therefore, at least parts of the Smart City infrastructure, particularly
those that allow wireless communications, can be kept operational, providing access to
various civilian IoT devices, such as traffic cameras and air pollution sensors. Personal
mobile devices, such as smartphones or smartwatches, equipped with a special application
that can be launched in an emergency, can also use the surviving infrastructure to raise the
alarm when a life-threatening condition or injury is detected. To ensure the reliability of
these information sources and the integrity of information transmission, devices operated
by private users and civilian organizations should be registered and subjected to a domain
authentication process by a trusted party, such as a mobile operator. To further increase
the ability of the federated partners to obtain an accurate near real-time picture of the
situation during a HADR operation, specialized surveillance assets, such as Unmanned
Aerial Vehicles (UAVs), can be deployed by individual partners.

To obtain precise and timely situational awareness and the so-called common oper-
ational picture, there is often a need to transmit data obtained by sensors belonging to
individual federation partners to all partners forming a federation. In some cases, to pre-
serve connectivity, IoT devices, such as city surveillance cameras (CCTV), may need to
connect to the network provided by another federation partner. With a federation formed,
civilian and military participants can reliably exchange information about various threats
or incidents that require emergency response. For example, specialized sound sensors can
be attached to civilian infrastructure and installed at many points in the city area. They can
transmit reconnaissance information on the type, location of detection, distance, and di-
rection of an incoming object, such as a missile. This information should be immediately
transmitted from a device attached to the civilian infrastructure to the military network,
e.g., to assist in air defense and civilian protection.

If a residential building is damaged, the relevant services should immediately be notified
of the extent of the damage and those injured. The detection of a series of explosions can
cause military drones to be dispatched to the area and obtain a situational picture. Drones
can obtain camera images and sensor data, for example, by probing the atmosphere for the
presence of chemical agents.

The federated situational awareness system should ensure that the input data are
trustworthy, i.e., they were obtained from authorized IoT devices, and they were not sub-
jected to unauthorized modification. These operational requirements require the effective
authentication and authorization of the IoT devices and the ability to establish a secure
communication channel with the situational awareness system.

Several design requirements must be considered when developing a security framework
for federated IoT environments [2,3]:

1. Zero-day interoperability means that the framework should ensure immediate interop-
erability due to the frequent dynamic formation of federations to carry out missions
such as HADR. The limited computing resources of IoT devices require lightweight
mechanisms, balancing performance and security. The communication overhead of
the authentication protocols should be minimized in terms of the number of messages
exchanged between the authentication parties and the size of the messages sent.

2. Key management is a complex process that must take into account the IoT limitations.
This process applies to all cryptographic key handling operations, i.e., key generation,
key exchange, key storage, revocation, and key usage.

3. Decentralization implies that no organization controls the entire system. The device or
user belonging to one federated organization shall be able to authenticate to a server
belonging to another federated organization and use its services without creating an
identity or registering credentials with that organization. Decentralization is also a
way to achieve high reliability.

4. Separation mandates that users and devices access resources only by a federation
security policy, e.g., device authentication data must be protected and stored securely.



Electronics 2024, 13, 3932 4 of 36

5. The authentication and authorization system should be resilient to failures and harm-
ful activities to ensure the high availability of IoT information. This property can
be realized by increasing service instances to handle more requests or maintaining
business continuity when some instances are unreachable.

6. Lightweight protocols and technologies are required due to the limited performance of
IoT devices.

7. Scalability requires the IoT authentication scheme to scale well even for a very large
IoT network.

8. The framework must provide accountability for the authorization of communication
flows and data delivery by individual IoT devices, e.g., the fact of an organization
obtaining a key to communicate with devices from another organization should
be recorded.

We propose a Distributed Ledger (DL)-based authentication and authorization frame-
work for federated IoT environments to meet the requirements identified above. The choice
of DL is motivated by several desirable features of DL that allow us to meet the identified
requirements. First, some DLs, such as Hyperledger Fabric (HLF), can provide the ability to
compartmentalize stored data for different purposes and organizations within the federation,
including support for private data storage for specific organizations. Data can be com-
partmentalized by implementing channels, i.e., subchains [4], that create separate ledgers
and isolate data destined for different members of the federation or different purposes,
e.g., separating authentication and authorization information. Second, the ability to store
data outside the ledger with access to data limited to specific federation participants supports
the implementation of flexible security policies. Furthermore, it supports smart contracts,
i.e., computer programs stored and executed by a DL, the outcomes of which are recorded
in the DL [5]. In addition, the modularity of the main functional components of a DL, such
as the database and the consensus mechanism, allows flexibility of the implementation
choices required in a federated environment. Finally, scalability and performance must be
suitable for a large-scale IoT federation. For federation participants to securely exchange
information, e.g., about the various types of threats or incidents identified in Section 2, it is
necessary to provide three types of operations involving DL:

1. Writing data to the DL, used to transmit data to other participants in the mission.
2. Reading data from DL, usually performed periodically to retrieve data transmitted by

other participants.
3. Transferring data between IoT devices of different organizations.

In the cases of (1) and (2), DL mediates the exchange of data, and secure communication
between the IoT device and the DL is needed; in the case of (3), direct communication
between different devices is required, which occurs, for example, when it is necessary
to transmit a stream of near real-time video data from the camera of a drone unit to the
closest, in terms of coverage, IoT gateway of another organization providing access to these
data. Another example in which direct communication is necessary between different IoT
devices is the transfer of data from sensors deployed by one organization to the drones of
another organization that perform operational reconnaissance.

3. Authentication and Authorization

Our Lightweight Authentication and Authorization Framework for Federated IoT
(LAAFFI) leverages the unique fingerprint of the IoT device for its authentication and
authorization and adheres to the principles defined in [6]. The protocol defines the regis-
tration procedure for the IoT device to the DL and communication procedures that allow
the IoT device to securely communicate with the DL or with other IoT devices, including
those belonging to different organizations within the federation. We assume that all fed-
erated partners participate in a DL containing the identities of the IoT devices and data
required to authenticate and authorize them. Federated partners must agree on the rules
for registering devices, managing permissions, and accessing data, formulated as smart
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contracts, executable by all nodes of the DL. Each partner should operate multiple DL
nodes to ensure sufficient reliability.

To protect against insider attacks, we assume the existence of a Security Information
and Event Management (SIEM) that is responsible for collecting events from system com-
ponents, such as DL nodes and gateways, and correlating them so that they can be used
to detect insider threats. In particular, an insider with administrator privileges can gain
access to the device authentication data and can impersonate an IoT device.

Similarly, suppose that an external attacker gains access to a device, e.g., by capturing an
IoT device deployed in a contested environment. In that case, the device can be considered
compromised and to be acting as an insider attacker with limited privileges. This device
should be isolated from the system; for example, it should not be allowed to connect to DL.
A SIEM can help detect compromised devices and rogue administrators by analyzing the
actions taken by the device and identifying deviations from the usual behavior pattern.

3.1. Registration Phase

Device registration is a critical process for ensuring the system’s security and, thus,
should be performed only by authorized entities, preferably in advance of the federated
operation. In the case of military devices, military IT personnel could be responsible for the
registration: in the case of city cameras, municipal employees, and in the case of privately
owned phones and smartwatches, the mobile operators. A DL provides a secure and
reliable data store for device information. In the registration process, the site administrator
adds to DL the relevant data about the device, its owner, and permissions. Data are added
to DL by executing smart contracts that validate the added data.

During registration, the device sends a parameter array to the DL, which forms a finger-
print of the device. The chosen configuration data must consist of parameters with the
appropriate entropy to form a fingerprint of the IoT device. Depending on the capabilities
of the IoT device, the parameters recorded in the array may vary. We distinguish three
cases. The first one is for low-end devices equipped with the operating system, unique
configuration data such as hardware parameters, e.g., device serial number and memory
card serial number, and software parameters, e.g., partition IDs, file system IDs, and keys
stored on the device, can be used as a fingerprint. The device must store the commands
required to obtain these configuration data when needed. Examples of commands to obtain
such parameters on the RPI platform with the Raspbian operating system are presented
in Table 1.

Table 1. Sample commands and maximum theoretical entropy of their results.

No Command Entropy
in Bits

1 /opt/vc/bin/vcgencmd otp_dump | grep “ˆ 29” | cut -d : -f 2 32
2 cat /proc/device-tree/serial-number 32
3 udevadm info -a -n /dev/mmcblk0 | grep serial | cut -d = -f 3 32
4 udevadm info -a -n /dev/disk/by-label/boot | grep ATTRS{cid} | cut -d = -f 3 32
5 sudo blkid | grep PTUUID | awk ‘{print $2}’ | awk -F ‘”’ ‘{print $2}’ 32
6 sudo blkid | grep RECOVERY | awk ‘{print $4}’ | awk -F ‘”’ ‘{print $2}’ 128
7 sudo blkid | grep SETTINGS | awk ‘{print $3}’ | awk -F ‘”’ ‘{print $2}’ 32
8 sudo blkid | grep boot | awk ‘{print $4}’ | awk -F ‘”’ ‘{print $2}’ 32
9 sudo blkid | grep root | awk ‘{print $3}’ | awk -F ‘”’ ‘{print $2}’ 128

10 sudo cat /etc/shadow | grep pi | awk -F ‘$’ ‘{print $3}’ 96
11 sudo dumpe2fs /dev/mmcblk0p5 | grep Hash | awk ’{print $4}’ 128
12 sudo dumpe2fs /dev/mmcblk0p7 | grep Hash | awk ’{print $4}’ 128
13 sudo dumpe2fs /dev/mmcblk0p7 | grep “Filesystem created” >23
14 cat /etc/ssh/host_dsa_key >512
15 sudo cat /etc/dhcpcd.secret 128

The second case refers to the situation when the IoT device is equipped with a Physical
Unclonable Function (PUF). Instead of storing commands to obtain unique configuration
data, the device stores the signal input (challenges) for PUF. The responses to these
challenges are preserved in the DL.
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The third case is when the device can securely generate and store confidential data for
longer periods (e.g., cryptographic keys); the device can generate random strings with the
required entropy and store them in the DL. Each string is considered a separate parameter.

In the first and second scenarios above, the device does not store the persistent private
authentication data in its storage—instead, it stores a program that will enable obtaining
specific parameters, e.g., a system command to obtain a particular parameter or a challenge
to PUF.

When using random data, these data must be stored as parameters securely on the
device and in the DL authentication channel.

For the PUF challenge–response and unique configuration data, the hash of each pa-
rameter must be saved in DL as

P = {H(p1), H(p2), . . . , H(pn)} (1)

where H(pi) = HMAC(K, pi) and K is one of the program parameters shown in Table 1. If
the parameter array is disclosed, the device must be registered again. Using Hash-based
Message Authentication Code (HMAC) instead of the hash function allows us to obtain
other values of the software parameters if the parameter array is disclosed. The disclosure of
the parameter array is difficult to detect, but analysis of the anomaly of requests generated
by the device can help. We decide not to use Key Derivation Function (KDF) [7] due to the
poor performance of KDF, which is a drawback for IoT devices.

