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Abstract: Most real-world super-resolution methods require synthetic image pairs for training.
However, the frequency domain gap between synthetic images and real-world images leads to
artifacts and blurred reconstructions. This work points out that the main reason for the frequency
domain gap is that aliasing exists in real-world images, but the degradation model used to generate
synthetic images ignores the impact of aliasing on images. Therefore, a method is proposed in this
work to assess aliasing in images undergoing unknown degradation by measuring the distance
to their alias-free counterparts. Leveraging this assessment, a domain-translation framework is
introduced to learn degradation from high-resolution to low-resolution images. The proposed
framework employs a frequency-domain branch and loss function to generate synthetic images with
aliasing features. Experiments validate that the proposed domain-translation framework enhances
the visual quality and quantitative results compared to existing super-resolution models across
diverse real-world image benchmarks. In summary, this work offers a practical solution to the
real-world super-resolution problem by minimizing the frequency domain gap between synthetic
and real-world images.

Keywords: super-resolution; real-world; domain-translation

1. Introduction

Single-image super-resolution (SR) aims to enhance the quality of low-resolution images
by reconstructing them into high-resolution counterparts. Learning-based methods [1–10],
such as SRCNN [1], VDSR [2], LapSRN [3], RCAN [4], SRGAN [5], and ESRGAN [6],
have made significant advancements in achieving impressive results. Typically, these
methods require pairs of high-resolution (HR) and low-resolution (LR) images for training.
However, acquiring such HR–LR image pairs for real-world scenarios proves challenging.
Even if obtained through methods like optical zoom [11–16], they fail to address issues
stemming from differences in depth of field, illumination, and perspective [17]. These
disparities impact the performance of end-to-end learning models and result in blurry SR
outcomes [17]. Moreover, these methods are constrained by limited degradation diversity,
making it challenging to apply them effectively to various scenarios with differing degra-
dation distributions. As a result, their adoption remains limited, primarily due to issues
related to misalignment and a lack of adaptability.

Considering that there are currently many widely used HR datasets [18–22], a practical
approach for real-world SR involves creating LR images from HR images by using a
degradation model. This process leads to the formation of HR–LR image pairs, which can
serve as the training dataset. Some methods [1–6] use HR images and LR images generated
by blurring and downsampling to train SR models. When real-world images are taken as
input, SR results are disturbed by severe artifacts and noise. This is due to the mismatch
between the degradation model and the real-world degradation process. Some recent
methods extend the classical degradation model through random strategies, or recombine
steps such as blur, downsampling, and noise [23–26]. These methods greatly expand
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the range of degradation distributions covered and are able to deal with more complex
degradation scenarios. However, at the cost of improved generalization capabilities, these
methods lack detail-recovery capabilities and tend to produce over-smoothed results.
Furthermore, these predefined, constrained degradation steps often prove inadequate for
covering the complexity of degradation in real-world images.

Since the degradation processes in the real world are complex and diverse, domain-
translation-based methods are proposed to adaptively learn degradation models for images
with different degradation distributions [27]. The reference HR image is considered to
be from the source domain, while the real-world LR image is considered to be from the
target domain. The degradation model is considered to be the domain-translation process
from the source domain to the target domain. Since the image contents in the reference
HR and real-world LR are not directly consistent, the translation process from the source
domain to the target domain is learned under an adversarial training framework [28] to
generate synthetic LR images that conform to the degradation distribution of the target
domain. Then, image pairs consisting of HR and synthetic LR images can be used to train
the SR model in a supervised learning manner. KernelGAN [29] first generates LR images
from HR using a deep linear generator. Bulat et al. [30] used a generator with an encoder–
decoder structure for the domain-translation task. The CycleGAN [31] architecture for
image-to-image translation is also used to learn domain translation from HR to LR images,
as well as LR to HR images [32–34]. In this framework, the degradation process and the
SR model are jointly trained, and cycle consistency loss ensures that the content of the
image does not change during the degradation and SR processes. To facilitate integration
with more advanced SR methods, more methods train the degradation and SR processes
separately [17,30,35–40]. Zhou et al. [37] proposed a color-guided domain-mapping net-
work to alleviate color shift in domain-translation processes. Luo et al. [38] proposed a
probabilistic degradation model, which studies the degradation process by modeling it as a
random variable and covers more diverse degradation distributions. Son et al. [40] pro-
posed an adaptive data loss to allow the downsampler to adaptively learn the degradation
process of real-world images. These learning-based methods can learn the degradation
process of real-world images to generate LR images with smaller gaps from the real-world
domain, thereby training SR models that can restore better image reconstruction quality.

