A Review of Immersive Technologies, Knowledge Representation, and AI for Human-Centered Digital Experiences
Abstract
:1. Introduction and Orientation
2. Advances in User Interface Design, Development, and Evaluation, including New Approaches for Explicit and Implicit Interaction
3. Human-Centered Web-Based Information Systems
4. Semantic Knowledge to Enhance User Interaction with Information, User Participation in Information Processing, and User Experience
5. X-Reality Applications (AR, VR, MR) for Immersive Human-Centered Experiences
5.1. X-Reality Applications in Cultural Heritage
5.2. X-Reality Applications in Vocational Training and Education
6. Human Motion and 3D Digitization for Enhanced Interactive Digital Experiences
7. Serious Game Design and Development
8. AI Approaches in User Interfaces, Information Processing, and Information Visualization
9. Discussion
10. Challenges, Future Directions, and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z. Microsoft Kinect sensor and its effect. IEEE Multimedia 2012, 19, 4–10. [Google Scholar] [CrossRef]
- Teixeira, A.; Assena, A.; Santos, A.; Moura, M.; Gomes, N.; Orvalho, J. Usability evaluation of playstation move motion controler. In Proceedings of the International Conference on Computer Graphics, Visualization, Computer Vision and Image Processing, Lisbon, Portugal, 17–19 July 2014; pp. 276–280. [Google Scholar]
- Myers, B.A. A brief history of human-computer interaction technology. Interactions 1998, 5, 44–54. [Google Scholar] [CrossRef]
- Jansen, B.J. The graphical user interface. ACM SIGCHI Bull. 1998, 30, 22–26. [Google Scholar] [CrossRef]
- Campbell-Kelly, M.; Aspray, W.F.; Yost, J.R.; Tinn, H.; Díaz, G.C. Computer: A History of the Information Machine; Taylor & Francis: London, UK, 2023. [Google Scholar]
- Abras, C.; Maloney-Krichmar, D.; Preece, J.; User-Centered Design; Bainbridge, W. Encyclopedia of Human-Computer Interaction; Sage Publications: Thousand Oaks, CA, USA, 2004; Volume 37, pp. 445–456. [Google Scholar]
- Van Velsen, L.; Van Der Geest, T.; Klaassen, R.; Steehouder, M. User-centered evaluation of adaptive and adaptable systems: A literature review. Knowl. Eng. Rev. 2008, 23, 261–281. [Google Scholar] [CrossRef]
- Doulgeraki, C.; Partarakis, N.; Mourouzis, A.; Stephanidis, C. Adaptable Web-based user interfaces: Methodology and practice. eMinds Int. J. Hum. Comput. Interact. 2009, 1, 79–110. [Google Scholar]
- Stephanidis, C.; Akoumianakis, D.; Sfyrakis, M.; Paramythis, A. Universal accessibility in HCI: Process-oriented design guidelines and tool requirements. In Proceedings of the 4th ERCIM Workshop on User Interfaces for All, Stockholm, Sweden, 19–21 October 1998; pp. 19–21. [Google Scholar]
- Saffer, D. Designing Gestural Interfaces: Touchscreens and Interactive Devices; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2008. [Google Scholar]
- Bhalla, M.R.; Bhalla, A.V. Comparative study of various touchscreen technologies. Int. J. Comput. Appl. 2010, 6, 12–18. [Google Scholar] [CrossRef]
- Quesenbery, W. The five dimensions of usability. In Content and Complexity; Routledge: London, UK, 2014; pp. 93–114. [Google Scholar]
- O’Brien, H.L.; Toms, E.G. What is user engagement? A conceptual framework for defining user engagement with technology. J. Am. Soc. Inf. Sci. Technol. 2008, 59, 938–955. [Google Scholar] [CrossRef]
- Isakowitz, T.; Bieber, M.; Vitali, F. Web information systems. Commun. ACM 1998, 41, 78–80. [Google Scholar] [CrossRef]
- Seymour, T.; Frantsvog, D.; Kumar, S. History of search engines. Int. J. Manag. Inf. Syst. (IJMIS) 2011, 15, 47–58. [Google Scholar] [CrossRef]
- Schwartz, C. Web search engines. J. Am. Soc. Inf. Sci. 1998, 49, 973–982. [Google Scholar] [CrossRef]
- Mylopoulos, J. An overview of knowledge representation. ACM SIGART Bulletin 1980, 74, 5–12. [Google Scholar]
