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Abstract: The low-Earth-orbit satellite internet supports the transmission of multiple business types.
With increasing business volume and advancements in encryption technology, the quality of service
faces challenges. Traditional models lack flexibility in optimizing network performance and ensuring
service quality, particularly showing poor performance in identifying encrypted traffic. Therefore,
designing a model that can accurately identify multiple business scenarios as well as encrypted traffic
with strong generalization capabilities is a challenging issue to resolve. In this paper, addressing the
characteristics of diverse low-Earth-orbit satellite traffic and encryption, the authors propose STC-
BERT (satellite traffic classification-BERT). During the pretraining phase, this model learns contextual
relationships of large-scale unlabeled traffic data, while in the fine-tuning phase, it utilizes a semantic-
enhancement algorithm to highlight the significance of key tokens. Post semantic enhancement, a
satellite traffic feature fusion module is introduced to integrate tokens into specific low-dimensional
scales and achieve final classification in fully connected layers. The experimental results demonstrate
our approach’s outstanding performance compared to other models: achieving 99.31% (0.2%↑) in the
USTC-TFC task, 99.49% in the ISCX-VPN task, 98.44% (0.9%↑) in the Cross-Platform task, and 98.19%
(0.8%↑) in the CSTNET-TLS1.3 task.

Keywords: low-Earth-orbit satellite; encrypted traffic; traffic classification; STC-BERT; semantic
enhancement; feature fusion

1. Introduction

The architecture of the low-Earth-orbit (LEO) satellite internet system [1] is depicted
in Figure 1. Terminals provide users access to satellite internet services, while ground
stations manage communication links between satellites and ground networks. The ground
control center [2] ensures the satellites operate normally and maintain service quality.
This system supports a wide range of services [3], including routine traffic generated
by daily web browsing and social interactions; large-scale high-speed data transfers for
enterprises conducting big data operations; and rapid transmission of medical imaging data
for remote healthcare. Even in special scenarios like emergency responses, the LEO satellite
system reliably provides critical traffic transmission services, ensuring timely delivery and
processing of information.

To achieve more efficient network management and optimized resource allocation,
traffic classification becomes crucial. Satellite traffic classification [4] is a critical technology
for maintaining network security and ensuring service quality. It aims to identify various
types of traffic from different applications and web pages. Traditional models like deep
packet inspection (DPI) rely on application protocol identification [5] and content inspection
to statistically analyze traffic behaviors over time, such as traffic flow, business distribution,
and top visited websites. However, with the advancement of encryption technologies,
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malicious traffic [6] enhanced through VPN or Tor encryption evades network monitoring,
posing challenges to maintaining service quality.
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In addressing the accurate identification of encrypted traffic, research in encryption
traffic classification has evolved significantly over time. Early studies focused on clus-
tering residual plaintext portions of encrypted traffic to build fingerprint databases [7],
considering characteristics like plaintext length and protocols for classification. However,
fingerprints can be easily altered in the network, losing their original features. Other studies
attempted classification based on statistical features such as traffic size and transmission
time [8,9], yet in the complex and diverse traffic information of satellite internet systems,
designing universal features for each type of traffic remains challenging. With the devel-
opment of deep learning, supervised learning approaches that automatically learn traffic
feature representations from large labeled datasets [10] have shown promising results in
traffic classification. However, these models require high-quality and high-quantity data;
deviations and noise in data can severely impact model performance. Additionally, they are
vulnerable to adversarial attacks where malicious actors manipulate model classifications
through carefully crafted minor disturbances.

In recent years, Transformer-based models [11] have made significant advancements
in fields such as natural language processing and computer vision. The self-attention
mechanism in Transformers primarily serves to process different parts of input sequences,
enabling the model to dynamically focus on various input elements during output genera-
tion. This is achieved by computing a weighted sum of queries, keys, and values, thereby
enhancing the model’s expressive capability and contextual understanding [12]. This robust
capacity is a key reason for the effectiveness of Transformer-based models. For instance,
large visual models like CLIP and DALL-E leverage Transformers to significantly address
issues in multimodal understanding, knowledge transfer, and autonomous driving. Chat-
GPT resolves challenges related to domain knowledge, natural language understanding,
and personalized interaction through its comprehension of text information. Similarly, the
Transformer-based natural language model BERT processes input text to extract informa-
tional features and understand relationships between contexts and is commonly employed
for tasks such as text completion and sentence similarity analysis.