However, these methods are all based on classical degradation models, focusing
on establishing accurate spatial blur kernels and noise, without paying attention to the
frequency-domain gap between synthetic LR images and real-world LR images. The
frequency distributions between the synthetic LR image and the real-world LR image
show obvious differences [27]. Ji et al. [39] focused on the frequency-domain features of
synthetic images and used a frequency-consistent adaptation to construct images that were
consistent with real-world images. However, when the image contents are inconsistent, it
is inappropriate for the frequenc- consistent adaptation to directly compare their frequency
spectral densities. Furthermore, this frequency domain consistency adaptation method
does not point out the reason for the frequency-domain gap between synthetic images and
real-world images, and adopts an indiscriminate comparison of densities at all frequencies.

This work points out that the main reason for the frequency-domain gap between synthetic
LR images and real-world LR images is the aliasing phenomenon, which is widely present in
real-world images [41–43]. However, existing degradation models [17,25,26,29,30,35–37] ignore
the impact of aliasing on images [39,44]. Aliasing is an inherent property of sampling
equipment [45–47]. Aliasing occurs when the spatial frequency of the scene surpasses the
Nyquist limit defined by the imaging device’s resolution [48,49]. Therefore, aliasing widely
exists in images captured by acquisition devices such as cameras and mobile phones in real
scenes [41–43]. Aliasing reduction [50–52] has always been a classical problem in the fields
of signal processing and image processing. However, in the field of real-world image super
resolution, few works [39] focus on the impact of aliasing on images.

Therefore, this paper proposes a method to evaluate aliasing in LR images that have
undergone unknown degradation. The method involves generating an alias-free copy of
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the LR image to be evaluated and then computing the L1 distance between this copy and
the LR image. The greater the distance calculated, the more serious the aliasing. Compared
with the previously discussed frequency-consistent adaptation method, this approach
provides a more intuitive and accurate means of quantifying the degree of aliasing. The
consistency of image contents between the copy and the LR image enhances the precision
of the results.

On the basis of this measurement method, this work proposes a domain-translation-
based method that generates frequency features similar to real-world images. On the one
hand, a frequency-domain branch extracts the aliasing features in the degradation process.
On the other hand, a loss function is proposed to guide the generation of synthetic images
with aliasing features. Both the domain-translation generator and the frequency-domain
loss function reduce the frequency-domain gap between synthetic LR images and real-
world LR images, so the proposed method can help the SR model reconstruct more realistic
image details.

The main contributions of this work are as follows:

• This work points out the frequency-domain gap between the synthetic and real-world
image. A method is proposed to measure the degree of frequency-domain aliasing in
images that undergo unknown degradation;

• A domain-translation framework is proposed to generate frequency-domain features
that are similar to real-world images, including a branch to extract aliasing features
and a loss function related to the degree of aliasing;

• The proposed domain-translation framework is proven to help the SR model achieve
better reconstruction quality on real-world images.

2. Related Work
2.1. Image Pair-Based Methods

The challenge in real-world SR primarily stems from the shortage of real-world HR–LR
image pairs in most scenarios [27]. To address this issue, various approaches have been
proposed [11–16]. These methods involve capturing images of the same scene at different
resolutions, effectively creating datasets containing HR and LR images derived directly
from real-world sources. Some methods [11–14] involve using zoom lenses to acquire HR
and LR images with long and short focal lengths, respectively. SR models trained with
these datasets have the capacity to learn the degradation distribution present in real-world
scenarios, resulting in improved performance on LR images characterized by the same
degradation distribution. Nonetheless, challenges persist due to disparities in depth of
field, lighting conditions, and perspective, leading to inevitable misalignment between HR
and LR images [17]. These alignment discrepancies significantly impact the efficacy of SR
models. Moreover, existing datasets often lack diversity in terms of scenes and degradation
distributions, making it challenging to generalize to real-world images that exhibit varying
degradation distributions.

To address complex and diverse real-world SR challenges, degradation models that
are consistent with real-world degradation processes and have generalization capabilities
are necessary. Alternatively, domain-translation methods for unpaired HR and LR images
offer a viable solution.

2.2. Degradation Modeling-Based Methods

In many cases, only reference HR images and real-world LR images are available due
to the absence of HR–LR image pairs. There is no direct content correspondence between
reference HR and real-world LR images. To reconstruct SR images using reconstruction-
based SR methods, it is necessary to determine the parameter set for the degradation model
between the HR and LR images. Efrat et al. [53] proposed that an accurate degradation
model is more important than using advanced image priors. Classical degradation models
typically involve steps like blurring, downsampling, and noise. Most current research
efforts [54–61] concentrate on the precise recovery of blur kernels. Several approaches [57–61]



Electronics 2024, 13, 250 4 of 19

optimize degradation parameters and intermediate super-resolved images through iterative
prediction and correction techniques. However, when compared to the vast and diverse
degradation space in the real world, these methods still exhibit limitations in terms of
diversity and face the risk of failure in realistic scenarios.