We propose two approaches to securely upload and store the array in DL. The first
approach is to use a temporary unique ID and a key that must be entered on the device
stored on the DL in advance. They are used only once in the registration process and are
deleted after use. The second approach is to perform the registration when the device is
connected to the application gateway locally in a secure environment or through a secure
authenticated link. The parameter array PA that identifies the device A is passed through
the application gateway AGi of the organization to which the device belongs to node DLi.
The randomly generated 10-byte device identifier IDA and the parameter array PA are
saved in DLi. The encrypted identifier IDA is sent back to the device. To encrypt the
IDA, the DLi generates k random numbers PNA = {n1, n2, . . . , nk} from the set {1, . . . , n},
which are used as indexes to the parameters stored in PA. The values of PA with indexes
n1, n2, . . . , nk are concatenated together, then the hash value from this concatenation is
calculated, which is the key KA. This key is used along with the generated nonce to
encrypt IDA and current timestamp. We use Authenticated Encryption with Associated
Data (AEAD) to encrypt data. We do not specify what algorithm must be used. It can be,
for example, AES-GCM, XChaCha20-Poly1305, Ascon, or Xoodyak. nonce, PNA, and EA
are sent to the device A. Device based on PNA can reconstruct the key and decrypt EA.
If the encrypted timestamp is correct, then the device accepts IDA. The use of random
identifiers prevents leakage of information about an IoT device, which can occur when
using an identifier generated according to some of the proposed standards such as Watson
IoT [8] or oneM2M [9]. For example, the WatsonID IoT identifier contains information
about the type of device and the name of the organization to which it belongs. Figure 1
presents the device registration process.

3.2. Communication between IoT Device and Distributed Ledger

The communication procedure between the IoT device and the DL node is shown in
Figure 2. When device A needs to communicate with DL, e.g., to write data to a channel, it
must generate k random numbers PNA = {n1, n2, . . . , nk} from the set {1, . . . , n}, which are
used as indexes to the parameters stored in PA. The values of the indexed parameters are
concatenated together, and the hash of the concatenation produces a key KA. This key and
a freshly generated nonceA are used to encrypt data along with the current timestamp tA.
The encrypted message EA is sent, together with PNA, to AGi, which reconstructs the key
KA, decrypts EA, and verifies the timestamp tA. If the difference between tA and the current
time is less than the preconfigured threshold, an appropriate operation is performed on
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data. Some possible operations include writing data to a ledger or other database, reading
data from a ledger or other database, and verifying permissions. The response is sent to
the device A secured in the same way as the message from the device. After receiving the
response, device A reconstructs the key KDL, decrypts the ciphertext EDL, and verifies the
timestamp tDL. If it is correct, the response is accepted by device A.

Figure 1. Communication between the IoT device and a ledger node during the registra-
tion phase.

Figure 2. Communication between an IoT device and the distributed ledger.
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3.3. Communication between IoT Devices

When IoT device A needs to communicate with device B, which belongs to different
federated organizations, it is necessary to establish secure communication between the
devices as shown in Figure 3. This can be achieved by encrypting the messages transmitted
with a shared key, generated and delivered securely to the registered IoT devices by DL
using the parameter tables of these devices. The shared key is issued only if the devices are
allowed to communicate. Device A can obtain the IDB of device B in many different ways,
e.g., it can receive it from another device, it can have a record that it needs to communicate
with that specific device, or device B can announce that it has a certain type of information
needed by A. The procedure starts in the same way as in the case of establishing the
communication of device A with DL, with data containing the identifier IDB.

Device B Device A AGi / DL

1. Choose randomly set PNA of k indexes from range 1,..,n
2. Execute commands with indexes PNA to obtain {pn1,...,pnk}
3. Create key KA=H(H(pn1)|...|H(pnk)), random nonceA and timestamp tA
4. Encrypt IDB and tA: EA=E[KA;nonceA;(IDB,tA)]

IDA,PNA,nonceA,EA

1. Using PNA and PA create key KA=H(H(pn1)|...|H(pnk))
2. Decrypt EA using KA and nonceA to obtain data and tA
3. Validate timestamp tA
4. Check permission of device A to device B
5. Choose randomly set PNAB of k indexes from range 1,..,n
6. Select parameters with indexes PNAB from PB
7. Create timestamp tAB and key KAB=H(H(pn1)|...|H(pnk)|tAB|IDA|IDB)
8. Choose randomly set PNDL of k indexes from range 1,..,n
9. Select parameters with indexes PNDL from PA
10. Create key KDL=H(H(pn1)|...|H(pnk)), nonceDL and timestamp tDL
11. Encrypt KAB,tAB,PNAB and tDL: EDL=E[KDL;nonceDL;(KAB,tAB,PNAB,tDL)]

IDA,PNDL,nonceDL,EDL

1. Execute commands with indexes PNDL to obtain {pn1,...,pnk}
2. Generate key KDL=H(H(pn1)|...|H(pnk))
3. Decrypt EDL using KDL and nonceDL to obtain KAB,tAB,PNAB and tDL
4. Check validity of timestamp tDL
5. If checks ok, KAB,tAB,PNAB are accepted by A
6. Generate nonceAB and timestamp tAB
7. Encrypt data: EAB=E[KAB;nonceAB;(data,tAB)]

IDA,PNAB,nonceAB,tAB,EAB

1. Check timestamp tAB
2. Execute commands with indexes PNAB to obtain {pn1,...,pnk}
3. Generate key KAB=H(H(pn1)|...|H(pnk)|tAB|IDA|IDB)
4. Decrypt EAB using KAB and nonceAB to obtain data and tAB
5. Check validity of timestamp tAB
6. If checks ok, data is accepted by B
7. Perform operations on data
8. Generate nonceBA and timestamp tBA
9. Encrypt response: EBA=E[KAB;nonceBA;(response,tBA)]

IDB,PNBA,nonceBA,tAB,EBA

Decrypt response with KAB

Figure 3. The procedure of communication between IoT devices.

3.4. Authorization of IoT Devices

Authorization is based on the Access Control Lists (ACLs) stored in the DL authorization
channel, in which each device has an entry that contains a list of other devices with which
it can interact, including allowed actions. Other authorization methods, for example,
Role-based Access Control (RBAC), can also be implemented. The type of authorization
mechanism must be agreed upon between the members of the federation before establishing
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the DL network. The authorization channel is separate from the one used to store the
information required for authentication. Permissions for a given IoT device can only be
granted or removed by the security administrator of the organization to which the device
belongs based on the identified needs of business processes and workflows supported by
the devices. Each operation in the authorization channel is performed using the appropriate
smart contract. If device A wants to check if it can interact with device B, it sends IDB
and an operation type to DL. Using smart contracts for authorization enables federation
partners to formulate fine-grained security policies regarding the utilization of their assets
and thus maintain control over information flows and access granted to other federation
partners. Moreover, the DL provides a secure audit log for interaction between the devices,
enabling security forensics and supporting monitoring and detection for possible faults
or security anomalies. Any DL node can perform the check and send a response, which
increases the resilience of the federated system to the disconnection of some of the nodes
due to adversary activities or infrastructure failures. The communication is secured in the
same way as described in Section 3.2.

4. Entropy Analysis

We propose three different sources of cryptographic material in LAAFFI, so it is nec-
essary to examine their suitability by measuring entropy. An aspect of the security of the
developed protocol that needs to be evaluated is the preservation of the confidentiality of
the transmitted data. This is achieved when only the parties to the communication have
access to the transmitted information. In the case where the device generates random
strings of bits during the recording process, which are stored in its memory, obtaining
randomness in the generation of these strings is possible thanks to the source of entropy
provided by the operating system; in the case under study, it is the Linux operating system.
Due to the difficulty of obtaining random values in the operating system, the generator
used in Linux is pseudorandom. To generate pseudorandom values, environmental noise
from the computer system is used, which is difficult for an attacker to reproduce. Sources
of randomness include times between keystrokes, interrupts between certain system in-
terrupts, etc., which are non-deterministic and thus difficult to examine by an external
attacker who does not have access to the device. Bits from these sources are a whitening or
de-biasing operation. This operation is designed to correct errors generated in the source
of entropy. At the same time, the amount of entropy is estimated. Entropy estimation is
performed using polynomial interpolation for the occurrence times of events of receiving
random bits [10,11]. The bits from the sources of randomness are then transferred to the
entropy pool. The entropy pool is a collection of random bits stored in the operating
system’s memory. Bits from the entropy pool are used as seeds in a cryptographically
secure pseudorandom generator (Cryptographically Secure Pseudorandom Number Gen-
erator (CSPRNG)). As of version 5.6 of the Linux operating system kernel, /dev/random
and /dev/urandom retrieve data from the CSPRNG with the difference that /dev/random
will not provide data unless CSPRNG is initialized with a seed of sufficiently high entropy.

The process of generating pseudorandom values is shown in Figure 4. For IoT devices,
many sources of entropy cannot be used because they do not exist, such as interrupts
from the keyboard and hard drive. Therefore, IoT devices can be equipped with hardware
random number generators. Some of them have a built-in hardware random number
generator, such as Raspberry Pi 3.
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Figure 4. The method of generating pseudorandom numbers in the Linux operating system
since version 5.6. Source: Own design based on [12].

In order to evaluate the suitability of the proposed solution, in a situation where PUFs
are used, the entropy is evaluated on the basis of the data from the literature. To estimate
the entropy of PUF circuits, we use the concept of min-entropy [13]. Min-entropy describes
the unpredictability of an outcome defined solely by the probability of the most likely
outcome. It is defined by the formula

H = log2
1

pmax
(2)

where H is the min-entropy, and pmax is the probability of correctly guessing the most likely
outcome on the first attempt.

Due to the structure of some PUF circuits, it appears that estimating min-entropy can
give erroneous results [14]. The estimation of entropy depends on the ordering of the
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responses of the PUF circuit, and in some cases, the entropy is overestimated. Therefore,
you may encounter the use of the context tree weighting method [15,16], or the tests
described in NIST 800-22 are used [17]. In the case of the 800-22 tests, their use is highly
questionable because they are prepared to test the randomness of pseudorandom number
generators [15]. Other methods of estimating entropy are also proposed in [18] for certain
types of PUFs.

In Table 2, we show the estimated entropy values for different types of PUF.

