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Abstract: In addressing the multifaceted problem of multiple-input multiple-output (MIMO) de-
tection in wireless communication systems, this work highlights the pressing need for enhanced
detection reliability under variable channel conditions and MIMO antenna configurations. We pro-
pose a novel method that sets a new standard for deep unfolding in MIMO detection by integrating
the iterative conjugate gradient method with Tikhonov regularization, combining the adaptability of
modern deep learning techniques with the robustness of classical regularization. Unlike conventional
techniques, our strategy treats the Tikhonov regularization parameter, as well as the step size and
search direction coefficients of the conjugate gradient (CG) method, as trainable parameters within the
deep learning framework. This enables dynamic adjustments based on varying channel conditions
and MIMO antenna configurations. Detection performance is significantly improved by the proposed
approach across a range of MIMO configurations and channel conditions, consistently achieving
lower bit error rate (BER) and normalized minimum mean square error (NMSE) compared to well-
known techniques like DetNet and CG. The proposed method has superior performance over CG and
other model-based methods, especially with a small number of iterations. Consequently, the simula-
tion results demonstrate the flexibility of the proposed approach, making it a viable choice for MIMO
systems with a range of antenna configurations, modulation orders, and different channel conditions.

Keywords: MIMO detection; Tikhonov regularization; conjugate gradient; deep learning;
wireless communication

1. Introduction

Multiple-input multiple-output (MIMO) systems are essential for enhancing spectral
efficiency in modern wireless networks. Spatial multiplexing in MIMO systems allows
for simultaneous transmission of multiple information streams across different antennas,
setting it apart from diversity systems that focus on reliability by transmitting identical
information. Achieving higher data rates through spatial multiplexing presents significant
challenges at the receiver, particularly in detection complexity and efficiency, which have
been the subject of research for over five decades, driving the evolution of MIMO detection
methodologies [1,2]. The core of MIMO detection involves decoding transmitted symbols
using known channel characteristics. While maximum likelihood (ML) detection minimizes
bit error rate (BER) optimally, it is computationally impractical for physical implementations
involving a large number of antennas. Therefore, alternative methods like sphere decoding
(SD), zero forcing (ZF), and linear minimum mean squared error (LMMSE) have been
developed for near-optimal performance with lower complexity [2]. There are also methods
such as Neumann series expansion (NSE), Gauss–Seidel (GS), and conjugate gradient (CG)
which utilize iterative matrix-vector multiplication to reduce system complexity [3–6]. Non-
linear MIMO detectors are useful in reducing interference for subsequent signals, though
errors in interference signals can degrade detection efficacy [7]. Advanced approaches,
such as the Belief Propagation (BP) algorithm [8], are effective for high number of antennas
and low inter-channel correlation, but may introduce delays and degrade performance in
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fading channels due to their iterative nature. Therefore, developing a detection strategy
that achieves high reliability without requiring excessive amounts of decoding time is one
of the major challenges in MIMO systems [9].

In addition to conventional methods discussed above, recent studies have explored
both model-driven and data-driven deep learning approaches [10]. Model-driven techniques
enhance iterative algorithms like orthogonal approximate message passing (OAMP) [11],
alternating direction method of multipliers (ADMM) [12], Viterbi [13], and expectation propa-
gation [14]. Data-driven solutions use deep learning architectures such as autoencoders [15],
deep neural networks (DNNs), and convolutional neural networks (CNNs) [16] for high
detection accuracy. These deep learning (DL)-based MIMO detection methods outperform
traditional detectors under various channel conditions. Although there are studies that dis-
cuss model-driven and data-driven approaches either separately or together, the increasing
amount of data in new communication systems increasingly favors model-driven methods.
Unsupervised deep learning techniques, such as autoencoders, can be used to learn the entire
system for MIMO detection, as demonstrated in data-driven MIMO detection [15]. In addi-
tion, DetNet uses a model-driven approach to detection using iterative projected gradient
descent [17]. Data-driven methods for MIMO detection in fixed-channel scenarios utilize
CNNs and DNNs [16]. Another approach uses conventional deep learning network topologies
for signal detection in MIMO systems with erroneous channels [18], while another study
employs neural networks to identify decision zones for multi-user MIMO systems [19].

