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Abstract: The substantial value held by smart contracts (SCs) makes them an enticing target for
malicious attacks. The process of fixing vulnerabilities in SCs is intricate, primarily due to the
immutability of blockchain technology. This research paper introduces a systematic literature review
(SLR) that evaluates rectification systems designed to patch vulnerabilities in SCs. Following the
guidelines set forth by the PRISMA statement, this SLR meticulously reviews a total of 31 papers.
In this context, we classify recently published SC automated repair frameworks based on their
methodologies for automatic program repair (APR), rewriting strategies, and tools for vulnerability
detection. We argue that automated patching enhances the reliability and adoption of SCs, thereby
allowing developers to promptly address identified vulnerabilities. Furthermore, existing automated
repair tools are capable of addressing only a restricted range of vulnerabilities, and in some cases,
patches may not be effective in preventing the targeted vulnerabilities. Another key point that
should be taken into account is the simplicity of the patch and the gas consumption of the modified
program. Alternatively, large language models (LLMs) have opened new avenues for automatic
patch generation, and their performance can be improved by innovative methodologies.

Keywords: smart contract; APR; vulnerability

1. Introduction

A smart contract (SC) is defined as a digital agreement that executes on a blockchain
network [1,2]. Employing SCs permits the automatic fulfillment of contract terms, thus
enhancing the efficiency of decentralized applications [1,3]. These digital contracts closely
resemble the structure of If–Then statements prevalent in diverse programming environ-
ments [4]. Blockchain is vulnerable to flaws in the design and implementation of SCs.
Vulnerabilities existing int the SC’s source code also put blockchain at risk [2].

The available SC analysis tools are restricted in their ability to identify vulnerabilities
and lack the capability to address them through patching. To mitigate this problem,
researchers are turning to rectification systems as a potential alternative approach. The
immutability of the blockchain makes it impossible to utilize traditional program repair
techniques for fixing issues in SCs [1]. In this context, the key question is the following:
What makes the existence of unfixed bugs in SCs critical? The response from Yu et al. [5] to
the posed question includes the following points: (i) the overall state of SCs is visible to
everyone, (ii) any patch developed for a vulnerable SC must not only rectify the identified
vulnerabilities but also take into account the gas consumption of the modified program, and
(iii) the quality of the patch produced for a vulnerable SC is a critical design consideration,
particularly since SCs are predominantly utilized in commercial transactions.

We observed that a significant majority of proposed frameworks, surveys, and system-
atic reviews focus primarily on vulnerability detection tools [4]. However, researchers have
almost overlooked the issue of vulnerability correction [2]. We categorize automated pro-
gram repair (APR) methodologies within SCs into five different perspectives: search-based,
constraint-based, template-based, learning-based, and large language model (LLM)-based

Electronics 2024, 13, 3942. https://doi.org/10.3390/electronics13193942 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13193942
https://doi.org/10.3390/electronics13193942
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1127-6945
https://doi.org/10.3390/electronics13193942
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13193942?type=check_update&version=1


Electronics 2024, 13, 3942 2 of 20

approaches. Furthermore, we provide a taxonomy that organizes these methods according
to their respective patching levels, specifically bytecode-based and source code-based strate-
gies. Additionally, we explore the types of vulnerability detection tools that are adopted by
each repair framework. Driven by the need to overcome these challenges, we arranged an
SLR about SC automated repair.

In summary, the novel and significant contributions of this paper are enumerated
as follows:

• The focus is on cutting-edge solutions that have been applied for vulnerability cor-
rection in SCs. In this respect, 31 journal articles and conference papers published
between 2020 and 21 June 2024 will be explored.

• We classify automated repair frameworks under three different perspectives: the
approaches related to APR, the rewriting strategies employed, and the detection tools
utilized.

• We highlight a number of contemporary open challenges intended to tackle sub-
stantial issues that occur when different frameworks are applied to the correction of
vulnerabilities.

The remainder of this paper is organized as follows: Preliminaries are introduced in
Section 2. Section 3 outlines the key findings of the related studies. In Section 4, the research
methodology covers our paper selection procedure. The classification of the selected papers
is represented in Section 5. Section 6 provides an analytical comparison. Sections 7 and 8
ultimately result in discussions and conclusions.

2. Preliminaries

This section introduces terminology, such as blockchain, Ethereum, SCs, vulnerability,
and automated SC vulnerability correction necessary for this paper. The results of our
study reveal that the following expressions are interchangeable: repair (n/v), patch (n/v),
correction (n), fix (n/v), rectify (v), and mitigation (n), where n stands for a noun and v
represents a verb.

2.1. Blockchain

The blockchain is created by sequentially linking data blocks based on their times-
tamps. Blockchain technology has progressed through three different stages of develop-
ment. After successfully completing the initial 1.0 stage, the project is now in the process of
transitioning to blockchain 2.0, where SCs will be utilized [6–8].

2.2. Ethereum

Ethereum stands out as the leading blockchain platform that facilitates SCs. It pro-
motes the execution and invocation environments of SCs via a Turing-complete mechanism
known as the Ethereum virtual machine (EVM) [9,10].

2.3. Smart Contract (SC)

The concept of SCs was initially introduced by Szabo [11], emphasizing their ability to
simplify the process of executing contracts using protocols and user interfaces. Once the
predetermined conditions are met, the blockchain is updated and executed. After executing
a contract associated with the transaction, the transaction result becomes immutable and
irreversible. A smart contract encompasses a collection of state variables and executable
functions. SC technology relies on three key components: the platform, the programming
language, and the execution environment [6,12].

Blockchain SC execution mechanism can be divided into on-chain, off-chain, and
hybrid methods [13]. To clarify, consider blockchain as a cloud storage system that includes
two essential parts: a public section and a private section. On-chain transactions are
comparable to the public cloud, being visible to all users, while off-chain transactions
resemble the private cloud, where the data are kept confidential and not accessible to
the public. An alternative strategy for improving the execution of on-chain SCs is off-
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chain execution. This method enables the handling of tasks associated with SCs to occur
outside the blockchain environment. Isra et al. [14] define on-chain, off-chain, and hybrid
mechanisms as follows:

• An on-chain execution is defined as any operation that is replicated across all partici-
pants within the blockchain network.

• Off-chain refers to the process of assigning the execution or operation that influences
the ultimate state of the blockchain ledger to a specific group of nodes.

• Hybrid execution refers to a process that integrates both off-chain and on-chain opera-
tions in its execution framework.

Table 1 details cutting-edge strategies that follow SC execution mechanisms.

Table 1. SC execution mechanism frameworks.