Table 2. Entropy values for different types of PUF circuits.
Type of PUF Entropy [Bit] Article

Direct characteristics used 6.6 bit from each sensor [15]

SRAM 0.76 bit per cell [15]
0.797–0.799 bit per cell [19]

DRAM 0.95 bit per cell [20]

In addition to the type of PUF circuits, the entropy value for PUF circuits also depends
on other factors, including temperature [21], circuits age [22], and the number of erroneous
bits generated by the circuit. The more errors that occur in the PUF response, the lower the
entropy that can be obtained [23]; therefore, it is necessary to pay attention to the internal
distance between the responses of the PUF circuits. In general, an accurate estimation of
the entropy of responses from PUF systems is very difficult, and the result itself is not
certain. This is due to the nature of PUF circuits, for which the responses are dependent on
physical processes. Despite this, the use of PUF circuits in the LAAFFI protocol is possible.
However, more of the system’s response should be used to create an authentication key
so that the size of the expected entropy is considered sufficient. The publication [15] also
points out the issue of differences between different PUF layouts. If different PUF layouts
have a low Hamming inter-distance value, then by knowing the answers of one system,
you can try to guess the answers of another, twin PUF.

For the device parameters, we verify the entropy of the source by determining the
min-entropy for each parameter. Since successive values of the following parameter bytes
have equal probability of occurrence, we can use the Formula (1). Since the probability of
each value for the parameter is identical, you can also use the formula

H = L ∗ log2b (3)

where H is the min-entropy of the parameter, L is the number of bytes of the parameter (its
length), and b is the number of possible characters.

The equal probability for software parameters is due to the fact that software parameters
are generated pseudorandomly. They were created on the device during the installation
and configuration of the operating system and software. In the case of the developed
method, the device itself does not need to have a pseudorandom number generator to
generate the software parameters since their values can be generated during the installation
of the system (e.g., using an external pseudorandom number generator) outside the IoT
device itself, and then the card with the installed and configured system can be placed
in the target IoT device. In the case of hardware parameters, the generation of a serial
number or other feature is performed at the manufacturing phase of the component. This
is assumed to be performed in a pseudorandom fashion. Investigating the randomness of
these parameters is controversial since a possible test would involve multiple character
strings from different devices, rather than a single string from a single source, which
conflicts with the assumptions developed by NIST [17]. These tests require a minimum of
1 million bits, and in the case of the serial number parameter, only 64 bits can be obtained
from each device (a serial number has 8 bytes). It is therefore possible to identify three
main reasons for abandoning the randomization tests. The first is the requirement to use a
sequence of at least several thousand bits, which cannot be obtained from a single device.
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One would have to concatenate from multiple devices, which means that the result of such
tests will be highly questionable. The second is the cost of acquiring the devices. In order
to conduct randomization tests, NIST [17] would be required to have access to a minimum
of 15,625 devices (because 1,000,000 bits required/64 bits provided by 1 device), where the
cost per device is about PLN 30. The third reason is that the study would have referred to
the assessment of randomness for a single manufacturer’s model or models. For the same
reasons, the randomness of hardware parameters for the memory card is not examined.
The article is limited to examining entropy for selected parameters that are considered
promising for use in the key generation process. In the first step, parameter values are
collected from 20 Raspberry Pi devices, 20 memory cards and 20 installed operating systems.
Then, the entropy for each parameter is calculated using the ent tool [24]. The results are
shown in Table 3.

Table 3. List of parameters with calculated entropy.

No. Parameter Entropy [Bit] Number of Characters

1 Serial number of Raspberry Pi 32 8
2 Hardware ID Raspberry Pi 32 8
3 Memory card serial number 29 8
4 CID Value 33 9
5 PTUUID of partition 19 5
6 UUID of filesystem 128 32
7 UUID of filesystem for FATBOOT 32 8
8 Seed from /etc/shadow 93 16
9 Hash value form /etc/shadow Depends on the password 88

10 Seed for directory hash function (ext4) 129 32
11 Operating system ID 129 32

Based on the results shown in Table 3, 274 bits of input entropy can be obtained from
seven parameters with the lowest entropy, i.e., serial number; hardware ID; memory
card serial number; CID value; PTUUID of partition; UUID of filesystem for FATBOOT;
and seed from /etc/shadow. This value is sufficient to create a key with an entropy of
128 bits [13]. The entropy value is the result of adding up the entropy for the selected
parameters. The entropy values can be summed with each other as long as the parameters
are independent. You should be careful when choosing parameters to identify an IoT
device, due to certain parameter dependencies introduced by manufacturers. For example,
on the Raspberry Pi, the MAC address values and Bluetooth hardware address depend
on the serial number of the device. The physical address of the wired interface (MAC
address) is the value of B827EB and the lower 48 bits from the serial number, while the
physical address of the wireless interface is B827EB and the lower 48 bits from the serial
number XORed with 0x555555 mask. It is also important not to use the device’s interfaces
for communication when using the serial number as one of the parameters because this
will lead to the disclosure of the device’s serial number information. Some devices may
also come from companies that do not pay attention to the uniqueness of the generated
serial numbers and other parameters. This problem is encountered while performing tests
for memory cards sourced from a popular Chinese online store. These cards have identical
serial numbers and CID numbers. Therefore, the test is repeated for Samsung cards. Since
the entropy for some parameters is several times higher than what is considered sufficient
to create a hard-to-guess key therefore, some parameters can be split into at least two parts.
An example is the value of the password hash function, which can have up to 512 bits of
entropy. The number of entropy bits for this parameter depends on the algorithm used to
create the password hash but also on the entropy of the password used. The operation of
splitting the password hash can be performed by using the Pseudo Random Function (PRF),
and then dividing the result into parts of an appropriate length analogous to the session
key created in the protocol 802.11i [25]. The minimum number of parameters used to
create a key depends on the entropy of each parameter. It is important that the sum of
the entropy of the parameters used to create the key is twice the expected entropy of
the cryptographic key [13]. In the solution proposed in the article, the final key value is
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obtained by determining the value of the hash function for the concatenation of the HMAC
function values of the individual parameters. The proof that HMAC is a PRF function is
presented in the article [26]. We decide not to use the KDF function because its use does not
increase entropy. It is also considered that increasing the difficulty of brute-force attacks is
debatable for IoT devices. IoT devices have weaker processors, making the execution of
KDF time-consuming; besides, the devices must be energy efficient, so the device operations
themselves must not be energy intensive either. In securing communications, the focus is on
the use of algorithms considered secure, as well as on the difficulty of “guessing” the input
data from which the key is formed (increasing the key space). The combination of a secure
encryption algorithm, the use of a key with sufficient entropy, and the proper management
of access to parameters will translate into ensuring the confidentiality of communications
between IoT devices. Prepared configuration parameters may depend on devices or their
components that are built in the same time period and have similar serial numbers, as well
as software that is installed at the same time on different devices. Therefore, it is necessary
to study how the parameter values from different devices, components, and software
differ. A similar problem occurs in PUF circuits, where, for these circuits, it is assumed to
calculate two parameters determining the repeatability and uniqueness of the response.
Because of the similar approach in the developed protocol, it is decided to determine the
uniqueness of the parameter values in a manner similar to the evaluation performed for
PUF circuits [27]. The study of repeatability of parameter values is considered unnecessary
because the parameters are invariant over time, and also environmental factors are not
able to change parameter values. In order to test uniqueness based on the collected values
for each parameter, the Hamming distance is calculated, and the average µinter of the
parameter values is determined. The parameter values are read from 20 Raspberry Pi 4
devices and Samsung memory cards, which are obtained from the same production run.
The operating system on each memory card is installed in a few hours; the name and
password for the user, the system name, are identical for each installation. To calculate the
Hamming distance, each parameter value is converted into a bit string, and the Hamming
distance is calculated for the bit strings. Value µinter in the best case should be close to 0.5.
The value of the average µinter is calculated using the formula [28]

µinter =
1

NL
∗

M−1

∑
i=1

M

∑
j=i+1

HD(xi, xj) (4)

where N is the number of all pairs of values of the parameter under test for which the
Hamming distance is calculated, L is the length of the parameter value, and M is the
number of parameter values, while ∑M−1

i=1 ∑M
j=i+1 HD(xi, xj) is the sum of the Hamming

distance values for all pairs of values of the parameter under study. The number of all pairs
can be calculated from the formula N = M∗(M−1)

2 . Values µinter are shown in Table 4.
The µinter values obtained during this study indicate which parameters are best to use

for key creation. Note the low µinter value of the serial number of the memory card and its
CID number, which is due to the fact that the cards came from a single set and there were
cards with serial numbers following each other. This situation is not observed for serial
numbers of Raspberry Pi devices. The µinter value for the password seed, among others, is
close to 0.41, despite the fact that the value of this parameter is generated pseudorandomly.
This is probably caused by the fact that the password seed is stored using a set of symbols,
and thus not all the bits representing the symbol are used.

In conclusion, each of the three cases is suitable for use in LAAFFI. However, care must
be taken that the selected parameters have sufficient entropy to guarantee the secrecy of the
encrypted data. In the event of insufficient entropy, more parameters can be used, but the
entropy of the selected parameters must be twice the entropy of the resulting key [13].
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Table 4. List of parameters with calculated µinter.
No. Parameter µinter

1 Serial number of Raspberry Pi 0.339
2 Hardware ID of Raspberry Pi 0.328
3 Memory card serial number 0.229
4 CID Value 0.235
5 PTUUID of partition 0.319
6 UUID of filesystem 0.309
7 UUID of filesystem for FATBOOT 0.382
8 Seed from /etc/shadow 0.403
9 Hash value form /etc/shadow 0.410
10 Seed for directory hash function (ext4) 0.320
11 Operating system ID 0.323

5. Formal Security Validation

We formally verify the most important LAAFFI operations: (1) device registration,
(2) communication of an IoT device with DL, and (3) communication between two IoT
devices. In our validation, we assume that the DL used by LAAFFI is secure. We model
and verify the security of each operation in Verifpal [29] to determine whether the three
properties of secrecy, authenticity, and freshness are met. Our Verifpal models are available
at [30]. In each case, we receive a positive result, which confirms the security of the verified
operations of LAAFFI.

Verifpal is one of the tools for modeling modern communication protocols and verifying
that security features are met. A characteristic feature of this tool, which is emphasized
by the author, is the simple and intuitive assembly that allows for easier model creation
for those unfamiliar with modeling issues of communication protocols. Verifpal is a tool
that verifies symbolic models in an automatic way. Users can use only defined primitives
(e.g., symmetric/asymmetric encryption, hash function, message signing, and many others)
and cannot be extended. Verifpal also offers a set of security features that can be verified: the
secrecy of transmitted data, authentication of parties to the communication, the possibility
of a replay attack, and unlinkability. It has been used to test the security of many protocols,
including Signal, TLS, ProtonMail [31]. The results of the analysis of these protocols
conducted with Verifpal overlap with the analysis conducted by other tools.