For learning-based SR methods, it is crucial to determine the degradation model that
transforms reference HR images into their corresponding LR counterparts, in order to train
the SR model. One intuitive approach [62] involves synthesizing various LR images with
multiple degradation distributions to train the SR model. This strategy aims to enhance the
model’s generalization performance. Several methods seek to expand upon the classical
degradation model by introducing new degradation frameworks [23–26]. For instance,
Zhou et al. [23] employed Generative Adversarial Network [28] (GAN) to construct a
blur kernel pool and used these kernels in conjunction with HR images to generate LR
images. Ji et al. [24] proposed RealSR, a degradation framework that employed blind
kernel estimation to construct blur kernels and noise pools. The degradation process
involves random sampling of blur kernels and noise from these pools to degrade HR
images. Zhang et al. [25] used a random shuffled strategy to extend the classic degradation
model and proposed a practical degradation model BSRGAN. Wang et al. [26] proposed
Real-ESRGAN, a high-order degradation model that simulates ringing artifacts through a
sinc filter.

Nevertheless, in their pursuit of improved generalization, these methods often produce
over-smoothed results and require extensive datasets and training resources.

2.3. Domain-Translation-Based Methods

Consider the reference HR image and the real-world LR image as residing in different
domains: HR images in the source domain and LR images in the target domain. In this con-
text, both the degradation process and the SR process can be treated as domain-translation
challenges. One approach is to leverage the well-established CycleGAN architecture [31],
typically used in style transfer. This strategy [32–34] involves the joint training of the
degradation and SR stages. Cycle-consistency loss enforces content correspondence within
the cycle, while style consistency between different domains is often assessed through ad-
versarial loss. These methods possess the ability to adaptively learn the degradation and SR
processes for images with varying distributions. These methods can achieve more accurate
recovery of image details compared to degradation models based on generalization ability.
However, these methods exhibit limited flexibility, making it challenging to integrate with
advanced SR methods. Some methods [17,35] leverage the cycle structure solely within
the degradation process, opting to train the degradation and SR processes separately. But,
unlike the style transfer problem, which usually assumes a one-to-one correspondence
between elements in domains, SR poses an ill-posed challenge. In the field of SR, a single
LR image corresponds to countless HR images. The deterministic degradation relationship
provided by the cycle structure struggles to account for the random variables in real-world
degradation.

Another approach [29,30,36–38] is to directly employ GAN [28] for unsupervised
learning of domain translation within the degradation process, resulting in the generation
of HR–LR image pairs. The subsequent SR process is executed by deep convolution neural
network (CNN) based SR methods through supervised learning. In contrast to the explicit
modeling of degradation found in degradation modeling-based methods, this strategy
constitutes implicit modeling of degradation. Fritsche et al. [36] proposed DSGAN to learn
the domain-translation process from HR images to unpaired LR images in an unsuper-
vised manner. DSGAN trains two models for different datasets, including SDSR [36] and
TDSR [36]. Zhou et al. [37] proposed a color-guided domain-mapping network to alleviate
color shift during domain translation, named CARB [37]. Luo et al. [38] proposed a prob-
abilistic degradation model (PDM), which studies the degradation process as a random
variable and models the mapping from a prior random variable to the degradation process.
Son et al. [40] simulated the distribution of LR images in the target domain by generalizing
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low-frequency loss and designed an adaptive data loss (ADL). These methods can cover
a wider range of unknown degradation distributions and is more robust when dealing
with degradations that lack definition or are affected by random factors. Compared with
methods based on the CycleGAN [31] framework, this strategy of separately modeling
degradation can be easily integrated with advanced SR methods. With no cycle-consistency
constraint, these methods rely on content consistency measured through the distance be-
tween low-frequency components of HR images and their corresponding LR images. Style
consistency is still represented by adversarial loss.

However, the domain gap exists in the frequency domain between synthetic LR images
and real-world LR images, which is overlooked by the existing methods [39]. Real-world
images exhibit frequency-domain aliasing phenomena, while synthetic images tend to
reduce aliasing features due to the low-pass filtering [40]. When applied to real-world
images, SR models trained on such synthetic images often mistake aliasing phenomena as
image content and amplify these features [44].