Deep unfolding (DU) algorithms, also known as model-driven deep learning meth-
ods, constitute a transformative approach that combines classical iterative methods with
the adaptive capabilities of neural networks, and are a common solution for MIMO de-
tection [20,21]. By structuring known iterative algorithms into neural network layers,
each iteration treated is treated as a layer [22] that allows parameters to be trained via
backpropagation rather than updated deterministically in a traditional way. This leads
to improved solutions by incorporating additional or modified parameters to capture
features that classical methods may miss [23]. Unlike traditional methods, the network
can generalize to new inputs after training on different data sets, eliminating the need to
recalculate parameters for each system change. This approach builds neural network layers
over multiple iterations using advanced learning techniques to achieve unprecedented re-
sults [20,24–26]. Various deep unfolding-based algorithms for MIMO channel detection are
reported, including trainable projected gradient detectors [27] and the conjugate gradient
descent technique [28,29], with other alternative approaches in [11,12,30]. Despite these
developments, there is still a significant research gap in improving these approaches, espe-
cially when it comes to dealing with the complexity and variability of harsh situations. This
emphasizes the need for further advances in this area and the usefulness of the proposed
approach in improving MIMO detection technology.

The deep unfolding approach also offers significant advantages in computational
efficiency and hardware implementation [26]. This method is particularly beneficial for
physical applications with hardware constraints and operational efficiency requirements.
By predetermining the neural network’s structure to mimic specific algorithm iterations,
it reduces the need for extensive training data and computational resources, addressing
major challenges faced by traditional DNNs.

This study presents a significant advance in the field of MIMO signal detection by
introducing a unique detection strategy that combines Tikhonov regularization and CG
method with deep unfolding. Detection of transmitted symbols over a multipath fading
channel is considered as an ill-conditioned problem [31] that may result in slower or even
a non-existent convergence. Using the matrix L as a regularization term enhances the
detection process in CG-based detection methods by resolving the input signal while
effectively suppressing the degrading effects. Thus, the regularization allows for significant
improvements in detection performance over conventional methods for different channel
conditions and antenna layouts.

The main contributions of this study are summarized below:
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1. To the best knowledge of the authors, this is the first study where Tikhonov regular-
ization is integrated with the conjugate gradient method for MIMO detection in a
deep learning-based approach.

2. Performance of the proposed method has been compared with both iterative and
model-driven techniques for different channel models such as Rayleigh, Kronecker,
Tapped Delay Line A (TDL-A), and TDL-E.

The remaining sections of this study are organized as follows: Section 2 presents the
relevant work and subjects. Section 3 provides a thorough explanation of the proposed
approach. A comprehensive analysis of computational complexity is provided in Section 4.
The simulation results are given in Sections 5 and 6, and conclusions are drawn and
suggestions for further work are explored.

2. Materials and Methods
2.1. MIMO System Model

In this study, we investigate a MIMO system utilizing spatial multiplexing, wherein
the receiver antennas concurrently receive symbols transmitted from the transmitter. The
system comprises Nr receiving antennas and Nt transmitting antennas as shown in Figure 1.
The received symbols, denoted as yNr , at the receiver side can be expressed as follows:

y1
y2
...

yNr

 =

 h1,1 . . . h1,Nt
... . . .

...
hNr ,1 . . . hNr ,Nt




x1
x2
...

xNt

+


n1

n2
...

nNr

 (1)
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Figure 1. Simplified block diagram of a MIMO system.

In aforementioned Equation (1), hNr ,Nt denotes the entries of the channel matrix
corresponding to the communication link between the Nt-th transmitter antenna and the
Nr-th receiver antenna. The term nNr signifies the additive white Gaussian noise (AWGN)
present at the Nr-th receiver antenna, characterized by zero mean and variance σ2. xNt ,
yNr , nNr represent complex-valued numbers, and hNr ,Nt signifies a complex-valued channel
which is assumed to exhibit flat Rayleigh fading, with the channel entries, hNr ,Nt , being
independently and identically distributed (i.i.d.) with zero mean and unit variance.
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The matrix H and the vectors y, x, n have complex values, due to the necessity of using
real numbers in the deep learning structure, and the MIMO channel model is expressed as
follows for the simulation environment within the scope of the study:

yr = Hrxr + nr

yr =

[
Re(y)
Im(y)

]
∈ R2Nr x1

xr =

[
Re(x)
Im(x)

]
∈ R2Ntx1

Hr =

[
Re(H)
Im(H)

−Im(H)
Re(H)

]
∈ R2Nr x2Nt

(2)

The MIMO system’s simplified block diagram is shown in Figure 1. Multiple antennas
are used in this system, both at the transmitter and receiver ends.

The numerous signal routes between the antennas are depicted in Figure 1 by con-
necting each transmitting antenna to each receiving antenna. Through the use of spatial
diversity and the ability to transmit many data streams at once, this arrangement im-
proves the capacity and dependability of the system. The intricate interaction and signal
propagation in a MIMO system are highlighted by the dotted lines.