Mechanism Execution Type Detail

SMACS [15] off-chain

SMACS serves as an off-chain framework that delivers precise access control
guidelines for SCs, characterized by its dynamic extensibility and reduced on-chain
overhead. In order to activate SMACS, the owner of the SC is required to amend the
contract to incorporate the verification of SMACS tokens for each method that can be
accessed externally. Nonetheless, it breaches the immutability principle by allowing
the contract owner to make dynamic updates to the rules. In addition, the SMACS
cannot provide protection for contracts that were deployed without a pre-established
upgrade mechanism.

POSE [16] off-chain

POSE offers robust security assurances, even in scenarios where a significant number
of participants are compromised. The purpose of POSE is to permit a collection of
users to operate an intricate SC on several systems that are enabled with Trusted
Execution Environments (TEEs). This framework, however, is independent of any
specific TEE. This off-chain-based strategy functions by randomly choosing a group of
TEEs to carry out each SC, designating one enclave as the executor while the
remaining enclaves serve as watchdogs.

Chen et al.’s
model [17] hybrid

The research conducted by Chen et al. [17] presents a novel concurrent execution
strategy that merges off-chain execution with the on-chain concurrent execution
framework. This integration allows a blockchain system to boost its performance
without sacrificing security and decentralization. By organizing transaction
scheduling information in relation to execution-related data, this framework improves
the efficiency of both information dissemination and execution among nodes.

SRP [18] hybrid

SRP provides real-time protection for deployed SCs against attacks, ensuring that the
performance of the underlying blockchain remains unaffected. This framework
outlines a protocol tailored for interoperability in off-chain runtime verification. The
SRP exhibits enhanced service time and throughput when contrasted with an
on-chain-only mechanism, especially in scenarios involving escalating workloads.

Twin-Ledger [19] off-chain

Twin-Ledger architecture introduces an innovative method to address the challenges
of throughput without expanding block size and substantial space demands in public
ledgers. This framework enables the integration of any consensus mechanism, but it
particularly leverages the Proof-of-Work consensus to achieve scalability and
decentralization without sacrificing security.

ICOE [20] off-chain

ICOE serves as an off-chain execution paradigm aimed at addressing the scalability
difficulties linked to SC-based industrial applications within blockchain environments.
This framework allows the invoked SC to operate only within its specific group,
ensuring that the execution result is returned solely to the invoked SC. Nevertheless,
irrespective of the volume of data stored in SCs, the ICOE system transfers SCs that
are initially stored on-chain to various off-chain consensus groups. This significantly
alleviates the storage demands on the on-chain blockchain. Furthermore, the ICOE
system is capable of supporting a wide range of applications based on smart contracts.

Isras et al.’s
model [14] off-chain

The research conducted by Isra et al. [14] presents a queuing model focused on
off-chain runtime verification and the process of block generation. This model is
capable of efficiently and flexibly representing the non-deterministic nature of
blockchain systems, allowing for the estimation of both the number of transactions in
the pool and their respective waiting times.
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2.4. Vulnerability

In general, SC vulnerabilities can be categorized into three categories [5,6,12]: (i) vul-
nerabilities at the blockchain level, (ii) vulnerabilities at the Ethereum virtual machine
level, and (iii) vulnerabilities at the source code level (high-level languages like Solidity.
The most discussed Ethereum SC vulnerabilities include timestamp dependency [21,22],
reentrancy [21–24], Transaction Ordering Dependency [21,22], tx.origin [21–24], Block-
hashBlock Number [21,22], Gas-Related Issues [21,22], delegate call [21,24], Arithmetic
UnderflowOverflow [21,23,24], unchecked call [23], Self-Destruct [21,23,24], access con-
trol [23], and denial of service [23].

2.5. Automated Smart Contract Vulnerability Correction

The automated SC repair issue, as described by Yu et al. [5], involves the challenge of
developing an algorithm that can effectively address vulnerabilities in a SC. This algorithm
must take into account key factors, including the initial vulnerable SC, a list of identified
vulnerabilities, a test suite, and a specified maximum gas usage limit. The ultimate goal is
to generate a new contract that closely resembles the original one, with all vulnerabilities
rectified and successfully passing all tests while ensuring that the gas consumption of
feasible execution paths does not exceed the predetermined limit.

3. Related Work

This section reviews eight surveys and SLRs published from 2020 to 2024, specifically,
fixing vulnerable patterns in SCs. Then, we discuss the advantages and limitations of each
study. Table 2 details review papers related to fixing vulnerabilities in SCs. Table 3 refers to
research questions, followed by recently published survey papers.

Table 2. Overview of related surveys and their coverage based on SC automated repair.

Reference Environment Review Type Year of Pub Selection
Process Taxonomy Year Covered

[25] Solidity empirical
review 2020 semi-clear 1 - 14 December 2018–31

March 2019

[26]
SC formal

specification
and verification

survey 2021 clear 2 ✓
September 2014–June

2020

[27]
Formal

verification for
Solidity SCs

survey 2021 semi-clear 3 ✓ 2008–2018 4

[28] Bugs SLR 2023 not clear 5 ✓ 2021–2022 6

[1] DeFi 7 security
empirical

review 2023 not clear 5 - 2020–2021

[29] Off-chain and
on-chain repair SLR 2023 clear 2 ✓ 2015–2023

[30] Bugs empirical
review 2023 clear 2 ✓ 2016–2021

[3] APR survey 2024 not clear 5 - 2019–2023 4

1 The identification methodology is clear, while the exclusion, eligibility, and inclusion methodology are not clear.
2 Search queries, keywords, and organization of the article are clear. 3 The scientific databases and keywords are
clear. 4 It is not mentioned directly, but the survey’s main references were published between these years. 5 The
identification, exclusion, eligibility, and inclusion methodology are not clear. 6 Covering 516 unique real-world SC
vulnerabilities in years 2021–2022. 7 Decentralized Finance.
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Table 3. Research questions followed by survey papers.

Reference Research Questions

[25]

1: Does the Solidity language become more secure by fixing known vulnerabilities?
2: Does the Solidity compiler get security patches for the known vulnerabilities?
3: Would Solidity developers take advantage of the repaired Solidity compilers?
4: Are the compiler patches effective enough to prevent their target vulnerabilities?
5: Do developers actually make bugs and errors due to such vulnerabilities?

[26]

1: What are the formal techniques used for modeling, specification, and verification of SCs?
2: What are the common formal requirements specified and verified by these techniques?
3: What are the challenges introduced by SC and blockchain environment in formalizing and verifying SCs?
4: What are the current limitations in SC formal specification and verification and what research directions
may be taken to overcome them?

