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Abstract: This paper proposes a novel adaptive law that uses a quasi-convex function and a novel
sliding variable in an adaptive sliding mode control (ASMC) scheme for robot manipulators. Since the
dynamic equations of robot manipulators inevitably include model uncertainties and disturbances,
time-delay estimation (TDE) errors occur when using the time-delay control (TDC) approach. Further,
the ASMC method used to compensate for TDE errors naturally causes a chattering phenomenon.
To improve tracking performance while reducing or maintaining chattering, this paper proposes an
adaptive law based on a quasi-convex function that is convex at the origin and concave at the gain
switching point, respectively. We also adopt a novel sliding variable that uses previously sampled
tracking errors and their time derivatives. Further, this paper proves that the sliding variable of the
robot manipulator controlled by the proposed ASMC satisfies uniformly ultimately bounded stability.
The simulation and experimental results illustrate the effectiveness of the proposed methods in terms
of tracking performance.

Keywords: time-delay control (TDC); adaptive sliding mode control (ASMC); robot manipulators

1. Introduction

Robot manipulators are used extensively across various industrial and academic fields,
such as in manufacturing factories [1] and medical facilities [2,3], where accurate and
detailed manipulations are needed. To achieve high-precision control of robot manipu-
lators, uncertain parameters, such as unknown disturbances, time-varying parameters,
nonlinearities, and model uncertainties, need to be handled effectively; otherwise, they
can degrade the control performance or cause instability in the manipulator systems [4,5].
To tackle this issue, many robust control methodologies, including backstepping control [6],
neural network (NN)-based control [7,8], fuzzy control [9], time-delay control (TDC) [10,11],
and sliding mode control (SMC) [12–14], have been proposed.

TDC has proven to be an efficient control method when exact information about
system dynamics is unknown since it recursively predicts uncertain parameters by using
previously sampled angular acceleration and input torque [10,15]. Due to such a recursive
structure of the TDC and computational limitations on hardware, time-delay estimation
(TDE) errors are a natural result of using the TDC scheme. If the sampling interval is small
enough to be considered zero, the TDE error can be ignored [11]. However, it is hard to
satisfy this condition in real-world dynamic systems. To compensate for TDE errors and
improve the tracking performance of robot manipulators, SMC schemes have been used
simultaneously with TDC [10,15].

SMC is a robust control method that has numerous advantages such as a fast response,
low computation, and a simple implementation [12]. Based on the Lyapunov theorem, this
method uses a discontinuous control input [16] that forces a sliding variable to converge
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to a sliding surface, where the sliding variable is equal to zero. On the sliding surface,
the sliding variable is equal to an error dynamic equation and, in turn, the tracking error also
converges to zero. To reduce model uncertainties, nominal parts of system dynamics [5,17]
or TDC schemes [10,15] have been simultaneously utilized with SMC schemes. In this
case, to guarantee that the sliding variable lies on the sliding surface, the SMC gain must
be larger than the upper bound of the overall uncertainties and disturbances. However,
it is hard to obtain what such upper bounds are in practice and, thus, the SMC gain is
chosen to be sufficiently large to suppress any potential uncertainties and disturbances.
Although large SMC gain may improve tracking performance in areas such as convergence
times and tracking errors, an excessively large SMC gain combined with the discontinuous
input structure induces high-frequency oscillations, also known as chattering, in the control
input. It is well known that chattering induces crucial problems in many dynamic systems
such as the wear of mechanical parts or heat losses from electrical parts. Therefore, to
improve tracking performance while reducing or maintaining chattering, an adaptive
sliding mode control (ASMC) scheme, which dynamically adjusts the SMC gain without
prior knowledge on the upper bound of the uncertainties, has been proposed [5,17–20].