Transformer-based models are adept at understanding relationships between contexts
and efficiently and accurately completing diverse tasks across various scenarios. Conse-
quently, we consider whether natural language models can be utilized to accomplish the
complex task of traffic classification in low-Earth-orbit satellite internet systems, where
resources are constrained. The choice of model must not only account for performance
but also consider memory deployment and resource utilization, aiming for a lightweight
solution. BERT, which exclusively employs the Transformer encoder, is structurally simpler
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and has fewer parameters than other natural language models (such as GPT), making it
more suitable for deployment in low-Earth systems for traffic classification.

However, existing research on BERT has predominantly focused on natural language
processing, such as the efficient performance enhancement of BERT-base on the SQuAD
dataset and the excellent results of Tiny-BERT [13] on the GLUE benchmark. In the context
of traffic classification within low-Earth-orbit satellite internet systems, BERT must process
traffic data rather than natural language. Unlike natural language, traffic characters,
while encoded with certain rules, possess a lower overall semantic level and lack the
depth of information that humans can comprehend. Some studies [14] have employed
BERT for traffic classification to address the representation of traffic inputs, yet they have
not modified the model structure specifically for this task. Instead, they continue to
apply natural language models to handle traffic inputs, which appears unreasonable and
lacks interpretability.

In this paper, addressing the low-semantic nature of traffic inputs, the authors pro-
pose STC-BERT (satellite traffic classification-BERT) to perform traffic classification tasks
in low-Earth-orbit satellite systems. In the fine-tuning phase, the authors introduce a
semantic-enhancement algorithm that precisely extracts traffic features from important
tokens embedded in various traffic inputs. Specifically, the model transforms each token
into matrix allocation parameters for training, calculates token correlations within traffic
clusters, and converts tokens into new vectors as inputs. Furthermore, the authors propose
a satellite traffic feature fusion module, integrating multi-dimensional vectors derived from
the semantic-enhancement algorithm into this module, to generate unified low-dimensional
feature vectors. These low-dimensional feature vectors are then fed into fully connected
layers for classification.

2. Research Status
2.1. Traditional Traffic Classification Models

Statistical Features: As shown in Figure 2, Some studies have conducted statistical
analysis on encrypted traffic, focusing on packet length, transmission time, transmission
rate, and other aspects to extract statistical metrics that reflect traffic characteristics. Com-
mon statistical features include packet length, inter-packet transmission time, transmission
rate, and flow duration, which can all serve as features for encrypted traffic classification.
For instance, the k-nearest neighbors (KNN) algorithm uses packet sizes to train classifiers,
while support vector machine (SVM) algorithms utilize time interval features to identify
and classify encrypted traffic. However, satellite traffic encompasses diverse types, making
it challenging to design universal statistical features for them. Our approach understands
intrinsic meaning by learning context relationships from input traffic, without relying on
manually designed features.

Deep Learning Models: As shown in Figure 2, Supervised deep learning models
are currently mainstream for traffic classification. Unlike statistical feature models, deep
learning models automatically extract input features without depending on manually
designed features. For example, SwinT-CNN [15] extracts temporal features from both
local and global perspectives to achieve traffic classification. I2RNN [16] extracts sequence
fingerprints from sessions with local robustness and adapts incrementally to emerging
traffic types. Traffic Reconstruction [17] extracts part of the payload as key data, inserts
identifiers, and classifies reconstructed data using convolutional neural networks. While
these models show certain advantages over traditional machine learning in terms of perfor-
mance, they rely heavily on the quality and quantity of training data and perform poorly
with imbalanced data. Our model achieves excellent performance with minimal specific
task data fine-tuning, without depending on large-scale labeled data.
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2.2. Pretrained Models