- Partarakis, N.; Doulgeraki, V.; Karuzaki, E.; Galanakis, G.; Zabulis, X.; Meghini, C.; Bartalesi, V.; Metilli, D. A Web-Based Platform for Traditional Craft Documentation. Multimodal Technol. Interact. 2022, 6, 37. [Google Scholar] [CrossRef]
- Healy, K. Data Visualization: A Practical Introduction; Princeton University Press: Princeton, NJ, USA, 2018. [Google Scholar]
- Mughal, M.J.H. Data mining: Web data mining techniques, tools and algorithms: An overview. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 208–215. [Google Scholar] [CrossRef]
- Kobayashi, M.; Takeda, K. Information retrieval on the web. ACM Comput. Surv. (CSUR) 2000, 32, 144–173. [Google Scholar] [CrossRef]
- Berners-Lee, T.; Hendler, J.; Lassila, O. The semantic web. Sci. Am. 2001, 284, 34–43. [Google Scholar] [CrossRef]
- Horrocks, I.; Patel-Schneider, P.F. KR and Reasoning on the Semantic Web: OWL. In Handbook of Semantic Web Technologies; Domingue, J., Fensel, D., Hendler, J.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Bonatti, P.A.; Decker, S.; Polleres, A.; Presutti, V. Knowledge graphs: New directions for knowledge representation on the semantic web (dagstuhl seminar 18371). In Dagstuhl Reports; Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik: Wadern, Germany, 2019; Volume 8. [Google Scholar]
- Uschold, M. Where are the semantics in the semantic web? AI Mag. 2003, 24, 25. [Google Scholar]
- Breitman, K.K.; Casanova, M.A.; Truszkowski, W. Ontology in computer science. In Semantic Web: Concepts, Technologies and Applications; Springer: Berlin/Heidelberg, Germany, 2007; pp. 17–34. [Google Scholar]
- Suh, A.; Prophet, J. The state of immersive technology research: A literature analysis. Comput. Hum. Behav. 2018, 86, 77–90. [Google Scholar] [CrossRef]
- Handa, M.; Aul, E.G.; Bajaj, S. Immersive technology–uses, challenges and opportunities. Int. J. Comput. Bus. Res. 2012, 6, 1–11. [Google Scholar]
- Azuma, R.T. A survey of augmented reality. Presence Teleoperators Virtual Environ. 1997, 6, 355–385. [Google Scholar] [CrossRef]
- Burdea, G.C.; Coiffet, P. Virtual Reality Technology; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Speicher, M.; Hall, B.D.; Nebeling, M. What is mixed reality? In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–15. [Google Scholar]
- Doolani, S.; Wessels, C.; Kanal, V.; Sevastopoulos, C.; Jaiswal, A.; Nambiappan, H.; Makedon, F. A review of extended reality (xr) technologies for manufacturing training. Technologies 2020, 8, 77. [Google Scholar] [CrossRef]
- Ringas, C.; Tasiopoulou, E.; Kaplanidi, D.; Partarakis, N.; Zabulis, X.; Zidianakis, E.; Patakos, A.; Patsiouras, N.; Karuzaki, E.; Foukarakis, M.; et al. Traditional Craft Training and Demonstration in Museums. Heritage 2022, 5, 431–459. [Google Scholar] [CrossRef]
- Hauser, H.; Beisswenger, C.; Partarakis, N.; Zabulis, X.; Adami, I.; Zidianakis, E.; Patakos, A.; Patsiouras, N.; Karuzaki, E.; Foukarakis, M.; et al. Multimodal narratives for the presentation of silk heritage in the museum. Heritage 2022, 5, 461–487. [Google Scholar] [CrossRef]
- Moeslund, T.B.; Granum, E. A survey of computer vision-based human motion capture. Comput. Vis. Image Underst. 2001, 81, 231–268. [Google Scholar] [CrossRef]
- Moeslund, T.B.; Hilton, A.; Krüger, V. A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 2006, 104, 90–126. [Google Scholar] [CrossRef]
- Geiger, A.; Ziegler, J.; Stiller, C. Stereoscan: Dense 3d reconstruction in real-time. In Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV), IEEE, Baden-Baden, Germany, 5–9 June 2011; pp. 963–968. [Google Scholar]
- Kang, Z.; Yang, J.; Yang, Z.; Cheng, S. A review of techniques for 3d reconstruction of indoor environments. ISPRS Int. J. Geo-Inf. 2020, 9, 330. [Google Scholar] [CrossRef]
- Zollhöfer, M.; Stotko, P.; Görlitz, A.; Theobalt, C.; Nießner, M.; Klein, R.; Kolb, A. State of the art on 3D reconstruction with RGB-D cameras. Comput. Graph. Forum 2018, 37, 625–652. [Google Scholar] [CrossRef]