[28]

1: What kinds of exploitable bugs are machine auditable by existing tools?
2: How many real-world exploitable bugs are machine auditable?
3: How difficult is it to audit exploitable bugs?
4: What are the root causes, categories, and distributions of machine unauditable bugs?
5: What are the symptoms and fixes of machine unauditable bugs?

[1] 1: How do traditional SC vulnerability detection tools perform when applied to DeFi protocols?
2: What is the performance of state-of-the-art tools in detecting DeFi attacks or vulnerabilities?

[29]
1: What are the existing vulnerability defense methods?
2: What are the strengths and limitations of those repair methods?
3: What vulnerabilities are covered by those vulnerability repair methods?

[30]

1: What types of files are involved when fixing bugs?
2: How many Solidity files are modified during a fix?
3: How many Solidity files are necessary to be added or deleted to fix bugs?
4: What is the most common fix operation during bug fixes?
5: How many element kinds are modified in a Solidity file during bug fixes?
6: How many fix actions are taken to a Solidity file during bug fixes?

The survey [25] reveals the gap between theory and practice in security patches in
Solidity, the most popular programming language used by Ethereum SC developers. The
method of article selection has not been well-demonstrated in this research. However, the
search domain for this article is clear. The scholars recommended five research questions
focusing on the relationship between Solidity and vulnerability correction in SCs. They
found that 7 out of 41 known vulnerabilities are patched.

In another study, a survey [26] reviews major trends, challenges, and future directions
in the formal specification and verification of SCs. The researchers effectively indicated
their article selection method. The scope of their article searches spans from September
2014 to June 2020. The authors collected papers from scientific databases, including Google
Scholar, IEEE, Springer, and ACM. They used the following keywords for the search: formal,
verification, specification, modeling, smart contract properties, smart contract temporal
properties, and temporal properties. According to the authors, the use of contract-level
models and specifications in conjunction with model checking is a common method for
reasoning about the functional correctness of SCs in diverse domains.

Furthermore, the survey [27] explores formal verification for Solidity SCs. The authors
classify and assess gathered research studies according to two key criteria: (i) the verification
methods employed and (ii) the vulnerabilities that are the main focus of the research.
Specifically, they categorize two families of formal verification methods, those that rely on
theorem proving and those that rely on model checking. Their article search domain is not
clear. The researchers gathered articles from academic repositories, such as Google Scholar
and DBPL computer science bibliography. The search utilizes the subsequent keywords:
smart contract, formal verification, Solidity, and Ethereum.

Likewise, a systematic review [28] categorizes SC bugs that cannot be detected by
existing tools and studies their underlying causes, distributions, impacts, consequences,
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and methods for repair. The article illustrates the symptoms and repair strategies of price
oracle manipulation, Erroneous Accounting, and privilege escalation bugs through the use
of real examples. It includes ten findings. The method of article selection in their study has
not been clearly revealed. Their article search domain spans from 2021 to 2022.

An empirical review [1] explores the advancements achieved in SC and DeFi security,
focusing on the detection of vulnerabilities and the implementation of automated repair
mechanisms. The criteria for selecting articles are not transparent. It reviews eight auto-
mated repair tools for SCs and DeFi protocols, which were proposed between 2020 and 2022.
According to the survey, contemporary automated repair tools are able to address only
certain types of vulnerabilities and face challenges in dealing with complex DeFi protocols.

The SLR [29] provides insights into data sources, detection methods, and repair strate-
gies related to vulnerabilities in SCs. The researchers have successfully detailed their
approach to article selection. Their search criteria cover the years from 2015 to 2023. How-
ever, the research is restricted to five vulnerability repair frameworks that were released
from 2020 to 2021. The study underscores the importance of developing off-chain repair
solutions that offer superior performance to maintain the security of contracts. Conversely,
there is a necessity for the advancement of on-chain repair technologies to facilitate real-time
updates of the patch contract, thereby enhancing the security of the contract.

Another empirical study [30] explores historical bug fixes from 46 real-world Solid-
ity SCs projects. This research offers practical recommendations for enhancing existing
methodologies for addressing bugs in Solidity SCs, focusing on three key areas: automated
repair techniques, analytical tools, and the role of Solidity developers. The criteria for
selecting projects are transparent.

The SLR [3] examines existing methods for detecting and repairing contract vulnera-
bilities. It explores six papers published between 2019 and 2023. The research emphasizes
the increasing shift towards using Generative AI to fix vulnerabilities in SCs. There is a lack
of transparency in the selection criteria for articles. Moreover, the scholars do not introduce
a taxonomy regarding automated repair of SC vulnerabilities.

In summary, reviewing previous articles, the ensuing shortcomings were discovered:
(1) The survey articles did not include the newly proposed APR tools for SCs. (2) Survey
papers have neglected the taxonomy of vulnerability correction tools, which relies on APR
approaches, patching levels, and detection tools. In light of the aforementioned limitations,
this SLR has been introduced to address the issues identified in prior studies.

4. Methodology

In our SLR on the correction of vulnerabilities in SCs, we adhered to the guidelines
set forth by Moher et al. [31]. Here, we will detail the selection criteria for the analyzed
papers, the methodologies adopted for their preparation, and provide an overview of the
research outcomes.

4.1. Research Questions (RQs)

Despite advancements, there are still challenges to overcome in developing automatic
patch generation systems for SCs, as indicated by the study of review articles and SLRs. The
present investigations are entirely valid and significant to the relevant field. In this context,
three questions were formulated, and they will be addressed through both analytical and
graphical approaches in the upcoming sections.

• RQ1: What recent trends automatically generate security patches for vulnerable SCs?
• RQ2: What types of vulnerabilities are fixed by novel rectification frameworks?
• RQ3: What types of vulnerability detection tools are employed by automated repair

frameworks when addressing SCs?

4.2. Selection of Primary Studies

On 21 June 2024, the search was conducted. The platforms used for the search were
IEEE, ACM, Springer, ScienceDirect, Wiley, Taylor and Francis, and online archives such
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as arXiv. The search covers title, abstract, and keywords. To search for primary studies,
we have identified the following keywords: “smart contract” AND “vulnerability” AND
(“repair” OR “patch” OR “correction” OR “fix” OR “rectify” OR “mitigation”).

Each paper was scrutinized based on its title, abstract, introduction, and conclusions
to determine its compliance with the established inclusion criteria. Following this, an
evaluation of the remaining sections of each document was conducted to pinpoint key
contributions and unresolved issues.

4.3. Inclusion and Exclusion Criteria

This SLR is centered on journal articles, international conference proceedings, and
symposiums that have been published from 2020 to 21 June 2024. Repetitive articles and
various other forms of literature such as books, surveys, empirical studies, critical articles,
technical reports, and master’s theses were excluded.