Pretrained models based on Transformers: PERT performs pretraining tasks like
masked language modeling to predict original word positions, learning contextual rela-
tionships for classification tasks. ALBERT [18] significantly reduces model parameters
through parameter sharing and introduces SOP to model coherence between sentences,
achieving efficient classification. RoBERTa [19] uses dynamic masking during pretraining
and removes NSP tasks to shorten training time while enhancing contextual understanding,
enabling effective classification. DistilBERT [20] employs knowledge distillation [21] to
notably reduce computational requirements and training duration while preserving most
of the original model’s performance, suitable for classification tasks in resource-constrained
scenarios. ET-BERT [22] introduces new pretraining tasks tailored for traffic classification,
demonstrating strong performance across tasks without structural improvements. Our
approach focuses on semantic analysis of payload segments [23,24] and comprehensive
feature extraction [25], utilizing semantic-enhancement algorithms and traffic feature fusion
modules to better fit classification tasks.

3. STC-BERT
3.1. Model Architecture

In this section, the objective is to enable STC-BERT to learn various satellite traffic
features and perform traffic classification tasks in different scenarios. Thus, we pretrain
the model using a large-scale unlabeled traffic dataset and fine-tune the pretrained model
for downstream classification tasks specific to particular scenarios. During the fine-tuning
stage, the authors devised two modules to enhance the model’s feature extraction capabili-
ties. With labeled data for specific tasks, the model predicts their traffic categories.

Traffic characters differ significantly from natural language because, while traffic lacks
semantic information understandable by humans, it is encoded according to specific pat-
terns. To enable the model to better comprehend the inherent meanings of the payload
section within traffic and achieve accurate traffic classification, the proposed STC-BERT is
divided into the following parts, as illustrated in Figure 3: (1) The authors extract raw traffic
data from pcap packets and convert these traffic data into tokens for training. (2) During
the pretraining phase, the authors use a random masking model to pretrain the model,
helping it understand the potential meanings of payloads in context. (3) In the fine-tuning
phase, to better fit the classification tasks, the authors propose a semantic-enhancement
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algorithm and a traffic feature fusion module to help the model better understand con-
textual relationships. STC-BERT’s primary network architecture consists of 12 layers of
bidirectional Transformers. Each encoder layer in these layers is used to understand the
potential meanings between input traffic characters. Each self-attention layer comprises
12 attention heads, with traffic token embeddings having a dimensionality of H = 768, and
the maximum input is limited to 512.
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3.2. Data Processing and Traffic Cluster Encoding
3.2.1. Data Extraction

During satellite traffic transmission, traffic data typically include packet timestamps,
source and destination information, protocol types, sizes, and other data. As shown in
Figure 3, the authors define information composed of five tuples (source IP, port, destination
IP, port, and transport layer protocol) and a payload as a cluster unit. This traffic cluster
serves as a carrier for information exchange between two terminals. The authors removed
data irrelevant to transmission content such as address resolution and dynamic host
configuration protocol data. Additionally, they eliminated Ethernet headers, IP addresses,
TCP headers, UDP headers, protocol ports, and other information, forcing the model to rely
on other data within traffic packets for classification. This approach enables the model to
learn relationships between payloads through large-scale unlabeled traffic cluster training
rather than depending on specific strong-feature information.

We utilized a wordpiece training dictionary with a size of 65,536. Additionally, special
tokens such as [CLS], [PAD], and [MASK] were added. The first token of each embedding
is always [CLS], as stipulated by BERT training requirements. However, the authors did
not use this token to represent the complete sequence for the classification task, which is
discussed in Section 3.4; this section will discuss how all the tokens were trained to achieve
classification tasks. [PAD] is a padding symbol that meets minimum length requirements,
and [MASK] is used during pretraining, where the model predicts masked tokens to learn
contextual associations within traffic.

3.2.2. Traffic Cluster Embedding

In the embedding layer, each token within a traffic cluster is represented by two types
of embeddings: cluster embedding and position embedding. In this layer, we take the
processed traffic cluster as input with an embedding dimension of H = 768. After passing
through N Transformer encoders, we obtain the final token embeddings.

Cluster embedding: This transforms the traffic cluster into a low-dimensional, con-
tinuous, real-valued vector. Tokens with related features are closer together in the vector
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space. The dimensionality H = 768 of the cluster embedding significantly reduces the vector
dimensions, thereby reducing computational complexity and storage space.