The Verifpal model consists of four main elements: the type of attacker, the operations
performed by the participants, the information sent by the participants, and the queries to be
verified. Because Verifpal has limited properties verification abilities, the attacker’s model
itself is simplified. One of the main goals of the attacker in the developed protocol is to gain
access to the transmitted data. Access to the data by an unauthorized party is a violation of
the secrecy of the transmitted data. In order to read the transmitted information, the attacker
must gain access to the key used to encrypt the data. An attacker, having the ability to
access the transmitted data, can modify them and use them in other communications by
impersonating the device. Another goal may be to attempt a replay attack by resending
intercepted messages to disrupt the protocol. In this case, the attacker simply intercepts
any message and retransmits it to other devices. Another goal of the attacker may be to
impersonate another device. To achieve this goal, the attacker must obtain credentials
(login and key). Each of these goals has been verified by the Verifpal model.

5.1. Registration Phase

In each of the models built for Verifpal, an attacker that acts in an active manner
must be defined, that is, an attacker that has the ability to modify the data sent between
communication participants.

According to the protocol description presented in Section 3, when registering a device
A, it generates a parameter array paramtable and a nonce value nonceAH, and has a stored
one-time key OTP and an identifier ITD. In the real environment, a timestamp is also sent
in addition to the parameter array. However, since Verifpal does not have the ability to
operate on timestamps, it is decided that it is pointless to create and transmit a timestamp.
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In addition, the parameter array is marked as a random value since the arrays and lists
are not operated on in the symbolic model. The parameter array paramtable is encrypted
using the algorithm AEAD using a temporary key OTP and a one-time value nonceAH.
The temporary identifier ITD, nonceAH, and the ciphertext E_DataAH are sent to the
Distributed Ledger node. A fragment of the model that implements these actions is shown
in Listing 1.

Listing 1. A fragment of the model responsible for describing the actions performed by
device A in the device registration process.

a t t a c k e r [ a c t i v e ]
p r i n c i p a l DeviceA [

generates paramtable
generates nonceAH
knows p r i v a t e OTP
knows p r i v a t e TID
E_DataAH = AEAD_ENC(OTP, paramtable , nonceAH )

]
DeviceA −> HLF: TID , nonceAH , E_DataAH

The Distributed Ledger node also has a temporary device identifier TID and a one-
time key OTP. Using nonceAH and OTP, it decrypts the received ciphertext E_DataAH.
The decrypted value received is the parameter array D_DataAH. The Distributed Ledger
node generates a permanent device identifier ID. The parameter array and ID in the real
scenario are written in the Distributed Ledger when registering the device. A key key is
generated, which in the real system is derived from the set of parameters specified by
parameter_numbers. Since it is impossible to represent this action in the Verifpal model,
the simplifying assumption is made that the key key is known to both parties to the
communication. The identifier ID is encrypted using the key key and the nonce value
generated, nonceHA. The result of the encryption is the ciphertext E_DataHA. The nonce
value nonceHA and the ciphertext E_DataHA are sent to device A. The modeled actions are
shown in Listing 2.

Further descriptions of the models on the Verifpal software no longer include infor-
mation about the need to verify the timestamps in the messages sent in the message and
consider that the key is known to both parties of the communication. These simplifications
are made because Verifpal does not have the ability to compare timestamps and operate
on tables.

Listing 2. Fragment of the model responsible for describing the actions performed by the
Distributed Ledger node during device registration A.

p r i n c i p a l HLF[
knows p r i v a t e OTP
knows p r i v a t e TID
D_DataAH = AEAD_DEC(OTP, E_DataAH , nonceAH )
generates ID
knows p r i v a t e key
generates nonceHA
E_DataHA = AEAD_ENC( key , ID , nonceHA )

]
HLF −> DeviceA : nonceHA , E_DataHA

Device A, upon receiving the response from the node, decrypts the received ciphertext
DataHA using the key key that is known to the device and the nonce nonceHA sent in
the message. The decrypted DataID is considered the permanent identifier of the device,
and the device itself is considered registered. A fragment of the model that implements
these actions is shown in Listing 3.
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Listing 3. Fragment of the model responsible for describing the actions performed by
device A after receiving a response in the registration process.

p r i n c i p a l DeviceA [
knows p r i v a t e key
D_DataHA = AEAD_DEC( key , E_DataHA , nonceHA )
]

At the end of the device registration model, there is a list of queries that are verified
within the model. The confidentiality of the transmitted parameter array (paramtable) and
the identifier given to the device (ID) are verified. The authentication of the communication
is also verified, as well as the ability to distinguish messages between protocol runs. All
verified security features are met. The list of verified queries is shown in Listing 4.

Listing 4. List of queries verified by Verifpal during device registration process.
quer ies [

c o n f i d e n t i a l i t y ? paramtable
c o n f i d e n t i a l i t y ? ID
a u t h e n t i c a t i o n ? DeviceA −> HLF: E_DataAH
a u t h e n t i c a t i o n ? HLF −> DeviceA : E_DataHA
f r e s h n e s s ? E_DataAH
f r e s h n e s s ? E_DataHA

]

5.2. IoT Device Communication with Distributed Ledger

An active attacker is also defined in this model. Device A ‘knows’ which data dataA
are to be sent to the Distributed Ledger. The generation of the nonce value nonceAH
follows. Data dataA are encrypted with the key keyAH and nonce nonceAH using the
algorithm AEAD. A nonce value of nonceAH is sent to the Distributed Ledger node, as well
as the ciphertext E_DataAH. Listing 5 shows a fragment of the model showing the actions
performed by the IoT device.

Listing 5. Fragment of the model responsible for describing the actions taken by device A
sending data to the Distributed Ledger.

a t t a c k e r [ a c t i v e ]
p r i n c i p a l DeviceA [

knows p r i v a t e dataA
generates nonceAH
knows p r i v a t e keyAH
E_DataAH = AEAD_ENC(keyAH, dataA , nonceAH )

]
DeviceA −> HLF: nonceAH , E_DataAH

After receiving the data, the node decrypts the ciphertext E_DataAH using the key
keyAH (reconstructed from the values of certain parameters stored in the array during
device registration) and the transmitted value nonceAH. To send the reply response, the node
generates a new key keyHA and the nonce value nonceHA. The reply response is encrypted
using the AEAD algorithm using the created key keyHA and nonce nonceHA. The ciphertext
E_DataHA, and the nonce value nonceHA are sent to device A. The model that implements
this part of the protocol is shown in Listing 6.

Device A knows the key keyHA and, using this key and the received value nonceHA,
decrypts the ciphertext E_DataHA. In doing so, it obtains the answer from the Distributed
Ledger node. Listing 7 shows a fragment of the model responsible for the actions performed
by A.



Electronics 2024, 13, 3932 17 of 36

Listing 6. Fragment of the model responsible for describing the actions performed by the
Distributed Ledger after receiving data from device A.

p r i n c i p a l HLF[
knows p r i v a t e keyAH
D_DataAH = AEAD_DEC(keyAH, E_DataAH , nonceAH )
generates reply
generates nonceHA
knows p r i v a t e keyHA
E_DataHA = AEAD_ENC(keyHA, reply , nonceHA )

]
HLF −> DeviceA : nonceHA , E_DataHA

Listing 7. Fragment of the model responsible for describing the actions performed by
device A after receiving data from the Distributed Ledger.

p r i n c i p a l DeviceA [
knows p r i v a t e keyHA
D_DataHA = AEAD_DEC(keyHA, E_DataHA , nonceHA )

]

This model also verifies the confidentiality of the transmitted data, the authentication
of the communication parties, and the ability to distinguish messages sent in different
protocol runs. The queries verified by Verifpal for this model are shown in the Listing 8.
All verified security features are verified successfully.

Listing 8. List of queries verified by Verifpal in the process of device communication with
Distributed Ledger.
quer ies [

c o n f i d e n t i a l i t y ? dataA
c o n f i d e n t i a l i t y ? reply
a u t h e n t i c a t i o n ? DeviceA −> HLF: E_DataAH
a u t h e n t i c a t i o n ? HLF −> DeviceA : E_DataHA
f r e s h n e s s ? E_DataAH
f r e s h n e s s ? E_DataHA

]

5.3. Communication between IoT Devices

Communication between devices requires the IoT device that wants to communicate
with another IoT device to first obtain a key from the Distributed Ledger node. The attacker,
as in the previous two models, can modify the messages transmitted. To obtain the commu-
nication key, device A encrypts the device identifier B using the algorithm AEAD using
the key keyAH and the nonce nonceAH. The ciphertext of E_DataAH along with nonceAH is
sent to the Distributed Ledger node. The model that implements this fragment is shown in
Listing 9.

Listing 9. Fragment of the model responsible for describing the actions performed by
device A sending a request to the Distributed Ledger to generate a key to communicate
with another device.

a t t a c k e r [ a c t i v e ]
p r i n c i p a l DeviceA [

knows p r i v a t e dataAB
knows publ ic IDB
generates nonceAH
knows p r i v a t e keyAH
E_DataAH = AEAD_ENC(keyAH, IDB , nonceAH )

]
DeviceA −> HLF: nonceAH , E_DataAH
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The Distributed Ledger node, upon receiving the message, decrypts the ciphertext
E_DataAH using the key keyAH and the transmitted nonce nonceAH. Using the algo-
rithm AEAD using the key keyHA and the nonce nonceHA, the created key for inter-device
communication keyAB is encrypted. The ciphertext E_DataHA along with nonceHA are sent
to device A. Listing 10 shows an excerpt from the model describing the actions performed
by the Distributed Ledger node.

Listing 10. A fragment of the model responsible for describing the actions performed by the
Distributed Ledger upon receiving a request to generate a key for communication between
devices A and B.

p r i n c i p a l HLF[
knows p r i v a t e keyAH
D_DataAH = AEAD_DEC(keyAH, E_DataAH , nonceAH )
knows p r i v a t e keyAB
generates nonceHA
knows p r i v a t e keyHA
E_DataHA = AEAD_ENC(keyHA, keyAB , nonceHA )

]
HLF −> DeviceA : nonceHA , E_DataHA

Device A, upon receiving the message, decrypts it and thus obtains the keyAB key to
communicate with device B. The corresponding part of the model that implements these
steps is shown in Listing 11.

Listing 11. Fragment of the model responsible for describing the actions performed by
device A before sending data to device B.

p r i n c i p a l DeviceA [
knows p r i v a t e keyHA
D_DataHA = AEAD_DEC(keyHA, E_DataHA , nonceHA )

]

In this model, as in the previous, the confidentiality of the transmitted data, the authen-
tication of the parties to the communication, and the ability to distinguish messages sent
in different runs of the protocol are verified. The verified features are shown in Listing 12.