4.4. Selection Results

Considering the keywords, the following results have been obtained, divided by
platform:

• IEEE: 38 results.
• ScienceDirect: 13 results.
• Springer: 15 results.
• ACM: 41 results.
• Wiley: 8 results.
• Taylor and Francis: 3 results.
• Online archives: 8.

Subsequently, the duplicated studies were taken out. Then, papers that did not meet
the exclusion criteria were excluded. Ultimately, 31 papers were left for analysis. The
methodology for including and excluding research articles is outlined in Figure 1.
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5. Taxonomy of Fixing Techniques for SC Vulnerabilities

This section outlines the evolution of APR techniques in SCs through five different
perspectives: search-based, constraint-based, template-based, learning-based, and LLM-
based methodologies. We also present a taxonomy that categorizes repairing frameworks
according to their patching levels, specifically bytecode-based and source code-based
strategies. Furthermore, we investigate the types of vulnerability detection tools that are
employed by each repair framework.

5.1. Search-Based Approach

Heuristic-based solutions, often called search-based methods, are grounded in the core
idea of searching through a predefined patch space to pinpoint the appropriate patch [32].
Existing search-based APR frameworks leverage the advantages of both bytecode-based
and source code-based rewriting strategies.

5.1.1. Bytecode-Level Rewriting Strategy

Hou et al. [33] introduce HermHD, an automated tool designed to enhance security
by utilizing six distinct obfuscation patterns, which enable the rewriting of an SC’s byte-
code while preserving its original functionality. It protects Ethereum SCs against reverse
engineering. SC code obfuscation is a method that can effectively hide the business logic,
semantics, and other pertinent information associated with the contract. This approach
not only ensures the privacy of the SC but also compromises the efficacy of analysis tools,
resulting in an inability to accurately analyze the semantics of the SC.

5.1.2. Source Code-Level Rewriting Strategy

Yu et al. [5], Nassirzadeh et al. [34], and Tolmach et al. [26] propose a source code-level
rewriting strategy to automate the repair of SCs based on a search method. SCRepair [5] is
a gas-aware and general-purpose framework that takes into account the gas consumption
of the potential patches. Gas Gauge [34] includes three essential components: the detection
phase, the identification phase, and the correction phase. The correction phase component
employs static analysis alongside run-time verification to estimate the maximum loop
bounds that align with permissible gas usage. Nonetheless, SCRepair and Gas Gauge
focus on static analysis tools to identify specific vulnerabilities within SCs and select
suitable fixing patterns; DeFinery [26] adopts a semantic methodology. Notably, the patch
generation component of DeFinery is established on the SCRepair framework.
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5.2. Constraint-Based Approach

The primary principle underlying constraint-based methods, referred to as semantic
constraint approaches, influences the repair process by generating a defined set of constraint
specifications [32]. Existing constraint-based APR frameworks leverage the advantages of
source code-based rewriting strategies.

The current constraint-based methodologies include the approach by Ren et al. [35]
and the SymlogRepair framework [36]. Ren et al.’s model [35] includes two primary
components: security-reinforced code suggestion and security-oriented code validation.
They identify and rectify specific security vulnerabilities utilizing Abstract Syntax Tree
(AST) and Datalog. Their security-reinforced code suggestion benefits from the functionality
of a long short-term memory (LSTM) network. The SymlogRepair framework [36] aims
to combine program repair with Datalog-based analysis. However, to effectively support
a new type of bug in this paradigm, it is imperative to create a Datalog program that
facilitates the identification of this particular class of bugs.

5.3. Template-Based Approach

Template-oriented solutions, rule-based, transformation-based, or pattern-based, em-
ploy a predetermined program fix template to generate repair patches. These fix templates
can be manually extracted or automatically derived through mining techniques [32]. Ex-
isting template-based APR frameworks leverage the advantages of bytecode-based and
source code-based rewriting strategies.

5.3.1. Bytecode-Level Rewriting Strategy

The works of Zhang et al. [37], Rodler et al. [38], Jin et al. [39], Torres et al. [40], Guo [41],
Feng et al. [42], Shi et al. [43], and Huang et al. [44] introduce template-driven methods for
correcting vulnerabilities, which employ a rewriting scheme at the bytecode level.

Zhang et al. [37] developed a gas-friendly bytecode rectification system called
SmartShield to address three prevalent security-related bugs. By fixing insecure instances
within each vulnerable SC, this framework ensures the security of the EVM bytecode during
the contract’s ultimate deployment. They utilize a semantic-preserving transformation
technique to compile each insecure contract into a secure bytecode version. In this strat-
egy, symbolic execution and abstract interpretation techniques are utilized to verify the
correctness of the rectified contracts. In contrast to SmartShield, EVMPatch [38] operates
when the vulnerability is situated within a single bytecode basic block, struggling to ad-
dress vulnerabilities across different basic blocks. However, it is not entirely automated,
which means that the developer is obligated to resolve the bug manually. SmartShield and
EVMPatch implement supplementary runtime checks, potentially resulting in considerable
performance costs. The fundamental principle behind Aroc [39] is to utilize separate SCs
equipped with patches to block malicious transactions in advance. However, the owner is
required to execute a designated transaction through the improved EVM to envelop the
contract with the necessary patch. This framework has higher runtime overheads than
EVMPatch. Elysium proposed by Torres et al. [40] is another SC vulnerability correction
scheme at the bytecode level. This framework generally decreases the costs associated with
runtime, particularly regarding transaction expenses. Elysium presents a patching strategy
that is context-aware, merging template-based and semantic-based methods to develop
customized patches for SCs.

Guo [41] introduces an automatic patch generation system known as APG, integrated
within the SolSaviour framework [45]. This system addresses the security issues associated
with patches implemented by SolSaviour and improves the protective capabilities of Sol-
Saviour for SCs. This paradigm is formed by the integration of two existing frameworks,
which are Slither and EVMPatch [38]. While the security measures are improved, the
associated computing costs are elevated. The research conducted by Feng et al. [42] benefits
from the BiLSTM model to detect reentrancy vulnerabilities and a bytecode rewriting strat-
egy. This method distinguishes itself from earlier approaches by employing the synthetic



Electronics 2024, 13, 3942 10 of 20

minority over-sampling technique (SMOTE), which improves the dataset by incorporating
additional samples from minority classes. The work of Shi et al. [43] unveils EtherEditor,
which tackles the challenges related to widely recognized automated repair tools such
as SCRepair [5], SmartShield [37], EVMPatch [38], and Elysium [40]. Huang et al. [44]
introduce a novel framework for repairing SCs, known as ReenRepair, which is aimed
specifically at locating reentrancy vulnerabilities and providing semantically equivalent
solutions for their repair. In this context, the authors outline two scenarios of false positives
that are not influenced by reentrancy attacks. They subsequently develop a model that
incorporates read–write dependencies and path connectivity to mitigate false positives in
the localization of reentrancy. Furthermore, they adopt two gas-optimized repair templates
to tackle reentrancy: the bit-lock template and the reordering template. In terms of repair
efficiency, ReenRepair outperforms SCRepair [5].