2.2. MIMO Channel Model

MIMO channels are critical to today’s modern communication systems. These systems
can significantly improve transmission rate, reliability, and spectrum efficiency by using
multiple antennas at both the transmitter and receiver. Each element in the matrix char-
acterizing the MIMO channel represents the channel coefficient between a given pair of
transmitting and receiving antennas. The effects of multipath propagation are well captured
by this matrix, which is important for understanding and improving the functionality of
advanced communication networks. A Rayleigh channel in MIMO systems is a model in
which Rayleigh fading affects the channel coefficients. This phenomenon happens when
there is no direct line-of-sight path and multipath propagation, causing changes in the
signal’s magnitude. Usually, the model for each element of the MIMO channel matrix
H is an independent, identically distributed (i.i.d.) complex Gaussian random variable
with unit variance and zero mean. A mathematical framework used in MIMO systems to
make it easier to characterize spatial correlations between antennas at the transmitter and
receiver is called the Kronecker channel model [32]. According to the model, transmitter
and receiver correlation matrices at each end correspond to separable correlation structures
that can be formed from the overall channel matrix. The mathematical expression for this
model is as follows:

H = R1/2
r HwR1/2

t (3)

where R1/2
r and R1/2

t are the Cholesky decompositions of the receiver and transmitter
correlation matrices, respectively, and Hw is an uncorrelated Rayleigh fading matrix.

In fifth-generation (5G) cellular systems, TDL (Tapped Delay Line) channel models—
such as TDL-A and TDL-E—defined by 3GPP simulate multipath propagation [33]. The
TDL-A channel model uses a Tapped Delay Line structure to simulate realistic time-varying
and frequency-selective scenarios. The taps represent discrete paths with unique delays and
power levels. The TDL-A model, which is widely used to simulate urban environments, pre-
calculates the channel impulse response to facilitate the assessment of system performance
in terms of signal fading and inter-symbol interference (ISI). The channel model holds great
significance in the advancement and assessment of 5G technologies, including massive
MIMO and beamforming. It offers valuable perspectives for enhancing communication
protocols and algorithms, hence guaranteeing reliable performance in practical situations.
As such, the TDL-A paradigm plays an important role in the design and implementation of
high-performance 5G networks. On the other hand, the TDL-E channel model is particularly
well known for its severe multipath conditions, which represent difficult time-varying
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and frequency-selective scenarios. These conditions include extended delay spreads and
large Doppler shifts. The TDL-E model provides a realistic simulation of harsh urban and
suburban environments.

2.3. A Summary of MIMO Detection Methods

MIMO detection methods are simply classified into two categories as linear and non-
linear methods, where non-linear methods consist of non-iterative, iterative, and deep
learning approaches. Additionally, deep learning-based methods encompass both data-
driven and deep-unfolded methodologies also called as model-driven. Within this section,
we will only discuss the detection methods that are in the focus of this study, CG and
learned CG methods, which are classified as iterative and model-driven deep learning
methods, respectively. Details of the other well-known methods such as ML, MMSE, Sphere
Decoder, and DetNet can be found in [16,34–36]. The conjugate gradient (CG) method,
introduced by Hestenes and Stiefel in 1952 [37], is an iterative algorithm for solving systems
of linear equations. CG as an iterative method is particularly useful in situations where
direct methods are infeasible due to the large dimensions of the matrices involved. The CG
method, summarized in Algorithm 1, provides an efficient and robust solution for signal
detection in MIMO systems.

Algorithm 1: MIMO Detection with CG

Inputs: y, H, δ2

Output: Transmitted signal vector estimation ŝ
1: Initialization:
A = HHH + δ2INT , b = HHy
x0 = 0, r0 = b, p0 = r0
2: for i = 0, . . ., K do
3: αi = rT

i ri/pT
i Api

4: xi+1 = xi + αipi
5: ri+1 = ri − αiApi
6: βi = rT

i+1ri+1/rT
i ri

7: pi+1 = ri+1 − βipi
8: end for
9: return ŝ = xi+1

The CG method starts with the provided inputs, the channel matrix H, the noise
variance δ2, and the received signal y, and the algorithm initializes the relevant matrix
and vectors. The search direction vector pi, the residual vector ri, and the solution vector
xi are set first. At each iteration, the solution vector is updated by calculating the step
size α, which indicates how far to go in the current search direction. The new solution
estimate is then reflected in the residual vector. The algorithm determines a coefficient, β,
which modifies the search direction to maintain efficiency in subsequent iterations. This
iterative process continues until the desired number of iterations is reached or the solution
is sufficiently accurate.