The adaptive laws in ASMC schemes increase the control gain until the sliding vari-
able reaches the sliding surface. In real SMC schemes, however, the control gain keeps
increasing since the sliding variable cannot stay at the origin due to external disturbances,
model uncertainties, and limitations on a sampling interval, which causes a control gain
overestimation problem [18,21]. It has been noted that excessively large SMC gains near
the sliding surface can enhance chattering. Therefore, as shown in Ref. [18], ideal SMC,
which forces the sliding variable to remain in the sliding surface, cannot be established.
Instead, ASMC schemes in the literature [15,18,22] force the sliding variable to converge in
a vicinity of the sliding surface. Further, to improve tracking performance while reducing
or maintaining chattering, the ASMC gain switches between two adaptive laws, which
increase or decrease the control gain at predefined times or according to the domain of the
sliding variables [21]. In Ref. [22], a barrier function-based ASMC, which decreases the
control gain near the sliding surface according to a convex function called a barrier function,
is proposed. The barrier function used in this approach has an infinite value at the gain
switching point to force the sliding variable to remain close to the sliding surface. However,
such an infinite gain induces severe problems such as gain saturation and abrupt torque
changes in real dynamic systems. To deal with this issue, Ref. [23] additionally defines an
upper threshold for the barrier function and proposes a modified barrier function-based
adaptive law. Unfortunately, since this approach switches gain according to a predefined
convergence time, conservatism exists in choosing the predefined time parameter. Typically,
function-based adaptive laws [22,23] use convex functions to reduce the control gain to
almost zero near the sliding surface. Thus, the control gain obtained from these methods
rapidly decreases in the vicinity of the sliding surface. In other words, when the sliding
variable diverges from the origin, these approaches rapidly increase the control gain, which
can contribute to the chattering phenomenon.

Motivated by the above observations, we propose a novel adaptive law that uses
a quasi-convex function [24] and a novel sliding variable in an ASMC scheme with the
goal of improving tracking performance while reducing or maintaining chattering. To the
best of the authors’ knowledge, quasi-convex functions have not been used in the ASMC
schemes. Since a quasi-convex function can contain both convex and concave parts, the
proposed adaptive law is convex at the origin and concave at the gain switching point with
respect to a sliding variable. We also propose a novel sliding variable that additionally
uses previously sampled tracking errors and their time derivatives. This paper proves that
the sliding variable of the robot manipulator controlled by the proposed ASMC satisfies
uniformly ultimately bounded (UUB) stability. The simulation and experimental results
illustrate the effectiveness of the proposed methods in terms of tracking performance.

Notation:∥ · ∥2 and ∥ · ∥∞ represent the Euclidean norm and the infinity norm, respec-
tively. sgn(·) represents the sign function. Rn is the set of n-dimensional vectors. Rn×m is
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the set of n × m real matrices. diag{...} stands for a diagonal matrix. I is the identity matrix
with appropriate dimensions. For a given positive scalar L, (·)t−L is the time-delayed value
of (·)t. (·)t = [(·)1,t, (·)2,t, · · · , (·)n,t]T ∈ Rn denote a vector and its elements.

2. Preliminaries

This section presents an existing definition, a lemma, and a system formulation to
explain the proposed ASMC.

Definition 1 ([25]). The variable xt ∈ Rn is uniformly ultimately bounded (UUB) with ultimate
bound b if there exist positive constants b and c, independent of t0 ≥ 0, and for every a ∈ (0, c),
there is T = T(a, b) ≥ 0, independent of t0, such that

||xt0 || ≤ a ⇒ ||xt|| ≤ b, ∀t ≥ t0 + T. (1)

Lemma 1 ([26]). A twice-differentiable function f (x) of a single variable x defined on the
interval I is

• Concave if and only if f̈ (x) ≤ 0 for all x in the interior of I.
• Convex if and only if f̈ (x) ≥ 0 for all x in the interior of I.

A dynamic equation for a robot manipulator with n degrees of freedom (DOF) is
expressed as follows:

M(qt)q̈t + C(qt, q̇t)q̇t + G(qt) + F(q̇t) = τt, (2)

where qt, q̇t, q̈t∈ Rn are the angle, angular velocity, and acceleration vector of each manip-
ulator joint, respectively. M(qt), C(qt, q̇t) ∈ Rn×n are the inertia matrix and the Coriolis
matrix, respectively. G(qt), F(q̇t), τt ∈ Rn are the gravitational force vector, the friction
force vector, and the input torque vector of each manipulator joint, respectively. The dy-
namic Equation (2) can be reformulated as follows:

q̈t = −M̄−1{[M(qt)− M̄]q̈t + C(qt, q̇t)q̇t + G(qt) + F(q̇t)}+ M̄−1τt

= Nt + M̄−1τt, (3)

where M̄ = diag{m1, m2, ..., mn} is a positive-definite diagonal matrix and Nt ≜ −M̄−1{[M(qt)
− M̄]q̈t + C(qt, q̇t)q̇t + G(qt) + F(q̇t)}. Due to the time-varying and nonlinear nature of
the function Nt, it is difficult to determine its exact value in real time. Therefore, the TDC
scheme utilizes N̄t = Nt−L instead of Nt, where L is the sampling period of the digital
controllers. Then, from the dynamic Equation (3), N̄t can be computed as follows:

N̄t = q̈t−L − M̄−1τt−L. (4)

Then, from the TDC schemes [10,15], the TDC input torque τt shown in Figure 1 and
used in the dynamic Equation (3) to track the desired angle qd,t = [qd,1,t, qd,2,t, · · · , qd,n,t]

T

can be derived as follows:

τt = −M̄N̄t + M̄(q̈d,t + (K1 + K2)ėt + K1K2et), (5)

where et = qdt − qt is the angle tracking error. K1 and K2 ∈ Rn×n are positive-definite
diagonal matrices. Then, the robot manipulator (3) controlled by the TDC input (5) can be
formulated into the following error dynamic equation:

ët + (K1 + K2)ėt + K1K2et + Nt − N̄t = 0. (6)
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In Ref. [15], it is shown that the TDE error is bounded by a positive value N∗ such that

∥Nt − N̄t∥∞ ≤ N∗. (7)

Here, if the TDE error, Nt − N̄t, equals zero, the tracking error et also converges to
zero since K1 and K2 are positive-definite matrices. The TDE error is commonly assumed
to be zero when the sampling period L is sufficiently small. However, the sampling period
cannot practically be considered zero due to the limitations that exist in digital controllers.
Therefore, ASMC schemes are used simultaneously alongside TDC to compensate for the
TDE error, Nt − N̄t.

Figure 1. Diagram of the system controlled with a TDC input (5).

In ASMC schemes, a conventional sliding variable [18] can be defined as follows:

σt = ėt + K1et. (8)

Using this sliding variable (8), the ASMC input torque combined with that of the TDC
scheme can be derived as follows:

τt = −M̄N̄t + M̄(q̈d,t + K1 ėt + K2σt) + M̄Ktsgn(σt), (9)

where Kt = diag{k1,t, k2,t, ..., kn,t} ∈ Rn×n is the adaptive gain matrix, which is designed as
a positive-definite diagonal matrix, and sgn(σt) = [sgn(σ1,t), sgn(σ2,t), ..., sgn(σn,t)]T ∈ Rn.

As shown in the literature [15,18], the adaptive gain matrix Kt that can suppress overall
TDE errors can guarantee that the sliding variable (8) lies on the sliding surface. In the
inequality (7), however, an excessively large ASMC gain in a vicinity of the sliding surface
can enhance chattering phenomenon due to the sampling interval. Although many studies
have aimed at improving adaptive gain matrix Kt, there still exists room for improvement
due to trade-offs between improved tracking performance and reduced chattering. There-
fore, to tackle this issue, this paper proposes a novel ASMC method using a novel adaptive
law based on a novel sliding variable.

3. Proposed ASMC for Robot Manipulators

As shown in Figure 2, this section proposes an ASMC scheme that uses a novel
adaptive law based on a quasi-convex function and an average sliding variable. To derive
the proposed ASMC input, the average sliding variable st is defined as follows:

st = ˙̄et + K1 ēt, (10)

ēt = et + et−L + et−2L, (11)
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Figure 2. Diagram of the system controlled with the proposed ASMC (12).

Based on the sliding variable (10), the proposed ASMC for the robot manipulator (4)
can be represented as follows.

τt = −M̄N̄t + M̄(q̈dt + ët−L + ët−2L + K1 ˙̄et + K2st) + M̄Ktsgn(st). (12)

Here, the proposed control gain ki,t (i = 1, 2, · · · , n) in the gain matrix Kt = diag{k1,t,
k2,t, ..., kn,t} is determined by the following adaptive law:

ki,t =

{∫ t
t0

αi|si,t|dt if ∥st∥∞ ≥ ϵ

fi(si,t) if ∥st∥∞ < ϵ
, (13)

where ϵ is a positive constant; αi, βi are positive gains; t0 is an initial time; and fi(si,t) is a
quasi-convex function defined as

fi(si,t) = 1 − e−βis2
i,t . (14)

The proposed ASMC method is constructed with the novel sliding variable (10) and
the adaptive law (13). Therefore, highlighted areas in Figure 2 represent the differences
compared to the conventional ASMC input (9).