5.3.2. Source Code-Level Rewriting Strategy

The template-oriented frameworks put forth by Nguyen et al. [46], Thyagarajan
et al. [47], Li et al. [45], Giesen et al. [48], Beillahi et al. [49], Antonino et al. [50], Chen
et al. [51], Fang et al. [52], XI and Pattabiraman [53], Gao et al. [54] are established on a
rewriting strategy that is guided by the source code.

Nguyen et al. [46] conduct the SGuard framework, which follows a runtime veri-
fication strategy to correct automatically four kinds of vulnerabilities. The patch code
introduced by SGuard might provide inadequate protection, leading to possible changes
in the semantics of the original code. In contrast, Reparo [47] is a publicly verifiable layer
that can be implemented on any blockchain to facilitate repairs, including the correction
of faulty contracts and the elimination of illicit content from the chain. This protocol can
be customized to fit any flavor of consensus, including permission systems, without intro-
ducing any overhead. SolSaviour [45] is reported to protect deployed SCs from unknown
vulnerabilities. This strategy is composed of two fundamental components: voteDestruct
and the TEE cluster. The voteDestruct mechanism is integrated into SCs before their de-
ployment, allowing for the destruction of a contract through a voting process. Unlike
existing solutions that depend on a trusted third party to redeploy updated contracts,
SolSaviour facilitates the efficient migration of contract assets without the need for a trusted
intermediary. Nonetheless, SolSaviour cannot extend its defense mechanism to SCs that
are already in operation and have been deployed.

Due to the code property Graphs (CPGs), HCC [48] can be applied to diverse SC
platforms and programming languages. Nonetheless, HCC faces obstacles in rectifying
vulnerabilities present in complex DeFi protocols. This framework addresses and mitigates
several false alarm issues characteristic of previous solutions like SGuard. Beillahi et al. [49]
conducted a methodology to detect transaction order dependency (TOD) vulnerabilities
and rectify them. This work is limited by the fact that Slither does not analyze inlined
assembly statements found in the SC code. As a result, it may not identify dependencies
between the outcomes of transactions and state variables that can be altered. Antonino
et al. [50] put forward a systematic deployment framework, called Trusted Deployer that
requires formal verification of contracts before they are established and modified. This
model guarantees that the original implementation and all future upgrades will comply
with the defined specifications. Trusted Deployer utilizes an off-chain strategy and permits
developers to correct the contract before its deployment.

TIPS [51] determines the suitable fix template based on the vulnerability category
identified by vulnerability detection tools and generates patches heuristically, utilizing
the code alteration actions defined by the selected fix template. It can efficiently produce
patches for vulnerable SCs, demonstrating superior performance compared to SCRepair [5].
ContractFix [52] facilitates the migration of statements to address reentrancy vulnerabili-
ties while incurring significantly lower gas costs compared to Sguard [46]. Furthermore,
EVMPatch [38] sacrifices the semantics of the source code and necessitates additional data
analysis compared to the ContractFix [52] framework. GoHigh [53] mechanism involves



Electronics 2024, 13, 3942 11 of 20

the scrutiny of the Abstract Syntax Tree (AST) that corresponds to the SC’s source code.
This strategy replaces low-level functions with more advanced high-level alternatives. This
scheme addresses both the unhandled exception-related vulnerabilities and the use of
low-level and obsolete functions vulnerabilities.

Gao et al. [54] put forward SGuard+, a machine learning-based automated approach
to vulnerability repair, intending to enhance the effectiveness and efficiency of SGuard
in relation to vulnerability detection and repair processes. They develop new repair
rules that involve fewer code changes and diminish unnecessary patch code, relying on
precise localization to lower gas overhead. This framework employs a binary classification
machine learning model, specifically eXtreme Gradient Boosting (XGBT), to identify each
vulnerability type at the function level. The training dataset is labeled based on the outputs
from the Slither, Securify, and Mythril tools. However, the evaluation of the XGBT of
SGuard+ reveals two primary limitations associated with the machine learning approach:
(1) The models do not achieve consistent performance for all types of vulnerabilities. (2) A
tradeoff is observed between recall and precision in the models.

Notably, the approaches employed by the SmartShield [37], SGuard [46], and Ely-
sium [40] frameworks depend on a singular repair strategy for each category of bugs,
leading to a failure in rectifying the diverse patterns of bugs encountered.

5.4. Learning-Based Approach

Machine learning-based approaches establish probabilistic models that analyze the
distribution of repair patterns, thereby facilitating improved selective fixing strategies [32].
Existing learning-based APR frameworks leverage the advantages of source code-based
rewriting strategies.

Zhou et al. [55], Guo et al. [56], and So and Oh [57] have introduced learning-based
frameworks that are constructed upon a strategy of rewriting driven by source code.
SmartRep [55] employs source code and partial syntax information to efficiently provide
one-line patches for SC repairs, intentionally avoiding the extraction of syntax tree struc-
tures and bytecode information. This framework is designed with two encoders and a
decoder. Each encoder includes an embedding layer and two LSTM layers, whereas the
decoder is structured with an embedding layer and a single LSTM layer. In contrast to
SCRepair [5], SmartRep can deliver security code recommendations at a significantly faster
pace. Furthermore, SCRepair can rectify four categories of vulnerabilities, while SmartRep
can patch eleven types of vulnerabilities.

The work of Guo et al. [56] reveals RLRep, an approach based on reinforcement
learning that leverages an agent to recommend repair actions for vulnerable SCs, all without
supervision. In this context, they develop a comprehensive list of repair actions to direct
the agent in generating effective paths for the necessary repairs. The actions are structured
based on the official suggestions for corrections and the mutation operators found in
conventional programming languages and Solidity. Furthermore, the authors establish
the reward function utilizing compilation, vulnerability detection tools, code similarity,
and code entropy, which facilitates the optimization of SC repair recommendations across
various metrics. LSTM is employed for encoding and decoding sequences due to its effective
performance in code repair tasks. This methodology may effectively resolve the challenge
posed by the lack of labeled data in machine learning-driven repair methods. However,
the framework offers an estimated 55% accuracy in its repair recommendations for SCs.
Furthermore, this method presently lacks the capability to provide repair suggestions for
emerging vulnerabilities, which consequently restricts its scalability.