Deep learning can also be applied to MIMO detection methods. Thus, employing the
deep unfolding technique on iterative detection procedures provides faster convergence
and higher generalization within modeled behaviors and requires less training data in
iterative detection procedures. Incorporating deep learning techniques to adaptively find
the optimal parameters during iterations ensures that the learned conjugate gradient
method (LCG) [28] has higher performance over the traditional CG method. The LCG
method, shown in Figure 2, alters the conjugate gradient algorithm by making the step size
and search direction coefficient parameters, denoted by α and β, respectively, modifiable
through training instead of mathematically calculating them on the relevant data sets. The
method can now adaptively adjust its step sizes and directions, which enhances detection
performance in MIMO systems and facilitates more effective convergence. The limitations
of fixed-parameter approaches can be overcome by LCG through the utilization of data-
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driven insights, thereby providing a robust foundation for the management of the complex
and variable conditions of wireless communication channels. As explained in detail in [28],
two types of LCG approaches are introduced, namely scalar, LCG-S, and vector, LCG-V.
Scalar trainable parameters α and β are used by LCG-S. By eliminating the requirement for
matrix-vector multiplications and divisions, these scalar parameters simplify computations.
Alternatively, vector trainable parameters αi and βi are used by LCG-V. These vector
step sizes improve detection performance by allowing LCG-V to learn and adapt more
effectively to the data characteristics. It is highlighted in the work [28] that LCG-V requires
storing more parameters, even though its computational complexity is almost the same as
that of LCG-S for its operations.
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3. Proposed Method

Tikhonov regularization, also known as ridge regularization, is a method which inserts
a regularization term to the solution for solving ill-posed problems or preventing overfitting
in linear regression. Penalizing the magnitude of the coefficients in the loss function we
are attempting to minimize is the core idea behind Tikhonov regularization. In its simplest
form, Tikhonov regularization penalizes solutions with large magnitudes by adding a
regularization term to the objective function to be reduced [38]. The solution is more
resilient to varying conditions thanks to this regularization term. Several applications in
engineering and physics lead to the following types of linear least-squares problems:

min xi+1 ∈ Rd2 ∥Axi+1 − bδ∥, AϵRd1xd2 , bδϵRd1 (4)

Matrix A is of ill-determined rank, that is, its singular values gradually decay to zero
without a noticeable gap, and the measured data, tainted by an unknown error e ϵ Rd1

of norm constrained by δ > 0, are represented by bδ. The matrix A ϵ Rd1xd2 has d1 rows
representing the number of measurements and d2 columns corresponding to the number
of unknowns or variables, which are the components of the vector xi+1. Least-squares
problems, also referred to as discrete ill-posed problems, require this kind of matrix. An
exact approximation of the minimal norm solution x+ = A+b for the error-free least-
squares problem associated with (4) is sought after. A+ represents the pseudoinverse of
Moore–Penrose in this case. Due to the error in bδ and the clustering of A’s singular values
near the origin, the solution A+bδ of (4) is usually not a reasonable approximation of x+.
Changing the minimization problem to a nearby problem whose solution is less vulnerable
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to the error in bδ is one method to overcome this problem (4). This substitution is sometimes
referred to as regularization.

min xi+1 ∈ Rd2
{
∥Axi+1 − bδ∥2

+ λ∥xi+1 − xi∥2
}

(5)

The regularization parameter λ > 0 in this case controls how sensitive the solution
of (5) is to the error e in bδ as well as how near the solution is to the target vector x+.
It is generally known that by substituting an appropriate regularization matrix for the
Tikhonov minimization problem (5), it is frequently possible to increase the quality of the
x+ approximation determined by Tikhonov regularization L.

min xi+1 ∈ Rd2
{
∥Axi+1 − bδ∥2

+ λ∥L(xi+1 − xi)∥2
}

(6)

where the regularization matrix L ϵ Rd3xd2 typically has dimensions such that d3 may vary
depending on the specific regularization approach, although it is often equal to d2 in the
case of square matrices.