Listing 12. Query list verified by Verifpal in the process of establishing communication
between device A and device B.
quer ies [

c o n f i d e n t i a l i t y ? IDB
c o n f i d e n t i a l i t y ? keyAB
a u t h e n t i c a t i o n ? DeviceA −> HLF: E_DataAH
a u t h e n t i c a t i o n ? HLF −> DeviceA : E_DataHA
f r e s h n e s s ? E_DataAH
f r e s h n e s s ? E_DataHA

]

Verifpal finds one possible attack when analyzing the properties of this model. It is
presented in Listing 13.

Listing 13. The result of the execution of the communication establishment model showing
the first of the possible attacks.
Resul t : c o n f i d e n t i a l i t y ? idb −

idb ( idb ) i s obtained by Attacker .

It refers to the failure to ensure the secrecy of the transmitted device B identifier to
the Distributed Ledger node. This is because the identifier is publicly known. It is deter-
mined that this is not a problem that affects the security of the system. In a real system,
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the identifier is sent with a timestamp that is verified; therefore, there is no possibility of a
replay attack.

The second model includes communication between the A and B devices after the A
device has received the keyAB key. The dataAB data are encrypted by the A device using
the algorithm AEAD using the keyAB key and the generated nonce value nonceAB for each
transmitted message. The received ciphertext E_DataAB is, together with nonceAB, sent to
the B device. Listing 14 shows a fragment of the model that implements the establishment
of communication between the A device and the B device.

Listing 14. An fragment of the model showing the operations performed by the A devices.
a t t a c k e r [ a c t i v e ]
p r i n c i p a l DeviceA [

knows p r i v a t e keyAB
knows p r i v a t e dataAB
generates nonceAB
E_DataAB = AEAD_ENC( keyAB , dataAB , nonceAB )

]
DeviceA −> DeviceB : nonceAB , E_DataAB

In the real scenario, device B is able to create the keyAB key based on the number
of parameters, its parameter array, and the transmitted timestamp. If this key, together
with the transmitted nonce value, allows the decryption of the transmitted ciphertext, it
means that device A has the right to communicate with device B, because otherwise the
ledger node would not issue a valid key. In the model, we assume that the key keyAB
is known to device B. Device B using this key and the nonce value nonceAB can decrypt
E_DataAB. As a result of this operation, device B obtains the data DataAB on which it
performs some operation. The response reply is encrypted with the algorithm AEAD using
the key keyAB and the new nonce value nonceBA. The resulting ciphertext is E_DataBA,
which is sent along with nonceBA to device A. Device A, using the keyAB it has and the value
of the nonce received nonceBA, is able to decrypt E_DataBA, resulting in a reply response.
Listings 15 and 16 show the modeled communication between B and A.

Listing 15. Fragment of the model showing the operations performed by device B after
receiving a message from device A.

p r i n c i p a l DeviceB [
knows p r i v a t e keyAB
D_DataAB = AEAD_DEC( keyAB , E_DataAB , nonceAB )
generates reply
generates nonceBA
E_DataBA = AEAD_ENC( keyAB_2 , reply , nonceBA )

]

Listing 16. Fragment of the model showing the operations performed by device A after
receiving a response from device B.
DeviceB −> DeviceA : nonceBA , E_DataBA
p r i n c i p a l DeviceA [

D_DataBA = AEAD_DEC( keyAB , E_DataBA , nonceBA )
]

This model verifies the same properties as the previous models, that is, the confi-
dentiality of communications, authentication of transmitted messages, and the ability to
distinguish messages sent in different protocol runs. The list of verified queries is shown in
Listing 17.
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Listing 17. Query list verified by Verifpal in the process of communication between device
A and device B.

quer ies [
c o n f i d e n t i a l i t y ? dataAB
c o n f i d e n t i a l i t y ? reply
a u t h e n t i c a t i o n ? DeviceA −> DeviceB : E_DataAB
a u t h e n t i c a t i o n ? DeviceB −> DeviceA : E_DataBA
f r e s h n e s s ? E_DataAB
f r e s h n e s s ? E_DataBA

]

As a result of verifying this model, Verifpal indicates the possibility that the authentica-
tion of messages transmitted between A and B devices is not fulfilled. Verifpal shows that
an attack is possible, involving the swapping of transmitted messages, that is, a message
sent from device A to device B is intercepted by an attacker and sent again to device A. In the
second case, the situation is analogous, i.e., the attacker intercepts the message sent from
device B to device A and sends it to device B in the next iteration. In both cases, the result
of Verifpal’s analysis of the models confirms that the authentication of the parties would
not be provided; however, in the actual system, both messages will not be executed by the
devices. This is because the devices will receive data that will not be in the expected format,
i.e., device A will receive a message built as a request and expect a response, while device B
expects a request and will receive a response. Both attacks are shown in Listings 18 and 19.

Listing 18. The result of executing a device communication model showing the first
of possible attacks.

Resul t : a u t h e n t i c a t i o n ? Devicea −> Deviceb : e_dataab −−−When :
nonceab −> nonceba <− mutated by Attacker ( o r i g i n a l l y nonceab )
e_dataab −> AEAD_ENC( keyab , reply , nonceba ) <− mutated by Attacker ( o r i g i n a l l y AEAD_ENC(

keyab , dataab , nonceab ) )
d_dataab −> reply <− obtained by Attacker
d_databa −> reply <− obtained by Attacker
e_dataab (AEAD_ENC( keyab , reply , nonceba ) ) , sent by Attacker and not by Devicea , i s

s u c c e s s f u l l y used in AEAD_DEC( keyab , AEAD_ENC( keyab , reply , nonceba ) , nonceba ) within
Deviceb ’ s s t a t e .

Listing 19. The result of executing a device communication model showing the second
of possible attacks.

Resul t : a u t h e n t i c a t i o n ? Deviceb −> Devicea : e_databa −−−When :
d_dataab −> dataab <− obtained by Attacker
nonceba −> nonceab <− mutated by Attacker ( o r i g i n a l l y nonceba )
e_databa −> AEAD_ENC( keyab , dataab , nonceab ) <− mutated by Attacker ( o r i g i n a l l y AEAD_ENC(

keyab , reply , nonceba ) )
d_databa −> dataab <− obtained by Attacker
e_databa (AEAD_ENC( keyab , dataab , nonceab ) ) , sent by Attacker and not by Deviceb , i s

s u c c e s s f u l l y used in AEAD_DEC( keyab , AEAD_ENC( keyab , dataab , nonceab ) , nonceab ) within
Devicea ’ s s t a t e .

Another issue with this model is the possibility of sending the same message repeatedly,
i.e., launching a replay attack. In the real scenario, it is impossible to perform this attack
because each message contains a creation timestamp that is verified. The IoT device or
Distributed Ledger node when decrypting the message compares this timestamp with the
current time. The disadvantage of this solution is having a correctly synchronized time
on each IoT device. The time on the IoT devices should be synchronized with the organi-
zation’s time server in a way that ensures time server authentication and communication
confidentiality. In the prepared implementation, the time after which a message is rejected
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because it is considered out of date is 5 s. The timestamp is also compared to the timestamp
received in the previous message. If it is identical or smaller, the message is rejected.
The timestamp is sent along with the data in encrypted form using the AEAD algorithm.

6. Analysis of Attack Resilience

IoT networks are exposed to many risks due to the valuable data that are collected and
processed. These data can be related to people’s health, protected data from an organization,
or data critical to public safety. Conducting various types of attacks on IoT systems is made
easier due to the large number of devices with limited resources, which requires the use
of appropriate security solutions. Devices often come from different manufacturers and
do not use specific standards, making them difficult to manage, thus impacting security.
The goal of an attacker in IoT networks is most often to steal data, interrupt transmission,
and use IoT devices to perform other attacks including DDoS, falsifying data processed in
IoT networks. To achieve the mentioned goals, the attacker can carry out various attacks.
The attacks that can be carried out on federated networks IoT are the same as those that can
be carried out on non-federated networks. However, when analyzing attacks on federated
networks, it is important to consider an attacker that belongs to a different organization
than the devices or services being targeted. An attacker not belonging to an organization
that owns a device or service is likely to have more rights than a non-federated entity but
less than a member of an organization that owns devices and services. Table 5 presents a
list of possible attacks against the developed protocol LAAFFI. The criterion for selecting
attacks is the possibility of violating the properties of information security. The list of
attacks is based on an analysis of the existing literature [32–36]. Some of the attacks listed in
Table 5 are generalized categories that encompass different attack techniques. An example
of such an attack is the Denial of Service (DoS) attack, which can include flood attacks,
fragmentation attacks, and reflection amplification attacks.

LAAFFI works in all three layers of the IoT model: perception, network, and application.
It is exposed to security attacks performed at each of these layers. Below, we start our
discussion with an analysis of general attacks, applicable to all layers, and then continue
with a discussion focused on specific layers of the IoT stack. We also provide a dedi-
cated discussion of attacks applicable to Hyperledger Fabric as one of the key third-party
components of our framework.

Table 5. Types of attacks that can be attempted against LAAFFI.

Perception Layer Network Layer Application Layer

DoS/DDoS DoS/DDoS DoS/DDoS
Spoofing Spoofing Spoofing

Cryptanalysis Cryptanalysis Cryptanalysis

Malicious code injection Eavesdropping Malicious code injection
Physical damage Replay attack Data loss

Replacing a device or its components Packet injection Unauthorized access to data
Adding a malicious device Session hijacking Abuse of authority

Device cloning Man-in-the-middle attack Permissions modification by unauthorized
users

Sybil attack
Side-channel attack

In the following, we do not report the results of the penetration testing of specific com-
ponents of LAAFFI. This is due to the fact that our work is focused on the development of a
research prototype, which would require some implementation adjustments for operational
deployment, and the result of penetration tests are relevant only for a specific implementa-
tion instance. However, several penetration studies for the specific components used in
LAAFFI, such as Hyperledger Fabric or IPFS, can be found in the literature, e.g., [37].
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6.1. General Attacks

An attack that is applicable in various forms to all layers and is difficult to protect against
is the (Distributed) Denial-of-Service (DoS/DDoS) attack. The specific type of DoS/DDoS
that is applicable to the perception layer is a resource deprivation attack [38]. The aim of the
attack is to exploit an available resource; most often, this resource is the network bandwidth,
CPU performance, and less often disk space. IoT devices are susceptible to this type of
attack due to the hardware characteristics. In order to successfully perform a DoS/DDoS
attack, a sufficiently large number of messages need to be sent to the device. The number
of messages depends on the hardware configuration of the IoT device. In the case of
the network layer [38,39], the DoS/DDoS attack can consist of jamming communication
between devices. The attacker transmits a signal using the same frequencies as the devices
that communicate with each other. As with the DoS/DDoS attack at the perception layer,
the way to protect communication parties from this type of attack is very limited. In
the application layer, LAAFFI is vulnerable to DoS/DDoS attacks due to the fact that if
too many operations are performed that require adding data to the ledger, e.g., device
registration and changing permissions, the Hyperledger Fabric resources can be exhausted.
In other cases, there is no limit to the scaling of the ledger nodes. Adding more nodes
allows more operations to be processed per second, thus forcing the attacker to increase
the number of operations to carry out this attack successfully. Protecting against this type
of attack is extremely difficult, but an application gateway may have the ability to reject
messages that are duplicates or have an incorrect format. This rejection process can reduce
the number of messages that must be handled by the Distributed Ledger nodes. In addition,
you can try to protect your organization from a DoS/DDoS attack by taking advantage
of the protection services against such attacks offered by telecom operators, or the Web
Application Firewall (WAF).