So and Oh [57] introduce SmartFix, which utilizes a “generate-and-verify” strategy.
This technique iteratively produces candidate patches while ensuring their correctness by
engaging a safety verifier for validation. This framework employs a machine learning-
based approach that effectively directs the repair process by utilizing statistical models.
These models are constructed through both online and offline techniques.
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5.5. Large Language Model (LLM)-Based Approach

These models provide a different avenue for research in APR by harnessing their
abilities in code understanding and generation to formulate repairs [32]. Existing LLM-
based APR frameworks leverage the advantages of source code-based rewriting strategies.

The research conducted by Napoli and Gatteschi [58], Ibba et al. [59], Jain et al. [60],
and Zhang et al. [61] has led to the development of LLM-based frameworks that are
founded on a rewriting methodology influenced by source code.

Napoli and Gatteschi [58] evaluate the potential of chat generative pre-trained trans-
former (ChatGPT) in addressing vulnerabilities within SCs. The results demonstrate that
ChatGPT could rectify bugs and vulnerabilities in SCs with an average success rate of 57.1%.
This rate increased by 1.4% when a detailed description of the bug was included along-
side the SC’s source code. Nevertheless, they assess ChatGPT’s capability to correct code
within widely recognized vulnerable SCs. Moreover, it does not address the rectification of
unknown vulnerabilities.

Ibba et al. [59] utilize ChatGPT to repair Solidity SCs automatically. The authors
investigate three methods by which ChatGPT can facilitate the automatic repair of SCs:
(1) utilizing ChatGPT as a tool for vulnerability detection and APR, (2) employing ChatGPT
as an APR tool that incorporates training samples, and (3) leveraging ChatGPT as an APR
tool that identifies exposed lines and their corresponding vulnerabilities. The initial two
models attained accuracy rates of 53% and 39%, respectively. Despite this, the third model
achieved an accuracy rate of 89%. Therefore, ChatGPT is most effectively employed as an
APR tool when integrated with vulnerability detection systems.

Jain et al. [60] introduce Two Timin, a tool designed to repair SCs, which leverages the
capabilities of two prominent LLMs: GPT-3.5-Turbo and Llama-2-7B. In this context, vul-
nerabilities are identified through an innovative pipeline that utilizes Slither and a Random
Forest classifier. Subsequently, the identified malicious SCs and their associated vulnera-
bilities serve as parameters for prompts directed at two distinct LLMs. This framework
facilitates a more comprehensive repair process and is designed to be flexible in addressing
zero-day vulnerabilities. The pre-trained GPT-3.5-Turbo and the fine-tuned Llama-2-7B
reduced the overall vulnerability count by 97.5% and 96.7%, respectively. However, there is
a lack of clarity regarding the particular vulnerabilities that this framework mitigates. In
addition, the source code is unavailable. This framework also serves to repair malicious
SCs generated by OpenAI’s GPT 3.5 Turbo.

Zhang et al. [61] introduce ACFIX, a solution incorporating both online and offline
patches to address access control vulnerabilities in SCs. In this framework, they utilize an
enhanced version of GPT-4, resulting in a notable improvement over the standard GPT-4
model. In the offline phase, ACFIX extracts a taxonomy of prevalent role-based access
control practices from on-chain contracts, systematically categorizing 49 role permission
pairs derived from the most distinctive pairs identified. In the online phase, ACFIX
monitors AC-related components throughout the contract and utilizes this contextual
information with a Chain-of-Thought pipeline. This approach assists LLMs in determining
the most suitable role-permission pair for the specific contract, ultimately leading to the
generation of an appropriate patch. In contrast to other LLM-based frameworks, this
particular framework has the ability to mitigate a specific vulnerability.

6. Comparison

Section 5 contains a detailed analytical discussion and comparison of the final articles.
The research questions are addressed in Section 4.1, and this section serves to answer them.

6.1. RQ1: What Recent Trends Automatically Generate Security Patches for Vulnerable SCs?

Table 4 delineates a taxonomy of tools designed for the correction of vulnerabilities in
SCs. These tools are classified based on their APR methodologies, which consist of search-
based, constraint-based, template-based, learning-based, and LLM-based approaches, along
with their rewriting strategies, namely bytecode-level and source code-level. Although
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LLM methods can be categorized as a learning model within APR methodologies, we opt
to view them as an emerging trend in this discipline.

Table 4. Taxonomy of APR approaches and rewriting strategies.

APR Model and Rewriting Strategy Availability

Search-based Bytecode-level
HermHD [33] https://github.com/ByteCodeMaster/HermHD (7 September 2024)

Search-based Source Code-level
SCRepair [5] https://SCRepair-APR.github.io (7 September 2024)

Gas Gauge [34] https://gasgauge.github.io/ (7 September 2024)
DeFinery [26] https://sites.google.com/view/ase2022-definery/ (7 September 2024)

Constraint-based Source Code-level
Ren et al.’s model [35] https://github.com/FISCO-BCOS/SCStudio (7 September 2024)

SymlogRepair [36] https://github.com/symlog/symlog (7 September 2024)
Template-based Bytecode-level

SmartShield [37] on request
EVMPatch [38] https://github.com/uni-due-syssec/evmpatch-developer-study (7 September 2024)

Aroc [39] -
Elysium [40] https://github.com/christoftorres/Elysium (7 September 2024)

APG [41] -
Feng et al.’s model [42] on request

EtherEditor [43] -
ReenRepair [44] on request

Template-based Source Code-level
SGuard [46] https://github.com/reentrancy/sGuard (7 September 2024)

SolSaviour [45] -
Reparo [47] -
HCC [48] -
TOD [49] https://github.com/Veneris-Group/TOD-Location-Rectificatio (7 September 2024)

Trusted Deployer [50] https://github.com/formalblocks/safeevolution (7 September 2024)
TIPS [51] https://github.com/CVbluecat/TIPS (7 September 2024)

ContractFix [42] https://github.com/research1132/ContractFix (7 September 2024)
GoHigh [53] https://github.com/DependableSystemsLab/GoHigh (7 September 2024)
SGuard+ [54] https://doi.org/10.5281/zenodo.8249340 (7 September 2024)

Learning-based Source Code-level
SmartRep [55] https://github.com/AnonymousGithub5/SmartRep (7 September 2024)

RLRep [56] https://github.com/Anonymous123xx/RLRep (7 September 2024)
SmartFix [57] https://doi.org/10.5281/zenodo.8256377 (7 September 2024)

LLM-based Source Code-level
Napoli et al.’s model [58] https://github.com/enaples/solgpt (7 September 2024)

Ibba et al.’s model [59] -
Two Timin [60] -

ACFIX [61] https://sites.google.com/view/acfixsmartcontract (7 September 2024)

The academic community has extensively investigated template-based APR method-
ologies, encompassing source code and bytecode rewriting techniques. In a different
perspective, the methodologies for APR that rely on constraint-based, learning-based, and
LLM-based frameworks have ignored the strategy of bytecode rewriting.