The regularization matrix L encodes the extra restrictions or previous knowledge
about the solution x in (6), and λ is a regularization parameter that governs the trade-off
between fitting the data and meeting the regularization term. The process of choosing the
regularization matrix L and regularization parameter λ, which requires domain expertise
and careful tuning, is critical to obtaining precise and reliable solutions to ill-posed inverse
problems. The matrix L is typically an N × N matrix, where N represents the number
of unknown variables, whereas parameter λ is usually a constant scalar. Basically, there
are two main approaches for selecting the regularization matrix L. The first one is the
non-derivative method which forms L as L = DVT . Here, VT is derived from the singular
value decomposition (SVD) of matrix A, and D is a diagonal matrix of singular values.
The latter one is the derivative-based method that uses first- or second-order derivative
operators to construct L. An interested reader should refer to [38,39] for the details.

3.1. Deep-Unfolded Tikhonov-Regularized Conjugate Gradient Algorithm

We utilize Tikhonov regularization in the CG algorithm with deep unfolding to im-
prove performance on different types of channels, addressing issues such as noise sensitivity
and ensuring convergence in high-dimensional MIMO systems. The CG technique effec-
tively tackles the complexity of high-dimensional MIMO systems, improving performance
and signal estimates when paired with Tikhonov regularization. When incorporated into
model-driven MIMO detection frameworks such as LCG, Tikhonov regularization appears
to be an effective method for improving robustness and performance. This method involves
adding a term L to the system matrix in the context of MIMO detection. In this work, the
proposed method is dynamically adjusting the detection strength by the model during
training thanks to the trainable parameter regularization matrix L, alpha, and beta. It
is noteworthy that, unlike the original Tikhonov regularization approach shown in (6),
which represents the parameters λ and L individually, our proposed method combines
them into a single matrix L, which is the product of the scalar λ and the matrix L. By
treating the multiplication of these elements as a single matrix, the network streamlines
the computation and improves the flexibility of the model for different channel conditions.
The pseudocode of the proposed method is shown in Algorithm 2.

The DU-TCG algorithm enhances the CG method with deep unfolding by incorpo-
rating Tikhonov regularization and an optimization step using trainable parameters α, β,
and L. These parameters are optimized with an Adam optimizer [40,41] during each itera-
tion to minimize the loss function, playing crucial roles in updating the residual, refining
the search direction, and applying regularization. The algorithm begins by initializing
matrices and vectors as in the standard CG method. The parameters α and β are initially
set to 0, while the L matrix is initialized as an identity matrix of size NT × NT . In each
iteration, the residual ri is updated with α, and the search direction pi is refined with β. A
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new solution estimate
∼
x is computed using Tikhonov regularization matrix L, with a loss

function measuring the difference between
∼
x and xi. The process iteratively refines the

solution by updating trainable parameters until the final transmitted signal vector estimate
ŝ is obtained. The iterations of the Tikhonov-regularized CG algorithm are unrolled to
create the proposed Deep-Unfolded Tikhonov-Regularized Conjugate Gradient (DU-TCG),
a deep learning architecture in which each layer is associated with an algorithm iteration as
shown in Figure 3.

Algorithm 2: Deep-Unfolded Tikhonov-Regularized Conjugate Gradient Algorithm

Inputs: y, H, δ2

Output: Transmitted signal vector estimation ŝ
1: Initialization:
A = HHH + δ2INT , b = HHy
x0 = 0, r0 = b, p0 = r0
2: for i = 0, . . ., K do
3: ri+1 = ri − αiApi
4: pi+1 = ri+1 − βipi

5:
∼
x = xi +

[(
HHH + L

)−1 ∗
(
HH ∗ (y − Hxi)

)]
6: loss = 1

NT
∥∼x − x∥

2

7: train: AdamOptimizer(minimize(loss), parameters{α,β,L})
8: xi+1 =

∼
x + αipi

9: end for
10: return ŝ = xi+1
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3:     𝒓𝒊ା𝟏 = 𝒓𝒊 − 𝜶𝒊𝑨𝒑𝒊 
4:     𝒑𝒊ା𝟏 = 𝒓𝒊ା𝟏 − 𝜷𝒊𝒑𝒊 
5:     𝒙 = 𝒙𝒊 + [(𝑯𝑯𝑯 + 𝑳)ି𝟏 ∗ (𝑯𝑯 ∗ (𝒚 − 𝑯𝒙𝒊))] 
6:     𝒍𝒐𝒔𝒔 =  𝟏𝑵𝑻  ‖𝒙 − 𝒙‖𝟐 

7:     train: AdamOptimizer(minimize(loss), parameters{α,β,L}) 
8:     𝒙𝒊ା𝟏 = 𝒙 + 𝜶𝒊𝒑𝒊 
9:   end for 
10: return 𝒔ො = 𝒙𝒊ା𝟏 
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Figure 3. DU-TCG algorithm in ith layer.