3. Method
3.1. Classical Degradation Model

Generally, LR image ILR can be obtained from HR image IHR by the classical degrada-
tion model [63,64]:

ILR = (IHR ⊗ k) ↓s +n (1)

where k denotes a degradation kernel, ⊗ is a spatial convolution, ↓s indicates downsam-
pling and decimation by a scale factor s, and n is a noise term. The order of these steps is
not fixed; the classical degradation model can also be expressed as

ILR = (IHR ↓s)⊗ k + n (2)

The classical degradation model is widely used to synthesize HR–LR image pairs by
degradation modeling-based methods. Furthermore, the classical degradation model is
also combined with the probabilistic model in domain-translation methods [38].

3.2. Frequency-Domain Aliasing

There is a frequency-domain gap between real-world LR images and LR images
synthesized by Equation (1) or Equation (2). Image downsampling process ↓s can be
understood as sampling and decimation, which causes aliasing. Figure 1 shows the impact
of several degradation processes on signals in the frequency domain. Figure 1a represents
direct downsampling. Figure 1b and Figure 1c represent the degradation processes of
Equation (1) and Equation (2), respectively. The influence of noise is not considered.
Among them, ωM is the highest inherent frequency of the image IHR, ωS is the sampling
frequency, and ωK is the cutoff frequency of the low-pass filter k. Compared with direct
downsampling, the degradation processes represented by Equations (1) and (2) limit the
frequency of ILR within low-pass windows, reducing aliasing. Assume that IHR generates
ILR through an unknown degradation process D×s(·), and the scale factor between IHR
and ILR is s, which can be expressed as

ILR = D×s(IHR) (3)

Figure 2 selects three sets of image samples and shows the frequency-domain images
of IHR and ILR after the above-mentioned degradations. The direct downsampling is
denoted as D×s

B (·). And the degradation process in Equations (1) and (2) are expressed
as D×s

1 (·) and D×s
2 (·), respectively (k using Gaussian low-pass filter). The samples come

from the real-world dataset City100 [11], so an LR image that has experienced the real-
world degradation process D×s

R (·) could be used as a reference. The first row of each
group is the spatial-domain image. The second row of each group is the corresponding
frequency-domain image. Consistent results with the previous analysis can be obtained
from the samples. Compared with D×s

B (·), D×s
1 (·) and D×s

2 (·) limit the frequency-domain
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information to low-pass windows. Real-world LR images D×s
R (IHR) exhibit frequency-

domain characteristics that are more like D×s
B (IHR), rather than D×s

1 (IHR) or D×s
2 (IHR).

In the spatial domain, D×s
R (IHR) is not as smooth as D×s

1 (IHR) and D×s
1 (IHR), but have

jagged edges and background stripes, similar to D×s
B (IHR). These phenomena indicate

that the classical degradation model cannot simulate the aliasing phenomenon existing
in real-world images. The step-by-step degradation models do not accurately represent
complex degradation processes in the real world.

Figure 1. Overview of the impact of several degradation processes on signals, including (a) direct
downsampling, (b) the degradation process represented by Equation (1), (c) the degradation process
represented by Equation (2). The last row is the results of LR image ILR being upsampled again,
recorded as ILR,up.

In order to more accurately describe the aliasing features of these LR images generated
through different degradation processes, this work proposes a method to evaluate aliasing
in LR images. Interpolate ILR in Equation (3) to the size of IHR, expressed as

ILR,up = (D×s(IHR)) ↑s (4)

where ↑s indicates upsampling by a scale factor s. In order to measure the degree of aliasing
caused by the degradation process D×s(·) on IHR, assume that there is an alias-free copy
of ILR, which is the solution to the following optimization problem:

ÎF = argmin
IF

∥IF − ILR,up∥+ λH(IF) (5)

where the first item represents that the contents of IF and ILR,up are consistent. H(·) is a
constraint that ensures that there is no aliasing in IF. λ is the regularization constant. As
shown in the last row of Figure 1, IF can be obtained from IHR through a low-pass filter k
in the absence of aliasing. Therefore, H(·) can be defined as

H(IF) = C(IF, k) = ∥IHR ⊗ k − IF∥+ µG(k) (6)
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where C(·) is the non-aliasing constraint on IF that introduces variable k, and G(·) is the
prior constraint of the filter k, usually using regularization term related to gradient. µ is
the regularization constant. Equation (5) is rewritten as

( ÎF, k̂) = argmin
IF ,k

∥IF − ILR,up∥+ λ∥IHR ⊗ k − IF∥+ µG(k) (7)

When a signal is aliased, its high-frequency components additively spill into the low-
frequency components [65]. Treat aliasing as an additive noise [66–68] and denote it as
η; then,

ILR,up = IF + η (8)

Then, k can be obtained by solving

k̂ = argmin
k

∥IHR ⊗ k − ILR,up + η∥+ µG(k) (9)