Turning to Figure 3a, the pie chart details the percentage of APR methodologies in
SCs. A significant majority of this chart is accounted for template-based methods, and the
remaining 42% is used for search-based (12.9%), LLM-based (12.9%), learning-based (9.7%),
and constraint-based (6.5%). With respect to Figure 3b, the most prevalent approach for
repairing buggy contracts is through the rewriting of source code.

https://github.com/ByteCodeMaster/HermHD
https://SCRepair-APR.github.io
https://gasgauge.github.io/
https://sites.google.com/view/ase2022-definery/
https://github.com/FISCO-BCOS/SCStudio
https://github.com/symlog/symlog
https://github.com/uni-due-syssec/evmpatch-developer-study
https://github.com/christoftorres/Elysium
https://github.com/reentrancy/sGuard
https://github.com/Veneris-Group/TOD-Location-Rectificatio
https://github.com/formalblocks/safeevolution
https://github.com/CVbluecat/TIPS
https://github.com/research1132/ContractFix
https://github.com/DependableSystemsLab/GoHigh
https://doi.org/10.5281/zenodo.8249340
https://github.com/AnonymousGithub5/SmartRep
https://github.com/Anonymous123xx/RLRep
https://doi.org/10.5281/zenodo.8256377
https://github.com/enaples/solgpt
https://sites.google.com/view/acfixsmartcontract
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6.2. RQ2: What Types of Vulnerabilities Are Fixed by Novel Rectification Frameworks?

Table 5 shows different types of vulnerabilities that are fixed by vulnerability correction
frameworks.

Table 5. Patching vulnerabilities by vulnerability correction frameworks.

Framework # Vulnerabilities Types of Vulnerabilities

HermHD [33] 1 protect from reverse engineering
SCRepair [5] 4 transaction order dependency, reentrancy, exception disorder, and integer overflow
Gas Gauge [34] 1 out-of-gas denial of services
DeFinery [26] 2 reentrancy and unchecked send

Ren et al.’s model [35] 9 access control, arithmetic, backdoor threats, front running, locked Ether, reentrancy, timestamp
dependency, unchecked low calls, and unhandled exception

SymlogRepair [36] 4 access control, unhandled exception, reentrancy, and locked Ether

SmartShield [37] 3 state changes after external calls, missing checks for out-of-bound arithmetic operations, and
missing checks for failing external calls

EVMPatch [38] 2 integer over/underflows, and access control errors
Aroc [39] 3 reentrancy, arithmetic bugs, and unchecked low-level checks
Elysium [40] 5 reentrancy, access control, arithmetic, unchecked low-level call, and denial of services
APG [41] 3 malicious voting problems, the patch vulnerabilities, and DeFi unavailability issues
Feng et al.’s model [42] 1 reentrancy

EtherEditor [43] 7 tx.origin authentication, denial of service, reentrancy, unchecked external calls, delegate call to
untrusted callee, unprotected SELFDESTRUCTION instruction, and arithmetic over/under flow

ReenRepair [44] 1 reentrancy
SGuard [46] 4 arithmetic (control dependency, data dependency) and reentrancy (intra-function, cross-function)

SolSaviour [45] 9 reentrancy, integer over/underflows, delegate call, denial of service, unchecked return values,
front running, timestamp dependency, bad constructor, and unknown bugs

Reparo [47] 2 reentrancy, parity multisig wallet bug
HCC [48] 2 reentrancy, and integer overflows
TOD [49] 1 price gouging transaction order dependency

Trusted Deployer [50] 4 integer overflow and underflow, Nonstandard token interface, wrong operator, and verification
error

TIPS [51] 8 unchecked external calls, reentrancy, access control, arithmetic issue, strict balance equality,
unmatched type assignment, Inserting a suicide function, and hard-coded address

ContractFix [42] 4 reentrancy, missing input validation, locked Ether, and unhandled exception

GoHigh [53] 4 arithmetic underflow and overflow, reentrancy, denial of service with block gas limit, and
unencrypted on-chain data

SGuard+ [54] 5 integer overflow and underflow, unchecked call return value, unprotected
self-destruct instruction, reentrancy, and authorization through tx-origin

SmartRep [55] 11
use of deprecated functions, unchecked return value, incorrect inheritance order, illegal coverage,
transaction ordering dependence, reentrancy, erroneous visibility, arithmetic issue, missing
return statement, authorization through tx.origin, and erroneous variable type

RLRep [56] 5 exception disorder, integer overflow, reentrancy, transaction order dependence, and tx.origin
SmartFix [57] 5 integer over/under-flow, ether-leak, suicidal, reentrancy, and tx.origin
Napoli et al.’s model [58] - not mentioned
Ibba et al.’s model [59] 4 reentrancy, denial of service, arithmetic overflows and underflows, and unchecked low-level calls
Two Timin [60] - not mentioned
ACFIX [61] 1 role-based access control
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6.3. RQ3: What Types of Vulnerability Detection Tools Are Employed by Automated Repair
Frameworks When Addressing SCs?

Vulnerability detection tools are classified into two primary classifications: traditional
solutions and those utilizing machine learning. The traditional solutions are subdivided
into five distinct types: (1) static analysis, (2) symbolic analysis, (3) dynamic analysis,
(4) formal verification methods, and (5) fuzzy testing. Meanwhile, machine learning-
driven solutions consist of classical models, deep learning models, and ensemble learning
models [4]. Apart from the methods already mentioned, some frameworks have explored
additional avenues, including (1) a hybrid of traditional techniques and machine learning-
based methods and (2) strategies that incorporate internal vulnerability detection tools.
Table 6 illustrates the tools that are applied for identifying vulnerabilities in the frameworks
that focus on vulnerability mitigation.

Table 6. Vulnerability detection tools employed by automated repair frameworks.