Using this method, the model can be trained to find the best parameters for improved
performance in a range of channel situations. Along with the α and β parameters, the
DU-TCG algorithm adds a new trainable parameter called the regularization, L, which is
in matrix form. This combination allows for dynamic modification of the regularization
strength during training and simplifies computation as it is processed by the network as a
single matrix.

To guide the training process, DU-TCG’s loss function is designed to assess the differ-
ence between the transmitted signal and the predicted output. For this purpose, the mean
squared error (MSE) loss function is used as shown in Algorithm 2. The mean squared
difference between the expected and actual values is quantified by the MSE loss function,
giving the network a specific target to minimize during training. The network increases
the resilience and accuracy of detection by iteratively updating the parameters α, β, and
L to minimize this loss. The ith iteration of the CG algorithm corresponds to the ith layer
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of DU-TCG detector. The layer-dependent trainable parameters of the DU-TCG detector
is represented with θi =

{
αi, βi, Li} in the i-th layer of the network and α and β step size,

search direction coefficient, and L regularization matrix are learnt from training samples
{(y, H), x}NT

t=1 by minimizing mean square error as shown:

LK
DU−TCG

(
θ1, . . . , θK

)
=

1
NT

∑Nt
t=1 ∥x − x̂K

(
y, H; θ1, . . . , θK

)
∥

2
(7)

K denotes the number of layers, and x̂K(y, H; θ1, . . . , θK) denotes the output of DU-
TCG with y and H inputs.

3.2. Training Details

The TensorFlow (version 2.6.2) library with the Adam optimizer was used to create
the proposed DU-TCG network in Python (version 3.6.13), and channel matrices were
generated using MATLAB R2021a. The test and training data sets, {(ym, Hm), xm}train_data

m=1
and {(yn, Hn), xn}test_data

m=1 , were created randomly based on Equation (2) with different
noise levels. The transmitted symbols, x, were selected from modulation schemes such
as BPSK, 16-QAM, 64-QAM, and 256-QAM. Various channel models, including the Kro-
necker channel [28], Rayleigh fading channel, and TDL-A and TDL-E MIMO channels [29],
employ different random generators for their channel matrices. The training process uses
5 × 104 samples with an SNR of 25 dB. In deep-unfolded MIMO detection, training with
high SNR values is usually preferred to provide a better model tuning. For instance,
refs. [28,42] have shown that higher SNR values provide a clearer signal, which allows
the model to learn more effectively. Additionally, refs. [43,44] have stated that training at
lower SNR levels can even degrade model performance. All trainable parameters were
initially set to zero. Subsequently, 5 × 105 samples were used for training with SNR values
ranging from 0 to 20 dB, incremented by 2 dB. This wider range of SNR values allows
a comprehensive evaluation of the detector’s performance. The learning rate was first
set to 10−3 and was fine-tuned by halving it after each epoch, so that the detection is
more robust. The average loss’s point of discontinuity determines the stopping criterion.
Also, to ensure a fair comparison under identical conditions, the number of layers used in
deep-unfolded methods was chosen as the same. The number of layers used for Rayleigh
channel was selected as 5, while 15 layers were used in other channel models to adapt to
challenging channel conditions. The training method is computationally efficient, taking
about two hours on a normal Intel i7-7500U processor, because the model has just three
trainable parameters and works well with a small number of layers. It is anticipated that
the training time will rise in proportion to larger MIMO systems or models with more
trainable parameters.

4. Complexity Analysis

As in many other applications, the use of deep learning approaches in wireless com-
munication systems presents significant challenges in terms of computational complexity.
The CG and LCG methods have complexities of O

(
K
(
8N2

t + 14Nt + 8
))

+ 2KRDiv and
O
(
K
(
4N2

t + 6Nt + 8
))

, respectively, where K is the number of layers, and RDiv is one real
division, assuming that one complex multiplication is four real multiplications and one
complex division is four real multiplications plus one real division [28]. Computational
complexity of the DU-TCG algorithm, O

(
K
(
8N3

t + 12N2
t + 6Nt

))
, has a higher complexity

than that of the CG and LCG. The proposed DU-TCG method exhibits a computational com-
plexity of O

(
N3

t
)

per iteration, primarily due to the matrix inversion operations involved
in each iteration. However, the increased detection complexity improves the detection
performance of DU-TCG compared to that of CG and LCG.
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5. Simulation Results

Within this section, several MIMO layouts over different channel conditions and
modulation orders are discussed to demonstrate the performance of the proposed DU-TCG
detection method. In particular, the simulation results highlight the detection performance
improvement of the DU-TCG over well-known approaches such as the MMSE, CG, and
LCG. Unless otherwise stated, BPSK modulation is used for the sake of simplicity, as it
allows a straightforward evaluation of the behavior of the algorithm and a demonstration
of its core performance. Bit error rate (BER) and normalized mean square error (NMSE)
metrics are employed to illustrate the superiority of the proposed method over the discussed
other methods.