During the downsampling process, aliasing mostly occurs near areas containing high-
frequency information, that is, areas where gradient changes are dramatic. η has less impact
on areas where gradient changes are relatively gentle. Divide the image ILR,up and IHR

into N sample blocks. The i-th sample is denoted as Ii
LR,up and Ii

HR, and xi is the center
pixel of this window. The metric to measure the usefulness of gradients in each block [69]
is defined as

r(xi) =
∥∑y∈Ii

HR
∇IHR(y)∥

∑y∈Ii
HR

∥∇IHR(y)∥+ β
(10)

where ∇ is the operator of first-order spatial derivatives and β is a constant coefficient. A
small r implies that a flat region is involved, which causes neutralization of many gradient
components. A large r implies existing strong image structures in the local region [69].
Next, define a weight w that is negatively related to r:

w(xi) = exp(−∥r(xi)∥α) (11)

where α is a constant coefficient. Use w as the weight to find the average blur kernel of N
blocks. Since η of the flat area is very small and has different directions, it will be ignored by
the averaging process. The weight w of such a block is set large. The η of blocks containing
high-frequency areas will interfere with the solution of the blur kernel as noise. Thus, the
weight w of such blocks is set small. The average blur kernel can be approximated as

k = argmin
k

N

∑
i=1

w(xi)∥Ii
HR ⊗ k − Ii

LR,up∥+ µG(k) (12)

In the case of λ > 1, ÎF can be obtained from Equation (7) as

ÎF = IHR ⊗ k (13)

η can be obtained from Equation (8) as

η = ILR,up − ÎF (14)

This work proposes to use the L1 distance ∥η∥1 to quantify the degree of aliasing of ILR
obtained by IHR through unknown degradation D×s(·). Figure 2 shows the visualization
of the result ILR and η produced by different degradation processes. There are three sets of
samples. The first row of each set is IHR and ILR generated by the corresponding degra-
dation processes. The second row is the corresponding images in the frequency domain,
and the third row is the visualized images of η calculated by the proposed method. The
corresponding L1 distance ∥η∥1 is marked below the visualization of η. The visualization
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and the L1 distance of η both show that the degree of aliasing caused by the bicubic down-
sampling degradation D×s

B (·) is similar to the real-world degradation D×s
R (·). In contrast,

the currently commonly used degradation models D×s
1 (·) and D×s

2 (·) have obvious gaps
with the real-world degradation model D×s

R (·).

Figure 2. Visualization of the result ILR and η produced by different degradation processes. The
degradation processes include real-world degradation process D×s

R (·), bicubic downsampling D×s
B (·),

and the degradation processes of Equations (1) and (2), denoted as D×s
1 (·) and D×s

2 (·), respectively
(k uses a Gaussian blur kernel). Three sets of samples are presented. The first row of each set shows
IHR and ILR. The second row shows the corresponding frequency domain image. The third row has
the visualized images of η calculated by the proposed method. The corresponding L1 distance ∥η∥1

is marked below η.
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3.3. Downsampling with Domain Translation

To reduce the frequency-domain gap between synthetic and real-world images, this
work proposes a domain-translation-based downsampling framework to generate aliasing
features through the frequency-domain branch. The framework is based on the probabilistic
degradation model [38]. Since the step-by-step degradation process cannot simulate real-
world aliasing, this paper proposes to separate the aliasing information from the reference
image through the frequency-domain branch, and then compensate the image before
downsampling to generate LR images with aliasing. As shown in Figure 3, the degradation
process of the framework involves three steps:

IF = IHR ⊗ k
IC = netD(netE1(IF) + netE2(η)) ↓s
ILR = IC + n

(15)

where k is the blur kernel generated by the Kernel Generator, n is the spatial-domain noise
generated by the Noise Generator, netE1 and netE2 are two encoders, and netD is a decoder.
η is the aliasing feature produced by the frequency-domain branch. Compensate IF with η
before downsampling.

Figure 3. Overview of the proposed domain-translation-based downsampling framework.

The main function of the frequency-domain branch is to generate the aliasing feature
η. Compared with the method of obtaining η mentioned in Section 3.2, a more intuitive
method is to directly use a frequency-domain filter KH to separate this part of aliasing
information from the aliased image:

η = IFFT{KH ∗ FFT{(D×s
B (IHR)) ↑s}} (16)

where the image undergoes the degradation process D×s
B (·) and is used as a reference

image to provide aliasing information.
To model the distribution of the blur kernel KH , a prior random variable zm is defined,

and a generator netM is used to learn the mapping from zm to the frequency domain filter:

KH = netM(zm) zm ∼ N (0, 1) (17)
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If the height, width, and number of channels of IHR are h, w, and c, then

zm ∈ R fm×h×w KH ∈ Rh×w×c (18)

where fm is the dimension of the normal distribution zm.
Finally, the aliasing information η is integrated into IF for compensation before down-

sampling. In this way, compared to classical degradation processes, ILR generated by
this proposed framework contains aliasing information and has a smaller domain gap
compared to real-world images.