The trajectory of the quasi-convex function (14), which simultaneously contains convex
and concave parts, is shown in Figure 3. According to Lemma 1, since the second derivative
of the quasi-convex function (14) can be calculated as follows:

f̈i(si,t) = 2βe−βis2
i,t − 4β2s2

i,te
−βis2

i,t = 2βe−βis2
i,t(1 − 2βs2

i,t),

the quasi-convex function (14) is concave when |si,t| <
√

1
2β and convex when |si,t| >

√
1

2β .
When the adaptive law only uses convex functions as shown in Figure 3, there is a steep
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slope in the vicinity of the sliding surface and zero slope at the origin. If concave functions
are used instead, there is a steep slope at the origin, and the slope is close to zero in the
vicinity of the sliding surface. In contrast to these functions, the quasi-convex function
(14) has slopes close to zero at both the origin and in the vicinity of the sliding surface,
which results in gradual changes to the ASMC gain at the gain switching point satisfying
|st|∞ = ϵ and at the phase switching point, which is the origin.

Figure 3. Trajectory of the quasi-convex function (14).

Remark 1. Compared to the conventional sliding variable (8), the proposed one also makes use of
delayed angle tracking errors and their time derivatives. In addition, a quasi-convex function-based
adaptive law is proposed for the ASMC scheme. To the best of the authors’ knowledge, a quasi-convex
function has not been used in an ASMC scheme. Since quasi-convex functions can contain both
convex and concave parts, the proposed adaptive laws use a quasi-convex function that is convex at
the origin and concave at the gain switching point. The effectiveness of the proposed approach is
demonstrated through improved tracking performance.

Theorem 1. Given positive-definite diagonal matrices K1, K2, positive scalars αi, βi, and a sampling
period L, the sliding variable of the robot manipulator (2) controlled by the proposed ASMC (12)
using the adaptive gain (13) enters the vicinity of the sliding surface, ∥st∥∞ < ϵ. Then, the sliding
variable is guaranteed to be UUB with the following bound:

∥st∥2 ≤
√

nϵ2 + K̄∗, (15)

where K̄∗ is the maximum value of ∑n
i=1

1
αi
(N∗ − ki,t)

2.

Proof. The proof is given in Appendix A.

Remark 2. Theorem 1 successfully shows the stability of the sliding variable in terms of UUB
stability. Since the parameter ϵ, which determines the width of the vicinity of the sliding surface, is
a predefined value, the tracking error performance can be chosen according to the choice of ϵ.

4. Simulation
4.1. Simulation Setup

For the simulation, we consider the 2-DOF robot manipulator (2) with the following
matrices obtained from [15].
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M(qt) =

[
M11 M12
MT

12 M22

]
, G(qt) =

[
G11
G21

]
, C(qt, q̇t)q̇t =

[
C11
C21

]
, F(q̇t) =

[
F11
F21

]
, (16)

M11 = l2
2m2 + 2l1l2m2 cos(q2,t) + l2

1(m1 + m2), M12 = l2
2m2 + l1l2m2 cos(q2,t),

M22 = l2
2m2, C11 = −l1l2m2 sin(q2,t)q̇2

2,t − 2l1l2m2 sin(q2,t)q̇2
1,t q̇

2
2,t,

C21 = l1l2m2 sin(q2,t)q̇2
2,t, G11 = m2l2g cos(q1,t + q2,t) + ((m1 + m2)l1g) cos(q1,t),