Position embedding: The information carried by traffic clusters is closely related
to their relative positions. Introducing position embedding (dimension H = 768) helps
the model capture the sequential relationships of tokens in the input sequence. This
embedding is added to the cluster embedding, as depicted in Figure 4, to form the final
token embeddings passed to the model.
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3.3. Pretraining

In the model’s pretraining phase, we employed the Mask Cluster Model (MCM) for
the pretraining task. In this task, 15% of tokens are masked. Among these masked tokens,
80% is replaced with [MASK], 10% is replaced with a random token, and the remaining
10% is unchanged. The model learns relationships between traffic clusters by predicting
the masked tokens. The authors defined the input traffic cluster as C, where m tokens
are randomly masked using negative log-likelihood as the training loss function, defined
as follows:

LMCM = −
m

∑
n=1

log
(

P
(

MASKn = tokenn
∣∣C; φ

))
(1)

φ is a trainable parameter of STC-BERT, and the probability P is generated by Trans-
former encoders containing φ, representing the input after masking, where the nth token
is masked.

For traffic, unlike textual contexts where there are semantic associations between
sentences, the authors removed the Next Sentence Prediction (NSP) task from BERT,
as indicated by RoBERTa [19], which did not improve model performance and could
introduce noise.

Pretraining dataset: 40 GB of unlabeled raw traffic data was selected from the Na-
tional University of Defense Technology traffic dataset [26,27]. The model learns feature
representations of various traffic types through pretraining tasks, which are conducted
using unsupervised learning on a large volume of traffic samples. The selected dataset
should encompass a substantial and diverse array of raw traffic data. This dataset covers
over a hundred applications with ample data per application, avoiding issues of sample
imbalance. It is diverse, involving hundreds of different device models and users, various
network environments, and application execution paths. The dataset includes rich data
features such as packet payloads and loss information.

3.4. Fine-Tuning

After fine-tuning, the model can better perform downstream classification tasks be-
cause the data used for pretraining and traffic themselves are agnostic to specific categories,
enabling classification of any type of traffic. The models used for fine-tuning and pretrain-
ing are structurally similar. We input data specific to the task into the pretrained STC-BERT
for training, thereby fine-tuning the model parameters. The semantic-enhancement al-
gorithm involves integrating the information of the entire text into the [CLS] token in
the BERT model and using [CLS] as input to a multi-classifier for prediction. However,
compressing multi-dimensional information into [CLS] makes it difficult to represent all
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features of the entire input, especially for low-semantic inputs like traffic clusters, where
each token may carry unique meanings.

3.4.1. The Semantic-Enhancement Algorithm

For a traffic cluster s = ⟨a1, a2, . . . , an⟩, the embedding layer generates a matrix
X ∈ R|n|×H where each token corresponds to a H=768-dimensional embedding. The
authors measure the autocorrelation of a traffic cluster S = XXT , representing the degree of
correlation between the nth token and the mth token in traffic S. They assess the importance
of tokens in a traffic cluster from two perspectives:

The maximum value in each row of the correlation matrix is taken as the matching
score for that token, which measures the token’s association with other tokens.

C = Maxa∈Sm Sn,m (2)

To more accurately determine the correlation between tokens, the approach involves
calculating the difference between the top two values in each row of the correlation matrix.
When multiple important tokens have high matching scores, this method identifies the
most semantically significant token among them.

M = Maxa∈Sm Sn,m − 2nda∈Sm Sn,m (3)

Adding these two scores yields the semantic score for each token in the sentence.

Total Score = C + M = 2Maxa∈Sm Sn,m − 2nda∈Sm Sn,m (4)

While scoring measures the correlation between tokens in a traffic flow, uncommon
tokens may carry more semantic significance than common ones. For instance, tokens rep-
resenting protocols often score higher due to their specific roles. However, high-frequency
tokens are typically more semantically important, such as payload content following a
protocol. Conversely, some low-frequency tokens are semantically unimportant, such as
spaces used to separate text content.