3.4. Frequency-Domain Loss

In this work, a frequency-domain loss is proposed to guide the domain-translation
network to generate frequency-domain features that are consistent with real-world images.
In order to guide the frequency-domain branch to generate η that conforms to the aliasing
distribution, ηB that corresponds to D×s

B (·) degradation is used as prior knowledge. The
optimization of netM is formulated as

argmin
netM

∥ IFFT{netM(zm) ∗ FFT{(D×s
B (IHR)) ↑s}} − γηB∥1 (19)

where γ is a constant coefficient. Equation (19) can be simply written as

argmin
η

∥η− γηB∥1 (20)

In order to ensure that the generated image ILR contains aliasing features, the aliasing
degree ∥ηLR∥1 related to ILR is measured through the method proposed in Section 3.2.
ηB,down is a downsampled version of ηB, which serves as a prior. In this way, the overall
frequency-domain loss function is defined as

L f re = ∥η− γηB∥1 + υ∥ ∥ηB,down∥1 − τ∥ηLR∥1 ∥ (21)

where υ and τ are weights for the regularizer term. The entire frequency-domain loss
function consists of two parts. The first part uses ηB to guide the generator to generate η
that conforms to the aliasing distribution. The second part uses the downsampled version
ηB,down to constrain the final generated ILR to satisfy the aliasing degree.

Since the degradation process represented by D×s
B (·) is deterministic, kB of the pro-

cesses D×s
B (·) is independent of image and is only related to the downsampling factor s.

As such, replace kB with fixed blur kernel calculated through a large number of samples in
advance. This approach avoids recalculating kB every time the loss is calculated.

3.5. Overall Loss

Synthetic image ILR needs to meet the following two requirements: the image content
is consistent with IHR and the image distribution is consistent with the target domain
images. In order to preserve the image content across different scales, the data loss Ldata is
defined to measure the distance between the low-frequency components of IHR and the
synthetic image ILR:

Ldata = ∥P×s(IHR)−P(ILR)∥1 (22)

where P(·) is a low-pass filtering and P×s(·) is a combination of low-pass filtering and
downsampling by s. The adversarial loss Ladv is used to enforce ILR to follow the distribu-
tion of the target domain images:{

Lg
adv = −E[log(F (ILR))]

Ld
adv = −E[log(F (Ireal

LR ))] +E[log(1 −F (ILR))]
(23)
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where Lg
adv and Ld

adv are the adversarial losses of the generator and discriminator, respec-
tively. F (·) is the discriminator and Ireal

LR is the real-world image of the target domain.
The total loss function of the degradation model is{

Lg = Ldata + Lg
adv + L f re

Ld = Ld
adv

(24)

4. Experiments
4.1. Datasets and Training Details

Datasets. In order to test the effect of the proposed method on real-world images,
400 images were selected from the HR dataset DIV2K [18] as the source domain HR images.
Real-world LR datasets or datasets with unknown and complex degradation were selected
as target domain images, including DRealSR [12] and NTIRE2020 [70] Track1 and Track2.
The source domain HR image and the target domain LR image were unpaired, which
means that their contents were inconsistent. A portion of the target domain LR images
were selected for training, and another portion of the target domain images were chosen
for testing and validation. The proposed domain-translation-based downsampling method
was used to learn the translation from the source domain to the target domain, and the loss
function proposed in Equation (24) was used.

Evaluation metrics. For validation sets with ground-truth references, such as NTIRE2020
Track1, we used PSNR, SSIM [71], and LPIPS [72] as evaluation metrics. For the validation
set without ground-truth references, we used NIQE [73], NRQM [74], and PI [75] as
evaluation metrics.

Implementation and training details. During training, zm was set as fm = 128. The
HR images were cropped into 128 × 128, and the LR images were cropped into 64 × 64
for scale factor 2 and 32 × 32 for scale factor 4. In comparative experiments and ablation
experiments, the network was trained for 40 epochs with a learning rate of 1 × 10−4. The
batch size was set as 24.

4.2. Comparison with Other Domain-Translation Based Methods

The proposed method is compared with several state-of-the-art real-world SR methods
based on domain translation, including SDSR [36], TDSR [36], CARB [37], PDM [38], and
ADL [40]. For fair comparison, the SR model used by the proposed method is consistent
with the SR model used by these methods, including EDSR [76] and ESRGAN [6]. EDSR is
PSNR-oriented and supervised by L1 and L2 losses. ESRGAN is perceptual-oriented and
supervised by perceptual loss. Therefore, when EDSR is the SR model, PSNR and SSIM
are used as the main evaluation metrics. When ESRGAN is the SR model, LPIPS (based on
perceptual similarity) is used as the main evaluation metric.