G22 = m2l2g cos(q1,t + q2,t), F11 = fv1 q̇1,t + fc1 sgn(q̇1,t), F21 = fv2 q̇2,t + fc2 sgn(q̇2,t),

where qi,t is the angle of the joint i. The length of the links are set as l1 = 0.4[m], l2 = 0.2[m].
The loads of the end tips are set as m1 = 9[kg], m2 = 6[kg]. The friction coefficients are
Fv1 = 10[N ·m · s], Fc1 = 10[N ·m], Fv2 = 10[N ·m · s], and Fc2 = 10[N ·m]. The gravitational
acceleration is g = 9.81[m/s2], and the desired angles are given by qd,t = [qd,1,t, qd,2,t]

T ,
qd,1,t = sin(0.5t), and qd,2,t = 0.6sin(t). The adjustable gains in the input torque (12) are
set as M̄ = diag{0.08, 0.04}, K1 = 10I, and K2 = 15I. We design the parameters of the
adaptive law in (13) as follows: α1 = α2 = 25, β1 = β2 = 800, and ϵ = 0.1.

4.2. Simulation Results

The effectiveness of the proposed ASMC is validated through simulations, which
compare the proposed approach with the existing ASMC method in [15]. For fair com-
parisons, the gain matrix M̄ = diag{0.08, 0.04} is obtained from [15]. Figure 4 shows the
tracking errors between the proposed ASMC and the ASMC from [15]. The results show
that the proposed ASMC significantly reduces the tracking error compared to that of [15].
In Figure 5, the dotted line represents the range of ϵ. Looking at these figures, we can
clearly see that the proposed control input forces the sliding variable to stay in the region
∥st∥∞ < ϵ. Also, Figure 6 shows that the control input torque of the proposed ASMC is
similar to that of [15].

(a) e1,t (b) e2,t

Figure 4. Tracking error trajectories for each joint in the simulation, existing ASMC [15] and proposed
ASMC (12).

(a) s1,t (b) s2,t

Figure 5. Sliding variable trajectories for each joint in the simulation, proposed ASMC (12).
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(a) τ1,t (b) τ2,t

Figure 6. Input torque trajectories for each joint in the simulation, existing ASMC [15] and proposed
ASMC (12).

5. Experiment

This section presents the experimental results from implementing the proposed ASMC
on a 7-DOF robot manipulator called Franka Research 3, shown in Figure 7. It consists of
two parts: a manipulator part and a control box.

Figure 7. A 7-DOF robot manipulator (Franka Research 3) and its control box.

5.1. Experimental Setup

In this experiment, we only controlled 4 joints using an Ubuntu 20.04 environment.
Franka Research 3 had the following parameters: a mass of 17.8 kg, a maximum payload of
3 kg, and a sampling rate of 1 kHz. The desired angles were qd,t = [qd,1,t, qd,2,t, qd,3,t, qd,4,t]

T ,
qd,1,t =

π
6 sin(t), qd,2,t =

π
6 sin(t), qd,3,t =

π
6 sin(t), and qd,4,t =

π
6 sin(t). The adjustable gains

in the input torque (12) were set as M̄ = 0.002I, K1 = 5I, and K2 = 5I. The designed
parameters of the adaptive law (13) were set as α1 = α2 = α3 = α4 = 100, β1 = β2 = β3 =
β4 = 800, and ϵ = 0.1.

5.2. Experimental Results

Using a real robot manipulator, we compare the proposed ASMC scheme with that
of [15] in terms of tracking performance and control input torques. In Figure 8, the proposed
ASMC has a smaller tracking error than that of [15]. Figure 9 shows that the input torque
of the proposed ASMC is similar to that of [15]. Although the input torque and chattering
characteristics of both algorithms are similar, Figure 8 clearly shows the better tracking
performance of the proposed algorithm. Also, Figure 10 clearly shows that the sliding
variables recursively converge to the region ||st||∞ < ϵ.



Electronics 2024, 13, 3940 9 of 12

(a) e1,t. (b) e2,t.

(c) e3,t. (d) e4,t.
Figure 8. Tracking error trajectories for each joint in the experiment, existing ASMC [15] and proposed
ASMC (12).

(a) s1,t. (b) s2,t.

(c) s3,t. (d) s4,t.
Figure 9. Sliding variable trajectories for each joint in the experiment, proposed ASMC (12).

(a) τ1,t. (b) τ2,t.
Figure 10. Cont.
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(c) τ3,t. (d) τ4,t.
Figure 10. Input torque trajectories for each joint in the experiment, existing ASMC [15] and proposed
ASMC (12).