To address the issue of mismatched token matching scores and frequencies, we directly
train token weights from the text. As illustrated in Figure 5, in the BERT model, the features
contained in the [CLS] vector after training represent the analogy of the traffic cluster.
BERT fuses the features of each traffic cluster into the [CLS] vector, which is then fed into a
fully connected layer classifier for classification. However, due to the semantic dispersion
of traffic clusters, they lack the continuity seen in text. Therefore, the authors posit that
inputting the entire traffic cluster into the classifier will yield more accurate results than
relying solely on the [CLS] vector. Specifically, the authors assign a trainable weight to each
token within the traffic cluster, where n represents the final layer embedding of the traffic.
This allows the weights to be updated alongside the model parameters through gradient
descent, thereby enhancing the model’s performance on classification tasks. Tokens that
exhibit a strong analogy recognition for traffic will have larger weights, playing a more
significant role. The experimental results indicate that models trained using this method
are more precise than those relying solely on the [CLS] token.
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3.4.2. Feature Fusion Module

After semantic-enhancement processing, a high-dimensional matrix containing all
feature information is fed into a fully connected layer for classification. The authors propose
a satellite traffic feature fusion module to capture features at multiple scales and unify
inputs to a fixed scale, facilitating classification tasks for the fully connected layer. They
introduce convolutional kernels of different sizes kernel_sizes = (3,5,7) with two kernels for
each size.

These convolutional kernels perform operations on the input matrix, sliding along
the feature dimension of the traffic cluster from top to bottom to extract local feature
information. Smaller kernels capture patterns from shorter inputs, while larger kernels
can gather dependencies over longer ranges. Through the fusion layer, information from a
traffic cluster is compressed into a low-dimensional vector, which is then input into the
fully connected layer for classification, as depicted in Figure 6.
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4. Experimental Verification
4.1. Evaluation Metrics and Experimental Setup

In this section, the authors conducted four traffic classification tasks and compared
STC-BERT with several other models to demonstrate its superior performance. They used
heatmaps to show that the semantic-enhancement module achieves more accurate classifica-
tion by considering all tokens compared to BERT’s use of only the [CLS] token. Through ab-
lation experiments, we demonstrated that our proposed semantic-enhancement algorithm
and feature fusion module significantly improve model performance on classification tasks.

The authors evaluated the model using four metrics: accuracy (5), precision (6), recall
(7), and F1 score (8). Here, TP represents true positives (samples correctly predicted
as positive by the model), TN represents true negatives (samples correctly predicted as
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negative), FP represents false positives (samples incorrectly predicted as positive), and FN
represents false negatives (samples incorrectly predicted as negative).

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 =
2 × Precision × Recall

Precision + Recall
(8)

Accuracy primarily measures the overall ability of the model to classify correctly.
However, when dealing with imbalanced data, it is crucial not only to consider accuracy
but also to focus on the model’s ability to classify a specific type of traffic (such as a
particular type of malicious traffic). The F1 score evaluates the model’s ability to correctly
identify positives (e.g., malicious traffic) among all actual positives and the precision of the
model in positive predictions. It combines both precision (the proportion of true positives
among all positive predictions) and recall (the proportion of true positives among all
actual positives), providing a balanced measure that is particularly useful in scenarios with
imbalanced classes.

Interstellar traffic does not fundamentally differ in content from terrestrial networks.
Therefore, specific datasets were chosen for testing tasks, divided into training, validation,
and test sets in an 8:1:1 ratio. The input dimension was 768, with a pretrained batch size of
32, totaling 500,000 steps, using a learning rate of 2 × 10−5, and a warmup ratio of 0.1. Fine-
tuning utilized the AdamW optimizer [28] with a batch size of 32, learning rate of 2 × 10−5,
and 10 epochs. All experiments were conducted using the PyTorch 2.2.2 framework and
trained on two NVIDIA RTX 3090 GPUs.

4.2. Comparison with Existing Models

This section compares STC-BERT with a few other models, using deep packet inspec-
tion (DPI) technology [29] to analyze payload content, including PERT, which employs
permutation-based language modeling for pretraining tasks, and ET-BERT [22], specifically
designed for encrypted traffic pretraining tasks.

DPI is a network traffic analysis technology that identifies, classifies, and manages
network traffic by inspecting the contents and metadata of data packets. Compared to
traditional port- or protocol-based traffic classification methods, DPI offers more precise
traffic identification. This method analyzes not only the header information of packets
(such as source and destination IP addresses and port numbers) but also delves into
the payload of the packets to examine their contents for identifying applications and
protocols. DPI technology is an indispensable tool in modern network management and
security strategies.