The results on NTIRE2020 Track 1 [70] are presented in Table 1. When combined with
the PSNR-oriented network EDSR, the proposed method in this work attains the best perfor-
mance in terms of PSNR and SSIM. Similarly, when combined with the perceptual-oriented
network ESRGAN, it achieves the best LPIPS results, indicating superior perceptual qual-
ity. This underscores that, regardless of being PSNR-oriented or focused on perceptual
quality, incorporating the method in this work leads to the best results. The LR images in
NTIRE2020 Track 1 are obtained by an undisclosed degradation operator on the HR dataset
Flickr2k [19]. This degradation operator [70] generates structured artifacts produced by the
kind of image-processing pipelines found on very low-end devices. Figure 4 provides a
visual comparison of three sets of samples. The SR model in the first row of each group of
samples is EDSR; both LR images are amplified by bicubic interpolation, and ground-truth
HR images are used as references. The SR model in the second row is ESRGAN. In the
results with EDSR as the SR model, the method proposed in this work achieved the sharpest
edge while maintaining the denoising ability. As a perception-oriented method, ESRGAN
obviously has stronger detail-recovery capabilities when used as the SR model, but it also
bears the risk of amplifying complex noise. In each set of samples, “SDSR + ESRGAN” and
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“TDSR + ESRGAN” are plagued by complex noise. “ADL + ESRGAN” over-enlarges some
details that do not exist in the ground-truth HR image. “CARB + ESRGAN” is too blurry
to take advantage of the perception-oriented methods. “Ours + ESRGAN” is cleaner than
other methods, indicating that the proposed method can better model complex noise in the
spatial domain and frequency domain.

Figure 4. Comparison of our method with state-of-the-art real-world SR methods based on domain
translation. Test images from dataset NTIRE2020 Track 1. Inside the red box is the enlarged area.

Table 2 shows the results of these methods on NTIRE2020 Track 2 [70]. The method
proposed in this work still achieves the best results in NRQM and PI . The LR images in
NTIRE2020 Track 2 are real-world images taken by an iPhone3 and come from DPED [22].
NTIRE2020 Track 2 contains more unknown and complex real-world degradation processes.
Since the methods used for comparison all provide the perceptual-oriented SR model
ESRGAN, the method proposed in this work also uses ESRGAN as the SR model. Figure 5
shows the visual comparison of three sets of samples. LR images amplified by bicubic
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interpolation are used as references. The results of “SDSR”, “TDSR”, and “ADL” are all
affected by severe noise, while the results of “CARB” are still blurry. “PDM” has a better
ability to remove noise in the spatial domain, but there is still some complex noise related
to the image structure, as shown in the first sample. The method proposed in this work
obtains the cleanest results, and there is no structural noise like in the results of “PDM”.

Figure 5. Comparison of our method with state-of-the-art real-world SR methods based on domain
translation. Test images from dataset NTIRE Track 2. Inside the red box is the enlarged area.

Table 1. Quantitative comparison with domain-translation-based methods on NTIRE2020 Track 1
with ground-truth references. ↑ denotes the larger the better. ↓ denotes the smaller the better. The
best results are denoted in red, and the second best are denoted in blue.

Methods PSNR ↑ SSIM↑ LPIPS↓

PDM + EDSR 21.099 0.6044 0.3794
ADL + EDSR 28.942 0.8004 0.3248

SDSR + ESRGAN 23.096 0.4479 0.5619
TDSR + ESRGAN 21.949 0.3901 0.6024
CARB + ESRGAN 28.483 0.7968 0.3285
ADL + ESRGAN 24.688 0.6437 0.3063

Ours + EDSR 29.366 0.8033 0.3107
Ours + ESRGAN 25.661 0.7636 0.2930

Table 2. Quantitative comparison with domain-translation-based methods on NTIRE2020 Track 2
without ground-truth references. ↑ denotes the larger the better. ↓ denotes the smaller the better. The
best results are denoted in red, and the second best are denoted in blue.