Spoofing attacks [40] encompass a large set of attacks aimed at impersonating, in the
case of LAAFFI, a device, an application gateway, or a Distributed Ledger node. Since in
LAAFFI, each message is authenticated, it is not possible to perform attacks of this type
until the attacker has access to the parameters from which the key can be created. Mutual
authentication of the application gateway with the Distributed Ledger node is performed
using Transport Layer Security (TLS) based on the certificates of both parties. Therefore, it
is important to secure the private key of each application gateway and Distributed Ledger
node so that an attacker does not gain the ability to impersonate the application gateway
or Distributed Ledger node.

Cryptanalysis [41] encompasses a collection of attacks aimed at obtaining the plaintext
of a transmitted message. Examples of this attack include brute-force attack, dictionary
attack, and statistics attack. In order to make it difficult to obtain the plain text of the
message sent between the IoT device and the application gateway or another IoT device,
it is recommended to use encryption and HMAC algorithms that are considered secure.
The parameters used to create the key must also have the right amount of entropy so that
an attacker cannot guess the key used to secure the message.

Another class of general attacks exploits vulnerabilities in software languages [42] or in
the software itself [43]. You can protect yourself from these attacks by updating the software
that you use. Attacks can also target a specific software solution and exploit flaws in that
software. In the case of a developed implementation of the LAAFFI protocol, an attacker
may try to exploit flaws in the Hyperledger Fabric, which we discuss later. The defense
against malicious code injection [34,44] in the case of LAAFFI requires ensuring that the
user application has a properly implemented mechanism for validating the received data.
To prevent this type of attack, it is necessary to implement data validation in the application
gateway code and chaincode. Each member of the federation is responsible for maintaining
and updating the application gateway. Accordingly, each of them must implement such
a mechanism. It should also be possible for each organization’s application gateway to
be security tested by the other organizations. In the case of chaincodes, the consent of all
members is required for a chaincode to be implemented. Therefore, security testing of the
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new version of the chaincode should be carried out before accepting the new version of
the chaincode.

6.2. Perception Layer

In the perception layer, which includes IoT devices, possible attacks on LAAFFI include,
in order of increasing technical complexity, the following:

• Physical damage: The attack consists of damaging the IoT device and thereby prevent-
ing or limiting the ability of the device to provide services. The developed protocol
makes it possible to quickly deploy a larger number of IoT devices, which will result
in reducing the impact of damage to individual IoT devices.

• Replacing a device or its components: This is an attack involving replacing a device
or device components. The key generated in the LAAFFI protocol to encrypt and
authenticate messages is generated based on the responses obtained from PUF circuits
or based on parameters representing selected hardware and software features of the
IoT device. In both cases, the attack is detectable based on checking the number of
rejected messages against the number of message decryption failures created by the
substituted device. The detection of this attack is not possible when the key is created
from parameters stored on a memory card.

• Adding a malicious device [34]: In the case of this attack, the attacker adds his device
to the federated IoT environment. In the case of the developed protocol, without reg-
istering the device, there is no possibility of communication with other components
of the system. On the other hand, in a situation where the attacker has succeeded
in registering his malicious device, the device can only communicate and perform
operations with the devices and services to which it will be granted permissions.

• Device cloning [44]: An attack on an IoT device involves cloning the device. The cloned
device behaves like a real node but engages in malicious activities and conducts
wormhole, blackhole attacks because it has access to sensitive data. To carry out a
device cloning attack, it is required to obtain the credentials of another IoT device.
In the case of LAAFFI, the attack is possible if the attacker takes control of another
device with permissions to obtain all the parameter values needed to create the keys.
If the LAAFFI uses the hardware–software parameters of the device or the PUF,
cloning the memory card is insufficient to carry out this attack.

• Sybil attack [45]: The attack involves creating multiple identities for a single IoT node.
For the developed protocol, it is possible to register a IoT device more than once.
The device is registered by one organization, so it is important that each organization
carefully supervises the registration process. During the registration process, it is
recommended to verify that the device has not been registered before.

• Side channel attack [46]: This is an attack in which the characteristics of the device [47]
are observed to obtain information about the algorithm, key, or unencrypted data used.
The attacker analyzes the duration of operations, power usage, or electromagnetic
emissions [48]. It should be noted that the possibility of executing this attack depends
on the design of the IoT device and the technologies used. For this reason, the study of
the possibility of launching a side-channel attack is abandoned. It should be assumed
that if the attacker has access to the IoT device, it should be considered that the device
has been compromised and should be considered untrusted.

6.3. Network Layer

At the network layer, the attacker can try to perform the following attacks on LAAFFI,
listed in order of their increasing technical complexity:

• Eavesdropping [49]: In the case of LAAFFI, the transmitted data is encrypted. The only
data that are transmitted in plaintext are the device ID, the parameter numbers used,
and the nonce value. These data do not provide a way to create the key used to secure
the transmitted data.
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• Replay attack [50]: This is an attack that is based on intercepting a message and
sending it later. In the case of the developed solution, it is impossible to perform
this attack due to the fact that each message contains a creation timestamp, which is
verified. The IoT device or Distributed Ledger node when decrypting the message
compares this timestamp with the current time. The disadvantage of this solution
is having a correctly synchronized time on each IoT device. The time on the IoT
devices should be synchronized with the organization’s time server in a way that
ensures authentication of the time server and confidentiality of the communication.
In the prepared implementation, the time after which a message is rejected due to
the fact that it is considered out of date is 5 s. The timestamp is also compared with
the timestamp received in the previous message. If it is identical or smaller, then the
message is rejected. The timestamp is sent along with the data in encrypted form
using the AEAD algorithm.

• Packet injection [44]: The attack involves injecting packets to disrupt communication.
In the case of LAAFFI, the attack can consist of duplicating transmitted packets or
creating invalid packets. In both cases, they will be ignored by the recipient.

• Session hijacking [44]: The attack involves taking over a session token created either
between a device and an application gateway or between two devices. LAAFFI does
not use sessions, so it is not possible to take over a session. However, it may happen
that the attacker takes over the key for communication between two devices created
by the Distributed Ledger node. In such a situation, the attacker has the ability to
decrypt the communication between these devices and can impersonate any device
in this communication. To prevent this, it is important to protect the key used for
this communication.

• Man-in-the-middle attack [51]: In this attack, the attacker eavesdrops and modifies
the message sent between the parties. The message in the developed protocol consists
of elements whose modification is easy to detect. The identifier, parameter numbers,
and nonce value are necessary to create the key and decrypt the message. Changing
any element will prevent the creation of a valid key and decryption of the transmitted
ciphertext. Modification of the ciphertext will prevent correct decryption, which can
be easily detected through the use of an encryption algorithm that uses an AEAD.

6.4. Application Layer

In the application layer, which includes the Distributed Ledger and the application
gateway, an attacker can attempt the following attacks, listed below in order of their
increasing technical complexity:

• Data loss: LAAFFI uses a Distributed Ledger to store data, so each ledger node has
a copy of the data. The loss of a single node does not make the data unavailable.
Moreover, data stored in the ledger cannot be deleted or overwritten.

• Unauthorized access to data: To prevent unauthorized access to the data, LAAFFI
relies on the use of a private Distributed Ledger with authorized nodes. Hyperledger
Fabric allows for the creation of private channels and therefore restricts access to the
data stored in the Distributed Ledger with the need to respect the conditions stored in
the chaincodes. To prevent unauthorized access stored in the Distributed Ledger, every
user, Distributed Ledger node, and application gateway is authenticated using Public
Key Infrastructure (PKI). The certificates are issued only to authorized individuals.
It is also important to properly manage users’ access rights so that they only have
access to the required data types and functions. For example, only an entity with a
certificate and the appropriate key pair has the ability to create a Distributed Ledger
node and an application gateway.

• Abuse of authority—In the case of LAAFFI, the possibility of a successful abuse attack
is minimized through the use of chaincodes, which are designed to verify every
operation performed on data stored in the Distributed Ledger. For this reason, each
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organization has, among other things, the ability to modify the permissions of its IoT
devices, but this cannot be performed by unauthorized entities.

• Modification of permissions by unauthorized users: In the LAAFFI protocol, the
modification of permissions is only possible through chaincodes, and thus any modifi-
cation requires the conditions written in the chaincode to be met. If the chaincode is
written correctly, only the device owner or authorized entity can modify the device’s
IoT permissions.

6.5. Hyperledger Fabric

The access control mechanism in Hyperledger Fabric strictly relies on trust in the or-
ganizations that create the ledger in the channel. If a channel member acts maliciously,
they can execute, for example, a Wormhole attack [52], or expose the information stored
in the channel. Against this attack, we can protect ourselves by storing encrypted data.
Alternatively, private data can be stored outside of the Distributed Ledger, e.g., with only
the hash value of the data being stored in the ledger. Another significant security challenge
is the protection of the Membership Service Provider (MSP) from the leakage of the private
key of the CA and administrators. If an attacker takes control of an organization’s MSP or
obtains administrator permissions, they will be able to perform any operation on behalf
of that organization, including creating new nodes, reporting changes to chaincodes and
the Hyperledger Fabric system configuration. Compromising one organization can lead to
compromising the entire Distributed Ledger. Another problem is possible errors in chain-
codes. Hyperledger Fabric’s chaincode runs in a sandbox, which makes it difficult to exploit
security vulnerabilities due to the fact that the process is isolated and the container cannot
be accessed from the network. However, once control of the node on which the chaincode
is running is taken, the attacker has an open path to analyze and exploit the chaincode
vulnerabilities. Vulnerabilities can have various effects; they can lead to, among other
things, the leakage of information to unauthorized entities. To avoid errors when writ-
ing chaincodes, chaincodes should be thoroughly tested before implementation. For this,
static and dynamic analysis [53,54] or fuzzers [55] can be used. During the operational
phase, based on event analysis, alerts can be generated if attempts are detected to attack
Distributed Ledger nodes [56].