- Pollefeys, M.; Nistér, D.; Frahm, J.M.; Akbarzadeh, A.; Mordohai, P.; Clipp, B.; Engels, C.; Gallup, D.; Kim, S.-J.; Merrell, P.; et al. Detailed real-time urban 3d reconstruction from video. Int. J. Comput. Vis. 2008, 78, 143–167. [Google Scholar] [CrossRef]
- Hasan, S.M.; Lee, K.; Moon, D.; Kwon, S.; Jinwoo, S.; Lee, S. Augmented reality and digital twin system for interaction with construction machinery. J. Asian Archit. Build. Eng. 2022, 21, 564–574. [Google Scholar] [CrossRef]
- Ma, X.; Tao, F.; Zhang, M.; Wang, T.; Zuo, Y. Digital twin enhanced human-machine interaction in product lifecycle. Procedia Cirp. 2019, 83, 789–793. [Google Scholar] [CrossRef]
- Onaji, I.; Tiwari, D.; Soulatiantork, P.; Song, B.; Tiwari, A. Digital twin in manufacturing: Conceptual framework and case studies. Int. J. Comput. Integr. Manuf. 2022, 35, 831–858. [Google Scholar] [CrossRef]
- Boschert, S.; Rosen, R. Digital twin—The simulation aspect. In Mechatronic Futures: Challenges and Solutions for Mechatronic Systems and Their Designers; Springer: Cham, Switzerland, 2016; pp. 59–74. [Google Scholar]
- Susi, T.; Johannesson, M.; Backlund, P. Serious Games: An Overview; School of Humanities and Informatics, University of Skövde: Skövde, Sweden, 2007. [Google Scholar]
- Connolly, T.M.; Boyle, E.A.; MacArthur, E.; Hainey, T.; Boyle, J.M. A systematic literature review of empirical evidence on computer games and serious games. Comput. Educ. 2012, 59, 661–686. [Google Scholar] [CrossRef]
- Planas, E.; Daniel, G.; Brambilla, M.; Cabot, J. Towards a model-driven approach for multiexperience AI-based user interfaces. Softw. Syst. Model. 2021, 20, 997–1009. [Google Scholar] [CrossRef]
- Sousa, R.; Miranda, R.; Moreira, A.; Alves, C.; Lori, N.; Machado, J. Software tools for conducting real-time information processing and visualization in industry: An up-to-date review. Appl. Sci. 2021, 11, 4800. [Google Scholar] [CrossRef]
- Escotet, M.Á. The optimistic future of Artificial Intelligence in higher education. Prospects 2023, 1–10. [Google Scholar] [CrossRef]
- Makridakis, S. The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms. Futures 2017, 90, 46–60. [Google Scholar] [CrossRef]
- Waldherr, S.; Romero, R.; Thrun, S. A gesture based interface for human-robot interaction. Auton. Robot. 2000, 9, 151–173. [Google Scholar] [CrossRef]
- Fui-Hoon Nah, F.; Zheng, R.; Cai, J.; Siau, K.; Chen, L. Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration. J. Inf. Technol. Case Appl. Res. 2023, 25, 277–304. [Google Scholar] [CrossRef]
- Roccetti, M.; Marfia, G.; Semeraro, A. Playing into the wild: A gesture-based interface for gaming in public spaces. J. Vis. Commun. Image Represent. 2012, 23, 426–440. [Google Scholar] [CrossRef]
- Bhuiyan, M.; Picking, R. Gesture-controlled user interfaces, what have we done and what’s next. In Proceedings of the Fifth Collaborative Research Symposium on Security, E-Learning, Internet and Networking (SEIN 2009), Darmstadt, Germany, 26–27 November 2009; pp. 26–27. [Google Scholar]
- Kim, J.; He, J.; Lyons, K.; Starner, T. The gesture watch: A wireless contact-free gesture based wrist interface. In Proceedings of the 2007 11th IEEE International Symposium on Wearable Computers, IEEE, Boston, MA, USA, 11–13 October 2007; pp. 15–22. [Google Scholar]
- Shin, S.; Kim, W.Y. Skeleton-based dynamic hand gesture recognition using a part-based GRU-RNN for gesture-based interface. IEEE Access 2020, 8, 50236–50243. [Google Scholar] [CrossRef]
- Fogtmann, M.H.; Fritsch, J.; Kortbek, K.J. Kinesthetic interaction: Revealing the bodily potential in interaction design. In Proceedings of the 20th Australasian Conference on Computer-Human Interaction: Designing for Habitus and Habitat, Cairns, Australia, 8–12 December 2008; pp. 89–96. [Google Scholar]