Methods NIQE↓ NRQM↑ PI↓

SDSR + ESRGAN 6.744 4.630 6.057
TDSR + ESRGAN 4.365 4.985 4.690
CARB + ESRGAN 8.459 2.256 8.101
PDM + ESRGAN 6.714 4.231 6.241
ADL + ESRGAN 5.229 3.352 5.938

Ours + ESRGAN 4.423 5.158 4.632

4.3. Comparison with Other Degradation Modeling-Based Methods

In order to have an intuitive comparison of the effects of different methods, compar-
isons with several methods based on degradation modeling are also provided, including
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RealSR [24], BSRGAN [25], and Real-ESRGAN [26]. These methods are all based on pre-
defined degradation steps and have strong generalization capabilities for real-world LR
images. Since these methods are perceptual-oriented and use ESRGAN or improved ESR-
GAN [26] as SR models, the method proposed in this work is also combined with improved
ESRGAN [26] for comparison. The real-world dataset DRealSR [12] is selected as the valida-
tion set. The LR images of DRealSR are derived from the real world, and have ground-truth
images as references. PSNR, SSIM, and LPIPS are evaluation metrics. Due to the perceptual
quality orientation, the results of LPIPS are more important.

Table 3 shows the results of theses methods on DRealSR. The method proposed in
this work achieved the best LPIPS and SSIM results. Figure 6 shows the visual comparison
of three samples. LR images amplified by bicubic interpolation and ground-truth HR
images are used as references. The results show that, at the expense of generalization ability,
“BSRGAN” and “Real-ESRGAN” tend to produce over-smoothed results that ignore texture
details, such as the shape of the petals in the first sample. Since the predefined degradation
model may not match the real degradation model, there is a gap between the results of
“RealSR” and the ground truth. The method proposed in this work can learn the specific
degradation process, so it achieves the visual results that are the closest to ground truth.

Figure 6. Comparison of our method with state-of-the-art real-world SR methods based on degra-
dataion modeling. Test images from dataset DRealSR. Inside the red box is the enlarged area.

Table 3. Quantitative comparison with degradation modeling-based methods on DRealSR with
ground-truth references. ↑ denotes the larger the better. ↓ denotes the smaller the better. The best
results are denoted in red, and the second best are denoted in blue.

Methods PSNR↑ SSIM ↑ LPIPS↓

RealSR 23.088 0.7122 0.2438
BSRGAN 28.147 0.8128 0.1824

Real-ESRGAN 26.656 0.8013 0.1875

Ours + ESRGAN 26.799 0.8188 0.1779

4.4. Ablation Studies

In order to verify the effect of the proposed frequency-domain branch and frequency-
domain loss function, comparative experiments were designed. The probabilistic degrada-
tion model without frequency-domain branch and frequency-domain loss function is used
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as a baseline. On this basis, the effects of the frequency-domain branch and the frequency-
domain loss function are independently verified. The results are shown in Table 4. The
effect of having frequency-domain branch or frequency-domain loss function is better than
the baseline. When both are available, SR has the best effect.

Table 4. Ablation studies on frequency-domain branch and frequency-domain loss. The test set
is NTIRE2020 Track 1 with ground-truth references. ↑ denotes the larger the better. ↓ denotes the
smaller the better. The best results are denoted in red.

Frequency
Branch Frequency Loss PSNR↑ SSIM ↑ LPIPS↓

26.397 0.7335 0.3919
✓ 26.719 0.7416 0.4005

✓ 28.842 0.7909 0.3242
✓ ✓ 29.366 0.8033 0.3107

In order to verify the role of the random variable, zm is fixed to zero in the comparative
experiment. Table 5 shows that, when zm is randomly sampled, a better SR effect is achieved
than when zm is fixed to zero. The reason is speculated that zm can simulate the influence
of random factors and avoid overfitting.

Table 5. Ablation studies on the random variable zm. The test set is NTIRE2020 Track 1 with ground-
truth references. ↑ denotes the larger the better. ↓ denotes the smaller the better. The best results are
denoted in red.

zm PSNR ↑ SSIM ↑ LPIPS↓

28.909 0.7996 0.3456
✓ 29.366 0.8033 0.3107

5. Conclusions

This work proposes a method to evaluate frequency-domain aliasing in images suffer-
ing from unknown degradation. This is the first time that the effect of aliasing on images has
been considered in a degradation model. Furthermore, a domain-translation framework is
proposed that aims to leverage unpaired HR and LR images to generate synthetic datasets
for training. This framework combines frequency-domain branch and frequency-domain
loss function to generate synthetic images with real-world aliasing characteristics, thereby
reducing the domain gap between synthetic images and real-world images. Experimen-
tal results demonstrate that the proposed method could improve the visual effects and
quantitative results of super-resolution models on real-world images. This illustrates the
practicality of the method proposed in this work and marks the possibility of improving
super-resolution technology for real-world scenarios. In the future, the proposed method
will be extended to estimate degradation models with real-world noise. Another direction
is to combine domain-translation methods with reconstruction-based methods, with the
goal of accurately estimating the degradation model and reconstructing high-resolution
images, even when there is only a single low-resolution image or there are real-world
images from different sources.
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