Vulnerability Detection Tools Automated Repair Frameworks

Traditional Vulnerability Detection Tools
Mythril and Octopus HermHD [33]
Oyente and Slither SCRepair [5]
Slither, Truffle Suite Gas Gauge [34]
Oyente, Securify, SmartCheck, Pied-Piper, Mythril Ren et al.’s model [35]
Securify2 SymlogRepair [36]
Securify, Osiris, and Mythril SmartShield [37]
Osiris, ECF teEther, Oyente, Maian, Sereum, Securify EVMPatch [38]
Osiris Aroc [39]
Osiris, Oyente, Mythril Elysium [40]
Slither APG [41]
Osiris EtherEditor [43]
Securify ReenRepair [44]
Securify, Ethainter SGuard [46]
Slither TOD [49]
Slither and Mythril TIPS [51]
Securify, Slither, Smartcheck ContractFix [52]
Mythril, Securify, Oyente, Slither RLRep [56]
Slither Napoli et al.’s model [58]
HoneyBadger, Osiris, Oyente, Mythril, Slither, and Securify Ibba et al.’s model [59]
Slither and ANTLR ACFIX [61]
SOLC_VERIFY Trusted Deployer [50]
VeriSmart SmartFix [57]
ML-driven Vulnerability Detection Tools
LSTM Feng et al.’s model [42]
eXtreme Gradient Boosting model SGuard+ [54]
LSTM SmartRep [55]
Hybrid Vulnerability Detection Tools
Slither and Random Forest Classifier Two Timin [60]
Internal Vulnerability Detection Tools
DeFinery detection tool DeFinery [26]
HCC detection tool HCC [48]
GoHigh detection tool GoHigh [53]
SolSaviour detection tool SolSaviour [45]
Reparo detection tool Reparo [47]

Concerning, Figure 4, the pie chart conveys the percentage of vulnerability detection
tools that are employed by automated repairing vulnerability frameworks in SCs. The
chart reveals that a substantial portion is attributed to traditional analysis tools, while
the remaining 29% is divided among internal methods (16%), machine learning-driven
methods (3%), and hybrid methods (3%).
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7. Discussion

This section highlights the challenges and critical findings from our experiments,
providing valuable insights into automated SC repair techniques.

Various investigations have been performed to rectify vulnerabilities, drawing upon a
diverse set of APR techniques, including search-based, constraint-based, template-based,
learning-based, and LLM-based methods. These frameworks take advantage of both
bytecode-level and source code-level rewriting methodologies. Strategies at the source
code-level provide the benefit of ensuring that patches remain human-readable, thereby
preserving all relevant information during the repair process. Nevertheless, the availability
of source code is not guaranteed at all times. Fixing bugs is generally simpler through
source code modifications than through bytecode-level strategies. Furthermore, bytecode
often fails to preserve crucial semantic details.

It seems that the methods currently available are insufficient, as they do not achieve
complete automation in detection and correction alongside safety assurances. In addition,
several existing tools are plagued by problems, including false-positive localization and
high gas expenditure. Furthermore, several of the tools that were utilized are not accessible
to the public, thus making it challenging to conduct comparisons and reproduce the
research outcomes. Moreover, various identified vulnerabilities have yet to be resolved,
and some existing patches do not sufficiently protect against the vulnerabilities they aim to
address. These limitations pose severe difficulties for real-world applications.

Techniques for APR based on LLMs have emerged as a leading area of research in
contemporary studies. The exclusive use of these methodologies has not yielded successful
outcomes in addressing vulnerabilities in SCs, according to the frameworks proposed
by Napoli and Gatteschi [58] and Ibba et al. [59]. Nevertheless, the ACFIX [61] and Two
Timin [60] paradigms reveal that LLMs can be improved through innovative methodologies.
Emphasis needs to be placed on primary concerns, particularly the simplicity of the patch
and the costs involved. Moreover, the existing automated SC repair techniques have largely
overlooked unknown vulnerabilities.

The focus of off-chain repair tools, including SCRepair, SGuard, SmartShield, and
EVMPatch, is to rectify SCs prior to their deployment. In contrast, on-chain repair tools,
such as Aroc, are utilized for addressing issues in contracts that have already been deployed.
Concerning the execution mechanism of SCs in blockchain, it is essential to take into
account two significant aspects: known vulnerabilities and unknown vulnerabilities. When
a vulnerability detection tool can identify unknown vulnerabilities, it is reasonable to use
off-chain repair tools. However, if it cannot detect these vulnerabilities, on-chain repair tools
are a more effective option. Our studies indicate that the majority of current vulnerability
detection and repair systems fail to tackle both tasks simultaneously. In other words,
most researchers apply the vulnerability detection tool discussed before in their suggested
structure. They then attempt to fix the vulnerability by offering a method for repair. A well-
structured system is likely to feature the following aspects: a machine learning-oriented
detection tool aimed at identifying both known and unknown vulnerabilities, as well as
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a repair mechanism that integrates off-chain and on-chain methodologies for addressing
these vulnerabilities. Moreover, given the developments in LLMs, it is becoming more
feasible to apply these methodologies in the context of off-chain repair tools.

8. Conclusions and Future Work

Recently, a notable increase in interest has been observed in the application of template-
based APR within SCs. However, LLM-based methodologies have introduced new prospects
in this field. This SLR conducted a search query to identify articles published from 2020 up
to 21 June 2024. Ultimately, we examined 31 articles published in peer-reviewed scientific re-
search databases, including IEEE, ACM, Springer, Wiley, ScienceDirect, and online archives.
The ongoing study did not encompass all existing studies. It excluded non-English articles,
editorials, book chapters, surveys, empirical studies, critical articles, technical reports, and
master’s theses from its scope.

We proposed a taxonomy for automated SC repair under five different perspec-
tives: search-based, constraint-based, template-based, learning-based, and LLM-based
approaches. Furthermore, we proposed a taxonomy that categorizes these methods accord-
ing to their patching levels, explicitly categorizing them into bytecode-based and source
code-based types. In addition, we scrutinized the specific types of vulnerability detection
tools that each automated repair framework employs.

The principal observations include the following: (1) Research on APR techniques
incorporating LLMs has become a leading focus in contemporary studies, with room for
improvement through innovative approaches. (2) The primary approach for correcting
buggy contracts is rewriting source code, which ensures that the resulting patches are
comprehensible to humans. (3) Conventional analysis tools are prevalent in automated
SC repair frameworks. (4) Existing automated techniques for SC repair have primarily
overlooked the issue of unknown vulnerabilities. (5) It is crucial to prioritize certain
desirable features, particularly the simplicity of the patch and the associated costs.

In conclusion, this research provides a foundation for scholars interested in advancing
automated SC repair frameworks. We suggest that several challenges are still available and
could be worth the attention of researchers. Thus, enhancing the security and reliability of
SCs may incentivize a larger cohort of businesses and individuals to integrate blockchain
technologies into their operational frameworks.

Scholars are encouraged to embrace hybrid models that effectively leverage LLM-
based APR and Self-Paced Learning (SPL) [62]. SPL is a training strategy that involves
training on simpler data first, followed by exposure to progressively more complex data.
This training technique can be employed during both the vulnerability detection phase and
fixing those vulnerabilities. This method has the potential to address the simplicity of the
patch and the associated costs.
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