PERT is a Transformer-based pretrained model, with a pretraining task that differs
from BERT’s masked language modeling. It models the sequence of packets to capture
temporal features within the traffic, helping to identify specific applications and protocols.
This approach effectively extracts key features from traffic, such as packet size, inter-
arrival time, and sequence numbers, which assist in distinguishing between different types
of traffic.

ET-BERT was the first to propose using BERT for encrypted network traffic classifica-
tion, introducing two pretraining tasks aimed at traffic classification: the same-origin burst
mask and same-origin burst prediction. By converting pcap-format traffic information
into text inputs for training, ET-BERT improves classification accuracy for various types of
encrypted traffic and enhances network security.
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The pretrained models demonstrate the advantages of Transformer-based pretrained
models in understanding input context through comparisons with DPI. Both ET-BERT and
STC-BERT utilize random masking for pretraining, showing through comparisons with the
PERT model that masked language modeling can better assist the model in understanding
latent meanings among traffic features. STC-BERT, when compared with ET-BERT, demon-
strates that the semantic-enhancement algorithm and satellite traffic feature fusion module
can better help the model learn the relationships among traffic data, achieving classification
tasks more efficiently and accurately.

Task [1]: In low-Earth-orbit satellite internet, the propagation of network attacks,
spam, and malware can lead to data theft, network system disruption, and serious harm.
The USTC-TFC dataset [30], provided by the University of Science and Technology of
China, contains multiple types of malicious traffic. Due to the presence of payload-related
malicious traffic in plaintext within this dataset, DPI significantly improves the model’s
classification accuracy by analyzing plaintext content. However, as shown in Table 1,
Transformer-based pretrained models achieve superior performance on this task without
relying on plaintext information. STC-BERT achieves an accuracy of 99.31%.

Table 1. Performance metrics of four models on USTC-TFC task.

Dataset USTC-TFC

Models AC PR RC F1

DPI 0.9640 0.9650 0.9631 0.9641

PERT 0.9909 0.9911 0.9910 0.9911

ET-BERT 0.9915 0.9915 0.9916 0.9916

STC-BERT 0.9931 0.9928 0.9878 0.9903

Task [2]: The ISCX-VPN-non-VPN dataset [31] is used for researching and devel-
oping techniques in network traffic analysis and classification. It includes 15 types of
VPN encrypted traffic and 15 types of non-VPN traffic, categorized into 12 classes with
corresponding labels. This dataset covers six types of regular encrypted traffic and six
types of non-VPN encrypted traffic. Effectively classifying VPN traffic allows for a better
understanding of network traffic distribution and composition, thereby optimizing network
performance and enhancing security. When users establish a VPN service, an encrypted
channel is formed between the user and the VPN server. The VPN server replaces the
user’s IP with its own server IP to send requests and transfers response data back to the
user. Due to the complexity of encryption types, traditional models relying on IP and
MAC features perform poorly in classification. As shown in Table 2, STC-BERT achieves
classification by understanding the information between payloads, improving accuracy by
approximately 16% compared to PERT. While there exists a slight difference in accuracy
compared to ET-BERT, STC-BERT demonstrates superior precision and recall rates over
ET-BERT, effectively fulfilling the task of VPN traffic classification.

Table 2. Performance metrics of four models on ISCX-VPN task.

Dataset ISCX-VPN

Models AC PR RC F1

DPI 0.9758 0.9785 0.9745 0.9765

PERT 0.8229 0.7092 0.7173 0.6992

ET-BERT 0.9962 0.9936 0.9938 0.9937

STC-BERT 0.9949 0.9937 0.9951 0.9944
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Task [3]: The Cross-Platform dataset [32] consists of data generated by 215 Android
and 196 iOS applications’ users. These apps were all sourced from the top 100 rankings
on the App Store and Google Play in the United States, China, and India. This task
aims to classify data under encryption protocols. The dataset contains complete payload
information, allowing models trained on this task to learn characteristic patterns of traffic
transmission structures. This enhances the representation of features and structures in
encrypted traffic data. Due to the introduction of semantic-enhancement algorithms and
feature fusion modules, the model excels in semantic understanding compared to other
models. As shown in Table 3, STC-BERT outperforms ET-BERT in all performance aspects,
achieving an accuracy of 98.44%.