Remark 3. This paper shows the effectiveness of the proposed methods not only through a simulation
but also through an experiment conducted using a real robot manipulator called Franka Research
3. Therefore, the proposed ASMC is a highly practical method that can be applied to various
manipulator systems.

6. Conclusions

This paper proposes a novel adaptive law that uses a quasi-convex function and
an average sliding variable within an ASMC scheme. To improve tracking performance
while maintaining or even reducing chattering, the proposed adaptive law is based on a
quasi-convex function that is convex at the origin and concave at the gain switching point.
This paper also proves that the proposed sliding variable of robot manipulators controlled
by the proposed ASMC is UUB. The simulation and experimental results demonstrate the
effectiveness of the proposed methods in terms of improved tracking performance. In
a future work, optimization problems related to ASMC parameters including K1, K2, αi,
and βi to control 8- or 9-DOF robot manipulators will be discussed.
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Appendix A

Proof of Theorem 1. To prove Theorem 1, Let us define the Lyapunov function as follows:

Vt =
1
2

sT
t st +

n

∑
i=1

1
2αi

(N∗ − ki,t)
2 (A1)

Based on the definitions (10) and (11), the time derivative of the Lyapunov function
can be computed as follows:

V̇t = sT
t ṡt − 1

αi
∑n

i=1(N∗ − ki,t)k̇i,t

= sT
t {q̈dt − q̈t + ët−L + ët−2L + K1 ˙̄et} − 1

αi
∑n

i=1(N∗ − ki,t)k̇i,t

= sT
t {q̈dt − Nt − M−1τt + ët−L + ët−2L + K1 ˙̄et} − ∑n

i=1
1
αi
(N∗ − ki,t)k̇i,t

= sT
t {−N + N̄ − K2st − Ktsgn(st)} − ∑n

i=1
1
αi
(N∗ − ki,t)k̇i,t

≤ −sT
t K2st + ∑n

i=1(N∗ − ki,t)(|si,t| − α−1
i k̇i,t).

(A2)
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Since the proposed adaptive law (13) consists of two regions: ∥st∥∞ ≥ ϵ and ∥st∥∞ < ϵ,
the negative condition of V̇t is guaranteed for ∥st∥∞ ≥ ϵ as follows:

V̇t ≤ −γ∥st∥2
2, (A3)

where γ is the minimum eigenvalue of the matrix K2. Therefore, the region ∥st∥∞ < ϵ can
be reached if the adaptive control gain ki,t (i = 1, 2, ..., n) increases. In the region ∥st∥∞ < ϵ,
however, the negative condition of V̇t cannot be directly guaranteed as follows:

V̇t ≤ −γ∥st∥2
2 +

n

∑
i=1

(
N∗ − 1 + e−βis2

i,t
)(

|si,t|+ 2α−1
i βisi,te

−βs2
i,t ṡi,t

)
. (A4)

Even if the sliding variable leaves the region ∥st∥∞ < ϵ, V̇t becomes negative again
due to condition (A3) and, thus, the sliding variable repeatedly converges to ∥st∥∞ < ϵ.
According to the Lyapunov theorem and inequality (A3), the convergence time of the
sliding variable to the region ∥st∥∞ < ϵ is finite. Therefore, there exists an upper bound of
the control gain ki,t, and thus a maximum value K̄∗ for ∑n

i=1
1
αi
(N∗ − ki,t)

2 also exists. Since
the Lyapunov function (A1) has the following lower and upper bounds:

1
2
∥st∥2

2 ≤ Vt ≤
1
2
∥st∥2

2 +
1
2

n

∑
i=1

1
αi
(N∗ − ki,t)

2, (A5)

in the region ∥st∥∞ < ϵ, the following upper bound of Vt can be obtained:

Vt ≤
1
2

n

∑
i=1

ϵ2 +
1
2

K̄∗. (A6)

Based on inequalities (A5) and (A6), when ∥st∥∞ < ϵ, the upper bound of the sliding
variable can be obtained as follows.

∥st∥2 <
√

nϵ2 + K̄∗. (A7)

Considering inequality (A7) and Definition 1, the sliding variable of the robot manipu-
lator (2) controlled by the control input (12) is UUB. It ends the proof.
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