- Koutsabasis, P.; Vosinakis, S. Kinesthetic interactions in museums: Conveying cultural heritage by making use of ancient tools and (re-) constructing artworks. Virtual Real. 2018, 22, 103–118. [Google Scholar] [CrossRef]
- Tran, D.S.; Ho, N.H.; Yang, H.J.; Baek, E.T.; Kim, S.H.; Lee, G. Real-time hand gesture spotting and recognition using RGB-D camera and 3D convolutional neural network. Appl. Sci. 2020, 10, 722. [Google Scholar] [CrossRef]
- Oudah, M.; Al-Naji, A.; Chahl, J. Hand gesture recognition based on computer vision: A review of techniques. J. Imaging 2020, 6, 73. [Google Scholar] [CrossRef] [PubMed]
- Sarma, D.; Bhuyan, M.K. Methods, databases and recent advancement of vision-based hand gesture recognition for hci systems: A review. SN Comput. Sci. 2021, 2, 436. [Google Scholar] [CrossRef] [PubMed]
- Vosinakis, S.; Koutsabasis, P. Evaluation of visual feedback techniques for virtual grasping with bare hands using Leap Motion and Oculus Rift. Virtual Real. 2018, 22, 47–62. [Google Scholar] [CrossRef]
- Kim, H.I.; Woo, W. Smartwatch-assisted robust 6-DOF hand tracker for object manipulation in HMD-based augmented reality. In Proceedings of the 2016 IEEE Symposium on 3D User Interfaces (3DUI), IEEE, Greenville, SC, USA, 19–20 March 2016; pp. 251–252. [Google Scholar]
- Leibe, B.; Starner, T.; Ribarsky, W.; Wartell, Z.; Krum, D.; Singletary, B.; Hodges, L. The perceptive workbench: Toward spontaneous and natural interaction in semi-immersive virtual environments. In Proceedings of the IEEE Virtual Reality 2000 (Cat. No. 00CB37048), New Brunswick, NJ, USA, 18–22 March 2000; pp. 13–20. [Google Scholar]
- Monteiro, P.; Gonçalves, G.; Coelho, H.; Melo, M.; Bessa, M. Hands-free interaction in immersive virtual reality: A systematic review. IEEE Trans. Vis. Comput. Graph. 2021, 27, 2702–2713. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.H.; Giangola, J.P.; Balogh, J. Voice User Interface Design; Addison-Wesley Professional: Boston, MA, USA, 2004. [Google Scholar]
- Pearl, C. Designing Voice User Interfaces: Principles of Conversational Experiences; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2016. [Google Scholar]
- Terzopoulos, G.; Satratzemi, M. Voice assistants and smart speakers in everyday life and in education. Inform. Educ. 2020, 19, 473–490. [Google Scholar] [CrossRef]
- McLean, G.; Osei-Frimpong, K. Hey Alexa… examine the variables influencing the use of artificial intelligent in-home voice assistants. Comput. Hum. Behav. 2019, 99, 28–37. [Google Scholar] [CrossRef]
- Natale, S.; Cooke, H. Browsing with Alexa: Interrogating the impact of voice assistants as web interfaces. Media Cult. Soc. 2021, 43, 1000–1016. [Google Scholar] [CrossRef]
- Rzepka, C. Examining the use of voice assistants: A value-focused thinking approach. In Proceedings of the Twenty-fifth Americas Conference on Information Systems, Cancún, Mexico, 15–17 August 2019. [Google Scholar]
- Schmidt, A. Implicit human computer interaction through context. Pers. Technol. 2000, 4, 191–199. [Google Scholar] [CrossRef]
- Rani, P.; Liu, C.; Sarkar, N.; Vanman, E. An empirical study of machine learning techniques for affect recognition in human–robot interaction. Pattern Anal. Appl. 2006, 9, 58–69. [Google Scholar] [CrossRef]
- Papatheocharous, E.; Belk, M.; Germanakos, P.; Samaras, G. Towards implicit user modeling based on artificial intelligence, cognitive styles and web interaction data. Int. J. Artif. Intell. Tools 2014, 23, 1440009. [Google Scholar] [CrossRef]
- Ju, W.; Leifer, L. The design of implicit interactions: Making interactive systems less obnoxious. Des. Issues 2008, 24, 72–84. [Google Scholar] [CrossRef]
- Agichtein, E.; Brill, E.; Dumais, S.; Ragno, R. Learning user interaction models for predicting web search result preferences. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Seattle, WA, USA, 6–11 August 2006; pp. 3–10. [Google Scholar]