7. Implementation

Taking into account the desirable characteristics of DL identified in Section 3, we
compare the most widely used DL as shown in Table 6. We choose HLF as the most suitable
type of DL. Compared to some Distributed Ledger implementations, all implementations
listed in Table 6 have the ability to execute a smart contract. This feature is crucial for
running the LAAFFI because each transaction must meet the requirements defined in this
contract. HLF supports creating channels and compartmentalizing stored data, including
private data storage, that is, one can define which nodes store the data while only the hash
of the data is stored in the ledger. HLF is also modular; that is, one can change the type of
database and the consensus mechanism.

Table 6. Comparison of distributed ledgers.

Feature Hyperledger Fabric IOTA Quorum Ethereum

Limited access to confidential data

Yes No

Private data

Modularity

Separate ledgers

Smart contracts

Scalability and throughput High Low
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Modularity and support for separate ledgers are specific features of the Hyperledger
Fabric, enabling secure compartmentalization. The privacy of the data stored is crucial for
LAAFFI, as unauthorized access to the data stored in the ledger allows an unauthorized
entity to perform any operation as a trusted IoT device. In addition to using a private
data store, Hyperledger Fabric also offers an extensive access control mechanism based
on Access Control Lists and roles. Due to the fact that LAAFFI requires a large number
of read operations per second, the Distributed Ledger must have high throughput and
scalability. Scalability allows the number of operations processed to be increased by
adding more Distributed Ledger nodes. Hyperledger Fabric, Quorum, and IOTA offer
high performance, while Ethereum does not, due to the type of Distributed Ledger and the
consensus mechanism used. Finally, the latency time to receive data in a read operation for
Hyperledger Fabric is identical to that of a normal database, due to the fact that Hyperledger
Fabric uses a separate database to store the latest values. This is also a feature that other
Distributed Ledger implementations do not have by default.

Figure 5 illustrates the interactions between the three main components of LAAFFI: (1)
IoT device, including the client application and the Authentication and Authorization (AA)
service to support communication with HLF nodes and other IoT devices; (2) application
gateway, which is an interface between the devices and the HLF nodes; and (3) HLF node
running on a normal computer or in the cloud and interconnected to the SIEM and the
performance monitoring system.

Communication between the IoT device and the application gateway, depicted as
interface A in Figure 5, takes advantage of Constrained Application Protocol (CoAP) [57]
and Concise Binary Object Representation (CBOR) [58], as they were specifically designed
for constrained devices. Although CBOR Object Signing and Encryption (COSE) [59]
provides a security layer for CBOR, we do not use it because it requires encryption of
the entire message, and, in our case, only the part with the data is encrypted. Since
HLF supports secure communication only over TLS, the application gateway mediates
communication between IoT devices using LAAFFI (interface A) and HLF nodes using
TLS (interface B). The application gateway can also serve as a load balancer to ensure that
queries are evenly distributed among all DL nodes. It can also filter malicious traffic before it
reaches the DL nodes, thus shielding them from handling rogue requests. Each organization
should operate at least one application gateway; if the organization wants to keep high
availability, then there need to be at least two application gateways. Communication
with other services, e.g., SIEM, performance monitoring tools, or cloud services, can occur
through the application gateway (interface C); this ensures that cloud services do not have
to support the LAAFFI framework we propose, and communication between cloud services
and the application gateway is performed in a standard way, e.g., using TLS.

We use three HLF channels, depicted on the right side of Figure 5. Registration channel
stores data used during the device registration process. Authentication channel stores the
arrays of parameters required for device authentication; chaincode stored in this channel
is used to encrypt and decrypt messages and create keys for communication with other
devices. Authorization channel stores all access control policies; the chaincode in this channel
checks whether the devices can communicate with each other and which operations one
device can perform on another device. When one of the organizations is considered
malicious or compromised, we recommend using the HLF “Private data” function to
prevent malicious activities of other organizations. The credentials of IoT devices are stored
only at the nodes of the organization that owns those IoT devices. If one organization is
compromised, it will not have the credentials of other organizations’ devices and thus
cannot eavesdrop on communications or impersonate other organizations’ devices.
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Figure 5. A federated IoT network with two organizations with two DL nodes each.

8. Performance Evaluation

When conducting performance evaluations of distributed computing systems, such as
our IoT framework based on Hyperledger Fabric, three main metrics must be considered:
latency, throughput, and network resource utilization rate (the transmission overhead
introduced by the protocol). Latency measures the time it takes for an operation to be
performed by the IoT device and the distributed register. Throughput, on the other hand,
measures the speed at which work is performed, specifically the number of operations
or transactions performed per second. Network resource utilization, while also related
to throughput, is expressed in the number of bytes transferred per second, providing a
different perspective on the system’s performance.

Evaluating the performance of a framework system using the LAAFFI protocol is
a complex task. The overall performance evaluation of the system’s operation can be
significantly influenced by a variety of factors, including input parameters and processing
scenarios. These factors can range from system configuration and lower layer protocols
used to the hardware configuration of the application gateway and distributed registry
nodes, making the evaluation process intricate and multifaceted:

1. node load (e.g., number of ordered transactions/unit of time);
2. Configuration of the consensus process;
3. Protocols used;
4. The type of network used (e.g., Wi-Fi);
5. Hardware configuration of the application gateway, number of application gateways;
6. Performance of other tasks (e.g., system update and backup);
7. Number of application gateways, number of DL nodes;
8. Number of organizations forming a federation.

The main objective of the research is to confirm the usability of the developed solution
(LAAFFI protocol and system framework architecture) in specific applications. In order
to do this, it is necessary to consider basic scenarios of system use for which performance
tests should be conducted. The main usage scenarios are the following:

1. To carry out device registration—the most important indicators are the number
of device registration operations per second, the latency of the registration pro-
cess, the number of redundant bytes transferred between the deviceIoT and the
application gateway;

2. The establishment of a secure channel for communication with the distributed registry
and other services—the most relevant indicators include the number of encryption
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and decryption operations per second depending on the amount of data, the number
of privilege verification operations per second, and the latency of the distributed
registry nodes to perform operations;

3. The establishment of a secure communication channel between devices belonging
to different domains—the most relevant indicators are the number of operations to
generate a key for communication between IoT devices, the number of privilege
verification operations per second, and the latency of the distributed register nodes to
perform operations.

To determine whether the proposed solution is scalable, it would be necessary to
examine how metrics related to the performance of DL nodes change depending on the
hardware configuration of the nodes, the number of nodes in the organization, and the
number of organizations that form the federation.

We evaluate the impact of LAAFFI on the performance of IoT devices, DL, and the
network. A service implemented in Golang on Raspberry Pi (RPi) provides all the functions
required on the IoT device, i.e., device registration, encryption and decryption of messages,
checking permissions, communication with other IoT devices, and a Representational State
Transfer (REST) Application Programming Interface (API) interface to communicate with
the application gateway. Developers of applications for RPi only need to implement a REST
API client to communicate with our service. In the case of DL, we test the performance of
the operations required for authentication and authorization. In the case of the network,
we examine the transmission overhead introduced by LAAFFI.

We test the performance of LAAFFI on RPi devices by launching a service that receives
requests from the client application. Each request is mediated by LAAFFI and is sent in
CBOR format using CoAP over a communication channel with the highest bandwidth
to the application gateway. For RPi 4 and 3B+, it is Ethernet, while for RPi zero, WH is
Wi-Fi. The application gateway returns the same request to the service running on RPi.
The service decrypts the message and passes it to the client’s application. One cycle is from
the moment the client application sends the request to the service until the response is
received from the service. We perform the test four times for various amounts of data sent
to the service. In each test, we check how long the device needs to perform 50,000 cycles
and, based on these data, calculate the number of cycles per second. The results of this
evaluation are presented in Table 7.

Table 7. Performance on various Raspberry Pi platforms.

Length (Bytes) Operations/s
RPi 4 RPi 3B+ RPi 0 WH

20 752.60 461.90 76.90
100 726.00 445.74 76.11

1024 373.31 231.82 53.37
15,360 49.46 30.56 6.74
30,720 26.21 16.10 3.42
51,200 16.40 9.79 1.68

102,400 8.30 4.99 -

We carry out performance tests of HLF. We investigate how the number of selected
operations per second depends on the number of organizations and their nodes. The se-
lected operations include encrypting and decrypting data, obtaining a key for inter-device
communication, and registering IoT devices. We also check how the configuration of the
HLF and the hardware configuration of the nodes affect performance. For this purpose, we
build an environment consisting of a node with Hyperledger Caliper installed and several
HLF nodes. A detailed summary of the basic configuration parameters of the DL nodes
and the HLF parameters is presented in Table 8. Hyperledger Caliper [60] is a performance
testing tool for HLF, Hyperledger Besu, and Ethereum. The Hyperledger Caliper node
generates appropriate requests to the HLF nodes.
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Table 8. Distributed Ledger configuration parameters.
Element Parameter Value

Node

AWS Instance c5.xlarge or c5.2xlarge
CPU Intel Xeon Platinum 8000, 4 or 8 cores
Memory (GB) 8 or 16
Disk (Gib) 50 EBS
Network (Gbps) Up to 10
OS Ubuntu 20.04.1
HLF version 1.4.8
Golang Version 1.15.2
Docker Version 1.5–2

Hyperledger Fabric

Organizations From 2 to 4
Nodes in organization From 2 to 4
Endorsement Policy One node from each organization
BatchTimeout 2 s
MaxMessageCount 1000
AbsoluteMaxBytes 99 MB
PreferredMaxBytes 5 MB
Orderer consensus EtcdRaft
Number of orderer nodes The same as peers

All tests are performed on the Amazon Web Services (AWS) Elastic Compute Cloud
(EC2) platform. Table 9 consists of the results of the performance tests for three types of
operations: basic operations include the encryption and decryption of messages exchanged
between IoT devices and DL; read operations are operations that require access to the data
stored in DL; and write operations require modification of the data stored in DL. Basic and
read operations do not require a consensus and are executed by individual DL nodes. Since
write operations change the state of HLF, they require consensus. The number of operations
per second increases linearly with the performance of the nodes. The results are shown
in Table 9. In the case of operations that require reaching a consensus, i.e., transactions
that add data about the device and its permissions to the ledger, the results represent the
number of operations performed by all organizations per second. The DL nodes need to
reach a consensus; the number of operations per second decreases with the number of
organizations. As the approval policy requires the acceptance of transactions by any one
node in each organization, the number of operations per second increases with the number
of nodes in the organization.

The tested latency is acceptable since new data are added only during device registration
and authorization. In the tests performed, we focus on verifying the performance of the
LAAFFI protocol, so we do not test the writing of data from the devices to the HLF and the
exchange of data between devices via the DL. The waiting time to query the data stored in
the ledger is comparable to a database query.