Table 3. Performance metrics of four models on Cross-Platform task.

Dataset Cross-Platform

Models AC PR RC F1

DPI 0.8805 0.8004 0.7567 0.8138

PERT 0.9772 0.8628 0.8591 0.8550

ET-BERT 0.9728 0.9439 0.9119 0.9206

STC-BERT 0.9844 0.9725 0.9402 0.9561

Task [4]: The CSTNET-TLS 1.3 dataset [22] comprises data collected from 120 applica-
tions under the CSTNET network from March to July 2021. This dataset is the first focused
on the TLS 1.3 protocol and includes applications sourced from the Alexa Top 5000 list
that deploy TLS 1.3. Each session flow is labeled using Server Name Indication (SNI). TLS
1.3 represents new encryption technology that enhances transmission security, thereby
increasing the difficulty of identification. However, as shown in Table 4, STC-BERT learns
implicit feature representations of the TLS 1.3 protocol through traffic payload analysis.
This approach achieves more precise classification on this task, with an accuracy of 98.19%.

Table 4. Performance metrics of four models on CSTNET-TLS 1.3 task.

Dataset CSTNET-TLS 1.3

Models AC PR RC F1

DPI 0.8019 0.4315 0.2689 0.4022

PERT 0.8915 0.8846 0.8719 0.8741

ET-BERT 0.9737 0.9742 0.9742 0.9741

STC-BERT 0.9819 0.9770 0.9711 0.9740

In Task [2], the authors selected a cluster of traffic from category 8, out of 12 categories,
and observed semantic scores after semantic enhancement. According to Figure 7, scores
for tokens related to specific transmission content in the headers and middle parts of
the traffic increased significantly. This indicates that these tokens play a crucial role in
feature extraction, which is why STC-BERT achieves significant effectiveness in various
classification tasks.

4.3. Ablation Experiments

In this section, the authors conducted ablation experiments to validate the impact
of semantic-enhancement algorithms and feature fusion modules on model performance.
Using Task [4] as an example, comparisons were made between STC-BERT, BERT, BERT-
Semantic Enhancement, and BERT-Feature Fusion in terms of classification accuracy and
training loss, as depicted in Figure 8.
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The experimental results showed that when applying the semantic-enhancement
algorithm to BERT, the accuracy plateaued after 10 iterations, resulting in a 3.1% increase
compared to BERT. Similarly, when using the feature fusion module with BERT, after
10 iterations, the accuracy stabilized with a 2.15% improvement over BERT. STC-BERT,
which integrates both the semantic-enhancement algorithm and the feature fusion module,
achieved a 5.6% improvement in accuracy compared to BERT, with faster reduction in
training loss. Additionally, the F1 score increased by 6.32% after ten iterations, indicating
that the semantic-enhancement algorithm and feature fusion module contribute distinct
yet complementary traffic features. The semantic-enhancement algorithm emphasizes the
importance of individual tokens by reallocating training weight parameters, helping the
model learn contextual associations within payload contexts and enhancing its ability to
capture features of traffic clusters, thereby achieving better performance in specific tasks.
Meanwhile, the feature fusion module extracts information at different scales, improving
the model’s handling of relationships before and after entire traffic clusters and enhancing
classification accuracy.

In Figure 8, we observe that STC-BERT achieves significantly higher accuracy com-
pared to BERT and BERT with the addition of the semantic-enhancement algorithm and
satellite traffic feature fusion module. Additionally, the loss decreases more rapidly during
training. This clearly indicates that using the token representations of the entire traffic
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flow for classification is more accurate than relying solely on the [CLS] vector. It also
highlights the advantages of multi-scale convolution in helping the model deeply extract
traffic features.