- Ntalianis, K.S.; Doulamis, A.D.; Tsapatsoulis, N.; Doulamis, N. Human action annotation, modeling and analysis based on implicit user interaction. Multimed. Tools Appl. 2010, 50, 199–225. [Google Scholar] [CrossRef]
- Zamenopoulos, T.; Alexiou, K. Towards an anticipatory view of design. Des. Stud. 2007, 28, 411–436. [Google Scholar] [CrossRef]
- van Bodegraven, J. How anticipatory design will challenge our relationship with technology. In Proceedings of the 2017 AAAI Spring Symposium Series, Stanford, CA, USA, 27–29 March 2017. [Google Scholar]
- Dumas, J.F.; Redish, J.C. A Practical Guide to Usability Testing; Greenwood Publishing Group Inc.: Westport, CT, USA, 1993. [Google Scholar]
- Lewis, J.R. Usability testing. In Handbook of Human Factors and Ergonomics; Wiley: Hoboken, NJ, USA, 2012; pp. 1267–1312. [Google Scholar]
- Nielsen, J.; Molich, R. Heuristic evaluation of user interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Gaithersburg, MD, USA, 15–17 March 1990; pp. 249–256. [Google Scholar]
- González, M.P.; Lorés, J.; Granollers, A. Enhancing usability testing through datamining techniques: A novel approach to detecting usability problem patterns for a context of use. Inf. Softw. Technol. 2008, 50, 547–568. [Google Scholar] [CrossRef]
- Eloff, J.H.; De Bruin, J.A.; Malan, K.M. Semi-automated usability analysis through eye tracking. South Afr. Comput. J. 2018, 30, 66–84. [Google Scholar]
- Vargas, A.; Weffers, H.; da Rocha, H.V. A method for remote and semi-automatic usability evaluation of web-based applications through users behavior analysis. In Proceedings of the 7th International Conference on Methods and Techniques in Behavioral Research, Eindhoven, The Netherlands, 24–27 August 2010; pp. 1–5. [Google Scholar]
- Muhi, K.; Szőke, G.; Fülöp, L.J.; Ferenc, R.; Berger, Á. A semi-automatic usability evaluation framework. In Computational Science and Its Applications—ICCSA 2013, Proceedings of the 13th International Conference on Computational Science and Its Applications, Ho Chi Minh City, Vietnam, 24–27 June 2013; Proceedings, Part II 13; Springer: Berlin/Heidelberg, Germany, 2013; pp. 529–542. [Google Scholar]
- Petrie, H.; Bevan, N. The evaluation of accessibility, usability, and user experience. In The Universal Access Handbook; CRC Press: Boca Raton, FL, USA, 2009; Volume 1, pp. 1–16. [Google Scholar]
- Wang, J.; Antonenko, P.; Celepkolu, M.; Jimenez, Y.; Fieldman, E.; Fieldman, A. Exploring relationships between eye tracking and traditional usability testing data. Int. J. Hum.-Comput. Interact. 2019, 35, 483–494. [Google Scholar] [CrossRef]
- Brocke, J.V.; Riedl, R.; Léger, P.M. Application strategies for neuroscience in information systems design science research. J. Comput. Inf. Syst. 2013, 53, 1–13. [Google Scholar] [CrossRef]
- Alfimtsev, A.N.; Basarab, M.A.; Devyatkov, V.V.; Levanov, A.A. A new methodology of usability testing on the base of the analysis of user’s electroencephalogram. J. Comput. Sci. Appl. 2015, 3, 105–111. [Google Scholar]
- Gasson, S. Human-centered vs. user-centered approaches to information system design. J. Inf. Technol. Theory Appl. (JITTA) 2003, 5, 5. [Google Scholar]
- Zhang, J.; Johnson, K.A.; Malin, J.T.; Smith, J.W. Human-centered information visualization. In Proceedings of the International Workshop on Dynamic Visualizations and Learning, Tubingen, Germany, 18–19 July 2002. [Google Scholar]
- Aragon, C.; Guha, S.; Kogan, M.; Muller, M.; Neff, G. Human-Centered Data Science: An Introduction; MIT Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Hall, D.L.; Jordan, J.M. Human-Centered Information Fusion; Artech House: Norwood, MA, USA, 2010. [Google Scholar]
- Rinkus, S.; Walji, M.; Johnson-Throop, K.A.; Malin, J.T.; Turley, J.P.; Smith, J.W.; Zhang, J. Human-centered design of a distributed knowledge management system. J. Biomed. Inform. 2005, 38, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Gentner, D.; van Harmelen, F.; Hitzler, P.; Janowicz, K.; Kuhnberger, K.U. Cognitive approaches for the semantic web. Dagstuhl Rep. 2012, 2, 93–116. [Google Scholar]