Network overhead: We also evaluate the amount of data sent from the client to the
server and compare LAAFFI with Datagram Transport Layer Security (DTLS). We perform
three tests with different protocols: (1) CoAP + DTLS with client and server certificates
for authentication; (2) CoAP + DTLS with preshared key between the client and server;
(3) CoAP + CBOR + LAAFFI; and (4) CoAP + CBOR + AES with the shared key. Figure 6
shows the overhead data transferred during our tests. These results indicate that our
framework induces less overhead than DTLS.

Table 10 presents the amount of data and the number of packets transferred by compar-
ing our solution (LAAFFI) with DTLS in terms of overhead.

In our experiments, we also collect data on latency. It takes less than 3 s to add a block
of up to 800 transactions to HLF.
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Table 9. Performance of HLF (C1: 4 cores, 8 GB RAM, C2: 8 cores, 16 GB RAM).

Operation Msg
Length

Operations/s

Type
2 Orgs 3 Orgs 4 Orgs

2 Peers 3 Peers 4 Peers 2 Peers 2 Peers

C1 C2 C1 C2 C1 C2 C1

Encryption

100 B 1649.55 2574.35 2548,85 3297.95 3122.25 5136.15 1430.40 1299,80

Basic

1 kB 1574.80 2549.40 2304,75 3248,20 3098,75 5190,10 1549,70 1299,30
15 kB 1199.80 2396.45 1655.15 2898.30 2310.95 4618.50 1160.25 1024.60
30 kB 999.80 2198.95 1574.45 2706.65 2148.35 4237.70 924.60 824.90
50 kB 837.15 1863.70 1274.40 2497.55 1699.10 3471.05 774.85 699.90

100 kB 628.40 1341.35 901.05 1881.25 1154.90 1990.20 577.70 524.90

Decryption

100 B 1669.70 2102.95 2498.65 3112.50 3148.70 4304.10 1449.60 1299.85
1 kB 1574.80 2549.80 2348.75 2946.30 3097.80 4343.55 1403.90 1299.85

15 kB 1199.85 2379.60 1847.65 2798.20 2490.85 4143.95 1149.75 999.90
30 kB 1074.70 2263.70 1556.45 2598.80 2006.80 4092.70 974.85 874.90
50 kB 899.85 1805.50 1362.00 2398.20 1768.85 3641.80 774.90 767.05

100 kB 649.80 1432.15 934.90 2171.60 1171.65 2778.00 594.90 524.90

Device-to-device key 1654.60 1974.25 2390.95 3223.30 3297.35 4343.20 1399.75 1299.70 Read
Check permissions 1639.65 2447.00 2498.30 3224.00 3278.85 5184.75 1474.55 1434.60

Add permission 539.40 784.30 622.55 914.55 646.10 918.05 498.65 443.10 Write
Device registration 500.60 729.45 564.00 793.15 589.20 863.80 464.80 412.70

Figure 6. Overhead data transferred during our tests.

Table 10. The number of bytes transferred using various protocols.

No. of Bytes

CoAP + DTLS
with Certificate

CoAP + DTLS
with PSK

LAAFFI CoAP + CBOR
+ AES with PSK

Uploaded
Data Size

No. of
Packets

Uploaded
Data Size

No. of
Packets

Uploaded
Data Size

No. of
Packets

Uploaded
Data Size

No. of
Packets

20 2388
14

1685
14

392 3 349 3100 2550 1845 552 509

1024 4399 3695 2594 6 2560 6

15,360 37,888 58 36,864 56 33,792 48 33,850 48
30,720 73,728 102 72,704 101 68,608 93 67,419 93
51,200 121,856 161 120,832 161 114,688 153 112,179 153
102,400 238,592 311 236,544 305 224,256 294 219,389 294
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9. Related Work

The research results on the use of Distributed Ledger (DL) for authentication in federated
IoT environments are dominated by solutions using DL in support of authentication and
authorization based on asymmetric cryptography. At the same time, in our work, we focus
on the use of symmetric cryptography, which is much more suitable for constrained IoT
devices and provides resilience to quantum attacks.

In LAAFFI, we use DL mainly to enforce authorization, access control, and account-
ability. This differs from previous work on the use of DLs as a shared database that stores
certificates that confirm the identity of IoT [61–64], or [65,66] and as a trust bridge between
different Certification Authority (CA) types and IoT devices [67]. The authors have differ-
ent approaches to storing information in DLs. In the case of [64], they store hashes of device
certificates; in ref. [63], there are device certificates; and the authors of ref. [67] store the CA
public keys. In the certificateless approaches [65,66], the authors store domain information
(e.g., master key), identity information, and public keys for each device in the domains.
In the solutions using Identity-based Cryptography (IBC), the authors propose storing
domain information, device identities, and, in the case of [62], also a blacklist containing
the rejected identities.

An approach that is conceptually more similar to ours but focused on the use of IBC is
presented in [61], where DL not only is used as a data store but also executes smart contracts
to verify the request and is responsible for creating the keys. In [68], a hybrid approach is
proposed, in which authentication between organizations uses asymmetric cryptography,
while the use of symmetric cryptography improves organizational performance. In contrast
to our solution, instead of a DL, it uses an identity provider with information about all
devices belonging to different domains. One of the disadvantages of this approach is
that, although an organization does not have access to the private keys of devices, it can
access other information about all devices. In addition, each device must be registered with
multiple identity providers. Solutions using only symmetric cryptography are less common.
None of them uses a DL and relies on the RADIUS service [69] or their own [70] service.

A comparative analysis of LAAFFI and related work is shown in Table 11.
In comparison, LAAFFI is more efficient due to the use of symmetric cryptography

and algorithms adapted for operations involving IoT devices. Sending data between
IoT devices belonging to different organizations requires only three messages. LAAFFI
supports multiple authorization mechanisms, and since it also offers authentication and
accountability, it meets the requirements of AAA. It uses DL not only as a database to store
authentication data, but, most importantly, it uses smart contracts to ensure that the request
complies with the policies agreed between the organizations. Using a DL also ensures
accountability for all operations. LAAFFI offers the authentication of devices belonging to
a single organization and different organizations, with the assurance that the encryption
key will be shared with another device only if the appropriate security policy is met. All
LAAFFI components are scalable as confirmed by tests.

The high availability offered by LAAFFI makes it resilient to failure or the disable-
ment of individual components, which is particularly important in tactical and contested
environments.
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Table 11. Comparison of authentication and authorization methods. CRAM—Challenge–
Response Authentication Mechanism, DB—Database, EAP—Extensible Authentication
Protocol, IBC—Identity-based Cryptography, Inf—Informal analysis, KM—Key Manage-
ment, MAC—Message Authentication Code, NA—no data available.

Authentication Asymmetric Hybrid Symmetric
Crypto PKI IBC Certificateless MAC + PKI EAP CRAM AES
Source [67] [63] [64] [62] [71] [61] [65] [66] [68] [69] [69] LAAFFI

Use case DB NA
DB
KM

KM AAA
Authorization No NA

Yes

Yes

Scalability Yes NA Yes Yes NA
Lightweight

No
Separation NA

Decentralization
Yes

High availability
Accountability

Zero-day NA
Security

No Inf Tamarin Scyther No AVISPA
Tamarin

Analysis + Verifpal

10. Conclusions

We propose a novel Lightweight Authentication and Authorization Framework for
Federated IoT (LAAFFI) based on Hyperledger Fabric (HLF). The novelty of the proposed
solution consists of registering in the HLF a unique fingerprint of IoT devices according to
its available resources and designing a protocol to establish trust and secure communication
between IoT devices with the HLF and between IoT devices, even belonging to different
organizations that form a federation. Our solution supports devices with various capabili-
ties, including devices with additional hardware resources, such as Physical Unclonable
Function (PUF) or Trusted Processing Module (TPM), and simple IoT devices with minimal
computing resources, such as Arduino. Our framework is also fully decentralized, and the
data stored in the Distributed Ledger (DL) are replicated between nodes, increasing the
reliability of the entire solution. All LAAFFI interactions with DL nodes are recorded in
HLF, providing accountability in a federated environment. The private data feature of HLF
allows keeping the data confidential. However, in this case, only the organization that
owns the IoT devices can issue a communication key because only that organization can
access the parameter table stored as private data.

We have formally evaluated the security of LAAFFI using Verifpal. We used models
developed using this tool to verify the basic security properties of LAAFFI, such as message
secrecy, authentication, and freshness. Furthermore, we have implemented a prototype of
LAAFFI and evaluated its performance with respect to the volume of transmitted data and
the number of operations. The results show that LAAFFI is highly scalable and efficient. It
ensures secure data transfer using less data than the commonly used DTLS protocol.

The directions of further work are related to reducing or overcoming the limitations
that the developed protocol currently has. Among the most significant are the lack of group
communication for IoT devices, the architecture used by Hyperledger Fabric not being
quantum safe, and the requirement that IoT devices be equipped with an operating system.
Our work opens up additional research questions regarding applications of Distributed
Ledger in tactical environments that we plan to address in our future work. For example,
the performance of LAAFFI in edge computing scenarios, where individual DL nodes could
be connected through tactical radio links, offering constrained wireless communication
channels, must be evaluated. Moreover, although LAAFFI, due to its use of only symmetric
cryptography, offers resilience to quantum attacks, current implementations of HLF are not
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quantum resilient. The performance impact of the transition towards quantum-resilient
cryptography needs to be assessed.
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AA Authentication and Authorization

AAA Authentication, Authorization and Accounting

ACL Access Control List

AEAD Authenticated Encryption with Associated Data

API Application Programming Interface

AWS Amazon Web Services

CA Certification Authority

CBOR Concise Binary Object Representation

CIMIC Civil–Military Cooperation

CoAP Constrained Application Protocol

COSE CBOR Object Signing and Encryption

CSPRNG Cryptographically Secure Pseudorandom Number Generator

DL Distributed Ledger

DoS Denial of Service

DTLS Datagram Transport Layer Security

EC2 Elastic Compute Cloud

FMN Federated Mission Networking

HADR Humanitarian Assistance and Disaster Relief

HLF Hyperledger Fabric

HMAC Hash-based Message Authentication Code

IAM Identity and Access Management

IBC Identity-based Cryptography

ICRC International Committee of the Red Cross

IoT Internet of Things

KDF Key Derivation Function

LAAFFI Lightweight Authentication and Authorization Framework for Federated IoT

MSP Membership Service Provider

PKI Public Key Infrastructure

PRF Pseudo Random Function

PUF Physical Unclonable Function

RBAC Role-based Access Control

REST Representational State Transfer
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RPi Raspberry Pi

SIEM Security Information and Event Management

TLS Transport Layer Security

TPM Trusted Processing Module

UAV Unmanned Aerial Vehicle

WAF Web Application Firewall
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