Figure 4 compares the BER performance of the proposed DU-TCG method with other
methods, namely MMSE, CG, LCG, and ideal ML detector over a Rayleigh fading channel
for a BPSK modulated 10 × 10 MIMO system.
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Figure 4 shows that although the ML detector offers the lowest bit error rates, the
proposed DU-TCG can perform better than other gradient-based techniques such as CG,
and LCG and traditional MMSE, which makes it a promising candidate for practical
applications. The proposed DU-TCG method has approximately 4 dB SNR gain over CG
and LCG methods at BER values of 10−3. In Figure 4, all methods except ML have poor
BER performance at low SNR values as expected. Unlike ML, iterative methods are more
affected by low SNR values during the initial iterations, leading to suboptimal results.

Figure 5 shows that the proposed DU-TCG method outperforms CG and LCG for
different number of layers in the 10 × 10 MIMO layout.

As shown in Figure 5, DU-TCG exhibits better BER performance with both 5 and
15 layers, compared to the CG and LCG methods. Although the performance of the CG
and LCG improves when the number of layers is increased by 3 times, DU-TCG still
outperforms these methods. However, as the complexity of the system is directly related
by the number of layers, the results show that DU-TCG is a better candidate in terms of
system cost.

Besides the conventional MIMO scheme and channel models discussed above, in
Figure 6, we also compare the performance of DU-TCG with Kronecker, TDL-A, and TDL-E
channel models for the 32 × 64 MIMO scheme with BPSK modulation. Since the channel
conditions are challenging, 15 layers are used here in the training process.
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For Kronecker, TDL-A, and TDL-E channel models, both the proposed DU-TCG and
existing LCG methods do not have a sufficient detection performance. However, DU-
TCG still outperforms the LCG for all three channel models. DU-TCG has employed
the benefit of Tikhonov regularization’s superiority for the ill-posed problems, and DU-
TCG’s sophisticated regularization mechanism significantly improves the detection process
compared to the LCG method.

Figure 7 presents the BER performance of CG, LCG, and the proposed DU-TCG
methods for BPSK and QAM16 modulation types for a 32 × 128 MIMO layout in TDL-
A channel.

It is well known that the performance of iterative detection methods increases sig-
nificantly when the number of receiving antennas is much greater than the number of
transmitting antennas, and this effect is reflected in our simulation results using the DU-
TCG, LCG, and CG methods. Figure 7 shows the results of the system with such a MIMO
structure. The detection performance of LCG is close to DU-TCG for lower-order modu-



Electronics 2024, 13, 3945 12 of 17

lations in a difficult channel condition such as TDL-A, while DU-TCG outperforms LCG
for a higher-order modulation. The figure demonstrates that the BER of DU-TCG is up to
1.2 times better than LCG when using BPSK modulation under TDL-A fading and up to
8.3 times better when using 16-QAM modulation. The superior performance of DU-TCG
for difficult conditions such as high-order modulation systems suggests that integrating a
regularization term into a deep-unfolded method will help convergence stability and hence
improve detection performance.
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Additionally, in the simulation results presented above, the BER values are limited to
10−4, as in similar studies utilizing deep unfolding methods in the literature [45,46]. Achiev-
ing lower BER values in the simulation environment, particularly for deep-unfolding-based
methods, usually requires considerably longer simulation times and higher computational
resources, which is impractical for our current computing environment. Nevertheless,
we conducted an extensive simulation to achieve lower BER values, and the results are
presented in Figure 8, which illustrates the BER performance of the LCG and DU-TCG
techniques for 64-QAM and 256-QAM modulations in a 32 × 64 MIMO system under
Rayleigh fading conditions.

The detection performance of higher-order modulation schemes, such as 64-QAM and
256-QAM, as shown in Figure 8, demonstrates that the proposed DU-TCG method retains
its superior performance even with more complex modulation formats, which are widely
used in sub-6 GHz 5G communication systems [45,47]. In contrast, other deep unfolding
techniques, such as in [19,28,29,42], may show a degradation in detection performance as
the modulation order increases.

In Figure 9, we compare the detection performance of the proposed DU-TCG method
with DetNet over a 32 × 64 MIMO layout.