- Raubal, M.; Adams, B. The semantic web needs more cognition. Semant. Web 2010, 1, 69–74. [Google Scholar] [CrossRef]
- McCosker, A.; Wilken, R. Rethinking ‘big data’as visual knowledge: The sublime and the diagrammatic in data visualisation. Vis. Stud. 2014, 29, 155–164. [Google Scholar] [CrossRef]
- Donalek, C.; Djorgovski, S.G.; Cioc, A.; Wang, A.; Zhang, J.; Lawler, E.; Yeh, S.; Mahabal, A.; Graham, M.; Drake, A.; et al. Immersive and collaborative data visualization using virtual reality platforms. In Proceedings of the 2014 IEEE International Conference on Big Data (Big Data), IEEE, Washington, DC, USA, 27–30 October 2014; pp. 609–614. [Google Scholar]
- Olshannikova, E.; Ometov, A.; Koucheryavy, Y.; Olsson, T. Visualizing Big Data with augmented and virtual reality: Challenges and research agenda. J. Big Data 2015, 2, 1–27. [Google Scholar] [CrossRef]
- Abbasi, A.; Sarker, S.; Chiang, R.H. Big data research in information systems: Toward an inclusive research agenda. J. Assoc. Inf. Syst. 2016, 17, 3. [Google Scholar] [CrossRef]
- Franke, B.; Plante, J.F.; Roscher, R.; Lee, E.S.A.; Smyth, C.; Hatefi, A.; Chen, F.; Gil, E.; Schwing, A.; Selvitella, A.; et al. Statistical inference, learning and models in big data. Int. Stat. Rev. 2016, 84, 371–389. [Google Scholar] [CrossRef]
- De Bra, P.M.E.; Aroyo, L.M.; Chepegin, V. The next big thing: Adaptive web-based systems. J. Digit. Inf. 2004, 5, No-247. [Google Scholar]
- Clarke, S.; Lehaney, B. (Eds.) Human Centered Methods in Information Systems: Current Research and Practice; IGI Global: Hershey, PA, USA, 1999. [Google Scholar]
- Rahmayani, M.T.I.; Firdaus, R.; Tekwana, P. Implementation of human centered design (hcd) Models in designing web-based information systems. J. Mantik 2023, 6, 3818–3826. [Google Scholar]
- van Velsen, L.S.; van der Geest, T.M.; Klaassen, R.F. User-centered evaluation of adaptive and adaptable systems. In Proceedings of the Fifth Workshop on User-Centred Design and Evaluation of Adaptive Systems, Dublin, Ireland, 20 June 2006. [Google Scholar]
- Chen, H.M.; Cooper, M.D. Using clustering techniques to detect usage patterns in a Web-based information system. J. Am. Soc. Inf. Sci. Technol. 2001, 52, 888–904. [Google Scholar] [CrossRef]
- Chen, H.M.; Cooper, M.D. Stochastic modeling of usage patterns in a web-based information system. J. Am. Soc. Inf. Sci. Technol. 2002, 53, 536–548. [Google Scholar] [CrossRef]
- De Guinea, A.O.; Webster, J. An investigation of information systems use patterns: Technological events as triggers, the effect of time, and consequences for performance. MIS Q. 2013, 37, 1165–1188. [Google Scholar] [CrossRef]
- Ramirez, A.J.; Cheng, B.H. Design patterns for developing dynamically adaptive systems. In Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems, New York, NY, USA, 3–4 May 2010; pp. 49–58. [Google Scholar]
- Suchanek, F.M.; Kasneci, G.; Weikum, G. Yago: A core of semantic knowledge. In Proceedings of the 16th International Conference on World Wide Web, Banff, AB, Canada, 8–12 May 2007; pp. 697–706. [Google Scholar]
- Kabir, N. The Impact of Semantic Knowledge Management System on Firms’ Innovation and Competitiveness. Doctoral Dissertation, Newcastle University, Newcastle, UK, 2017. [Google Scholar]
- Guido, A.L.; Paiano, R. Semantic integration of information systems. Int. J. Comput. Netw. Commun. (IJCNC) 2010, 2, 48–64. [Google Scholar]
- Tummarello, G.; Delbru, R.; Oren, E. Sindice.com: Weaving the open linked data. In Proceedings of the Semantic Web: 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007+ ASWC 2007, Busan, Korea, 11–15 November 2007; Proceedings. Springer: Berlin/Heidelberg, Germany, 2007; pp. 552–565. [Google Scholar]