5. Discussion

In this section, we discuss some limitations of STC-BERT as well as related research.
System Applicability: With the development of low-Earth-orbit satellite internet commu-
nication technologies, the diversification of service content leads to increased variability
and complexity of traffic. This poses challenges to our fixed data processing workflows.
For instance, in some real-world systems, protocols and payloads may be encapsulated to-
gether, and the emergence of new encryption methods makes it difficult to label encrypted
data using traditional methods. Training Complexity: In low-Earth-orbit satellite internet
systems, computational resources are often limited. Currently, training is conducted by
deploying servers at ground stations, which incurs high time costs. It is crucial to explore
ways to reduce training complexity or compress model size while maintaining performance.
Update and Iteration Issues: Given the high training time costs, when new traffic content
appears, it is important to consider whether the model can continue training on the existing
foundation without the need for retraining from scratch. Security: BERT-based models
rely on the Transformer architecture, which has high requirements for training samples,
necessitating the most original and pure data. If the training samples contain vocabulary
deliberately set by attackers, the model may learn incorrect information and fall into traps,
while the semantic-enhancement algorithm may misinterpret this as significant information.
This is a concern that requires attention, and future research could focus on strategies to
prevent such situations from occurring.

6. Conclusions

This article presents a traffic classification model called STC-BERT, designed for low-
Earth-orbit satellite internet systems. This model is based on the Transformer architecture
and learns the implicit relationships within traffic clusters through pretraining. During
the fine-tuning phase, we introduce a semantic-enhancement algorithm tailored for low-
semantic traffic inputs. Unlike BERT, STC-BERT does not classify based on the category
represented by the [CLS] vector; instead, it uses the final layer embeddings of each traffic
cluster as input to a fully connected layer for classification. We propose a satellite traffic
feature fusion module that deeply extracts important traffic features from various dimen-
sions. Both the semantic-enhancement algorithm and the satellite traffic feature fusion
module are designed to address the characteristics of diverse and encrypted traffic in
low-Earth-orbit satellite internet systems. STC-BERT achieved an accuracy of 99.31% on the
USTC-TFC dataset, which includes malicious traffic, helping the satellite internet system
identify anomalous traffic or potential security threats, such as DDoS attacks, and take
timely protective measures to enhance network security. On the ISC-VPN dataset, which
contains VPN encrypted traffic, the accuracy reached 99.49%, and on the Cross-Platform
dataset, the accuracy was 98.44%. This allows low-Earth-orbit satellite internet systems
to provide a more refined quality of service, setting priorities for different types of traffic,
thereby reducing latency and packet loss, ultimately enhancing user experience. On the
CSTNET-TLS 1.3 dataset, which includes a large volume of the latest TLS protocols, the
accuracy reached 98.19%. This capability supports various application scenarios for low-
Earth-orbit satellite internet, such as agricultural monitoring, smart cities, and telemedicine,
ensuring effective operation across these applications. Given that low-Earth-orbit satellite
networks are significantly affected by ground conditions and satellite positioning, traffic
classification can greatly assist the network in dynamically adjusting to the ever-changing
network environment, ensuring connection stability. Additionally, STC-BERT achieved
F1 scores of 99.03%, 99.44%, 95.61%, and 97.40% across the four aforementioned datasets,
demonstrating its strong capability in handling imbalanced sample data, which is par-
ticularly helpful in identifying malicious traffic. When only a small amount of specific



Electronics 2024, 13, 3933 14 of 15

data is present in the training samples, STC-BERT can accurately identify such specific
traffic during inference, which is crucial for network defense in low-Earth-orbit satellite
internet systems. The model effectively protects the network environment, which we
believe benefits from the semantic-enhancement algorithm, as certain tokens representing
strong features played a significant role in helping the model perform downstream tasks
more effectively.

Overall, STC-BERT can handle complex traffic classification scenarios within low-
Earth-orbit satellite internet systems effectively. However, we have not explored more
lightweight models. Currently, STC-BERT can only be trained on servers, with the inference
model deployed at ground stations for traffic identification. If inference is to be conducted
on satellites, developing a more lightweight model will be a challenging task. The authors
have not investigated how well STC-BERT generalizes, particularly whether the inference
model can accurately identify a new type of malicious traffic [33] that it has not been trained
on. This is an important issue for network security and could serve as a focal point for
future research. The authors believe that even if new types of traffic cannot be accurately
identified, at least appropriate alerts should be generated to help network administrators
recognize the traffic.
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