For the 32 × 64 configuration, DU-TCG’s BER remains up to nine times lower than Det-
Net’s, demonstrating its strong performance even at higher antenna counts. While the num-
ber of trainable parameters in DetNet is eight for each layer,
θDetNet = {W 1l , b1l , W2l , b2l , W3l , b1l , δ1l , δ2l}, it is three for the proposed DU-TCG method,
θDU−TCG = {α l , βl , Ll}. DetNet has a large number of trainable parameters, which can
increase computational complexity and resource requirements. These results highlight the
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usefulness of DU-TCG, providing better performance without excessive computational
cost.
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The NMSE performance of the proposed DU-TCG and LCG methods, shown in
logarithmic scale, for scalar and vector parameterization, is illustrated in Figure 10 for a
32 × 64 MIMO layout.

Figure 10 is one of the most important pieces of evidence showing the superiority
of using Tikhonov regularization as DU-TCG has lower NMSE values in both scalar and
vector parameterization cases. As the simulation results show, in the case of scalar parame-
terization, the NMSE decreases with increasing SNR values for both DU-TCG and LCG
methods, which indicates that the signal detection performance of the system increases.
On the other hand, in the case of vector parameterization, the increase in SNR values for
LCG does not affect the NMSE values after a point, while the NMSE value of the proposed
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DU-TCG continues to decrease. This shows that the performance of the LCG in complex
situations remains constant after a certain level and cannot learn effectively. In addition,
the NMSE values for vector parameterization approaches are much smaller than those
for scalar parametrization, indicating improved detection performance. Therefore, in case
of vector parameterization, the effect of regularization on NMSE performance is higher,
resulting in better BER performance.
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After discussing the effect of scalar or parameterization techniques on the model-
driven approaches above, we will show the impact of the same techniques on BER values
in Figure 11.
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In terms of BER values, in scalar parameterization, DU-TCG and LCG have similar
detection performance. Additionally, LCG-V outperforms the DU-TCG-S. However, when
we employ the vector parameterization with Tikhonov regularization in DU-TCG, more
than 1 dB SNR gain is achieved at the 10−3 BER value compared to LCG-V.

6. Discussion

In this study, unlike traditional techniques, a method was proposed that integrates
the iterative conjugate gradient method with Tikhonov regularization. The regularization
matrix, step size, and search direction coefficients were used as trainable parameters in a
deep unfolding approach. Extensive simulation results that demonstrate the superiority of
the proposed method over existing methods were presented.

The results of this study clearly demonstrate that the proposed method, DU-TCG,
is an improved detection strategy for MIMO systems, outperforming both state-of-the-
art deep learning techniques such as DetNet and LCG, as well as traditional approaches
such as MMSE and CG. Combining the conjugate gradient method with the Tikhonov
regularization approach in a deep learning framework successfully reduces the degrading
effects of channel conditions and higher-order modulation.

The scalability of DU-TCG is demonstrated by its consistent performance in both large
(32 × 128) and small (10 × 10) MIMO systems, providing broad applicability to MIMO
configurations of varying size and complexity. Additionally, the better performance of
the DU-TCG is also shown under various channel conditions such as Kronecker, TDL-A,
and TDL-E channel models, which are widely used in advanced communication systems.
This research also reveals that DU-TCG surpasses DetNet in a 32 × 64 MIMO layout
when system complexity increases. Simulation results also show that the proposed method
provides up to 4 dB SNR gain compared to CG with considerably less iterations. In addition,
DU-TCG stays ahead of CG and LCG as the number of layers increase, even surpassing
LCG’s high-layer performance with fewer layers. Ultimately, as compared to the vector
parameterization of LCG, the NMSE and BER performances of DU-TCG are superior. For
both scalar and vector parameterization, DU-TCG decreased the NMSE values.

This work combines Tikhonov regularization and the CG technique with deep unfold-
ing, which significantly improves MIMO signal detection under various MIMO layouts,
modulation orders, and channel conditions. The proposed method inserts a regularization
term to the system, which improves the stability and generality of the solution. In partic-
ular, when there are noisy or imperfect data conditions, this regularization helps the CG
converge more consistently. Thus, the approach efficiently handles the complexity present
in high-dimensional MIMO systems while iteratively improving its signal estimates.

Consequently, this study highlights the advantages of the proposed DU-TCG method
for MIMO detection over different scenarios. As a future work, combining Tikhonov
regularization with other iterative detection algorithms for MIMO systems may be consid-
ered. Additionally, reducing computational complexity of model-driven approaches is also
another challenge that needs to be discussed in the area of deep-unfolded algorithms.
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