- Patkos, T.; Bikakis, A.; Antoniou, G.; Papadopouli, M.; Plexousakis, D. A semantics-based framework for context-aware services: Lessons learned and challenges. In Proceedings of the International Conference on Ubiquitous Intelligence and Computing, Hong Kong, China, 11–13 July 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 839–848. [Google Scholar]
- Sangers, J.; Frasincar, F.; Hogenboom, F.; Chepegin, V. Semantic web service discovery using natural language processing techniques. Expert Syst. Appl. 2013, 40, 4660–4671. [Google Scholar] [CrossRef]
- Kocaballi, A.B.; Laranjo, L.; Coiera, E. Understanding and measuring user experience in conversational interfaces. Interact. Comput. 2019, 31, 192–207. [Google Scholar] [CrossRef]
- Gruber, T. Collective knowledge systems: Where the social web meets the semantic web. J. Web Semant. 2008, 6, 4–13. [Google Scholar] [CrossRef]
- Grassi, M.; Morbidoni, C.; Nucci, M. A collaborative video annotation system based on semantic web technologies. Cogn. Comput. 2012, 4, 497–514. [Google Scholar] [CrossRef]
- Albertoni, R.; Bertone, A.; De Martino, M. Information Search: The Challenge of Integrating Information Visualization and Semantic Web. In Proceedings of the 16th International Workshop on Database and Expert Systems Applications (DEXA’05), Copenhagen, Denmark, 22–26 August 2005; pp. 529–533. [Google Scholar] [CrossRef]
- Benjamins, R.; Contreras, J.; Corcho, O.; Gómez-Pérez, A. The six challenges of the Semantic Web. In Proceedings of the Eighth International Conference on Principles of Knowledge Representation and Reasoning, KR2002, Toulouse, France, 22–25 April 2002; ISBN 9781558608474. [Google Scholar]
- Baldoni, M.; Baroglio, C.; Henze, N. Personalization for the semantic web. In Reasoning Web: First International Summer School 2005, Msida, Malta, July 25–29, 2005, Revised Lectures; Springer: Berlin/Heidelberg, Germany, 2005; pp. 173–212. [Google Scholar]
- Lilis, Y.; Zidianakis, E.; Partarakis, N.; Antona, M.; Stephanidis, C. Personalizing HMI elements in ADAS using ontology meta-models and rule based reasoning. In Universal Access in Human–Computer Interaction. Design and Development Approaches and Methods, Proceedings of the 11th International Conference, UAHCI 2017, Held as Part of HCI International 2017, Vancouver, BC, Canada, 9–14 July 2017; Proceedings, Part I 11; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 383–401. [Google Scholar]
- Christou, C.; Angus, C.; Loscos, C.; Dettori, A.; Roussou, M. A versatile large-scale multimodal VR system for cultural heritage visualization. In Proceedings of the ACM Symposium on VR Software and Technology, Limassol, Cyprus, 1–3 November 2006; pp. 133–140. [Google Scholar]
- Gaitatzes, A.; Christopoulos, D.; Roussou, M. Reviving the past: Cultural heritage meets VR. In Proceedings of the 2001 Conference on VR, Archeology, and Cultural Heritage, Glyfada, Greece, 28–30 November 2001; pp. 103–110. [Google Scholar]
- Bruno, F.; Bruno, S.; De Sensi, G.; Luchi, M.L.; Mancuso, S.; Muzzupappa, M. From 3D reconstruction to VR: A complete methodology for digital archaeological exhibition. J. Cult. Herit. 2010, 11, 42–49. [Google Scholar] [CrossRef]
- Gonizzi Barsanti, S.; Caruso, G.; Micoli, L.L.; Covarrubias Rodriguez, M.; Guidi, G. 3D visualization of cultural heritage artefacts with VR devices. In Proceedings of the 25th International CIPA Symposium 2015, Taipei, Taiwan, 31 August–4 September 2015; Copernicus Gesellschaft mbH: Göttingen, Germany, 2015; Volume 40, pp. 165–172. [Google Scholar]
- Foni, A.; Papagiannakis, G.; Magnenat-Thalmann, N. A Virtual Heritage Case Study: A Modern Approach to the Revival of Ancient Historical or Archeological Sites through Application of 3D Real-Time Computer Graphics. Proc. A VIR 3 2003. Available online: https://api.semanticscholar.org/CorpusID:12528723 (accessed on 5 January 2024).
- Papagiannakis, G.; Ponder, M.; Molet, T.; Kshirsagar, S.; Cordier, F.; Magnenat-Thalmann, M.; Thalmann, D. LIFEPLUS: Revival of life in ancient Pompeii, virtual systems and multimedia (No. CONF). 2002. Available online: https://www.researchgate.net/publication/37444098_LIFEPLUS_Revival_of_life_in_ancient_Pompeii_Virtual_Systems_and_Multimedia (accessed on 5 January 2024).
- Magnenat-Thalmann, N.; Foni, A.E.; Papagiannakis, G.; Cadi-Yazli, N. Real Time Animation and Illumination in Ancient Roman Sites. Int. J. Virtual Real. 2007, 6, 11–24. [Google Scholar]
- Foni, A.E.; Papagiannakis, G.; Cadi-Yazli, N.; Magnenat-Thalmann, N. Time-dependent illumination and animation of virtual Hagia-Sophia. Int. J. Archit. Comput. 2007, 5, 283–301. [Google Scholar] [CrossRef]
- Skovfoged, M.M.; Viktor, M.; Sokolov, M.K.; Hansen, A.; Nielsen, H.H.; Rodil, K. The tales of the Tokoloshe: Safeguarding intangible cultural heritage using VR. In Proceedings of the Second African Conference for Human Computer Interaction: Thriving Communities, New York, NY, USA, 3–7 December 2018; pp. 1–4. [Google Scholar]
- Cao, D.; Li, G.; Zhu, W.; Liu, Q.; Bai, S.; Li, X. VR technology applied in digitalization of cultural heritage. Clust. Comput. 2019, 22, 10063–10074. [Google Scholar]
- Oculus Quest. Available online: https://www.oculus.com/experiences/quest/?locale=el_GR, (accessed on 10 January 2023).
- Argyriou, L.; Economou, D.; Bouki, V. Design methodology for 360 immersive video applications: The case study of a cultural heritage virtual tour. Pers. Ubiquitous Comput. 2020, 24, 843–859. [Google Scholar] [CrossRef]
- Argyriou, L.; Economou, D.; Bouki, V. 360-degree interactive video application for cultural heritage education. In Proceedings of the 3rd Annual International Conference of the Immersive Learning Research Network, Verlag der Technischen Universität Graz, Coimbra, Portugal, 26–29 June 2017. [Google Scholar]
- Škola, F.; Rizvić, S.; Cozza, M.; Barbieri, L.; Bruno, F.; Skarlatos, D.; Liarokapis, F. VR with 360-video storytelling in cultural heritage: Study of presence, engagement, and immersion. Sensors 2020, 20, 5851. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Li, Z.; Liu, Y. A measurement study of oculus 360-degree video streaming. In Proceedings of the 8th ACM on Multimedia Systems Conference, Taipei, Taiwan, 20–23 June 2017; pp. 27–37. [Google Scholar]
- Lo, W.C.; Fan, C.L.; Lee, J.; Huang, C.Y.; Chen, K.T.; Hsu, C.H. 360 video viewing dataset in head-mounted VR. In Proceedings of the 8th ACM on Multimedia Systems Conference, Taipei, Taiwan, 20–23 June 2017; pp. 211–216. [Google Scholar]
- Hajirasouli, A.; Banihashemi, S.; Kumarasuriyar, A.; Talebi, S.; Tabadkani, A. VR-based digitization for endangered heritage sites: Theoretical framework and application. J. Cult. Herit. 2021, 49, 140–151. [Google Scholar] [CrossRef]
- Pribeanu, C.; Balog, A.; Iordache, D.D. Measuring the perceived quality of an AR-based learning application: A multidimensional model. Interact. Learn. Environ. 2017, 25, 482–495. [Google Scholar] [CrossRef]
- Irwansyah, F.S.; Yusuf, Y.M.; Farida, I.; Ramdhani, M.A. Augmented reality (AR) technology on the android operating system in chemistry learning. IOP Conf. Ser. Mater. Sci. Eng. 2018, 288, 012068. [Google Scholar] [CrossRef]
- Moorhouse, N.; Jung, T. Augmented reality to enhance the learning experience in cultural heritage tourism: An experiential learning cycle perspective. eReview Tour. Res. 2017, 8. [Google Scholar]
- Dieck, M.C.T.; Jung, T.H. Value of augmented reality at cultural heritage sites: A stakeholder approach. J. Destin. Mark. Manag. 2017, 6, 110–117. [Google Scholar]
- Choudary, O.; Charvillat, V.; Grigoras, R.; Gurdjos, P. MARCH: Mobile augmented reality for cultural heritage. In Proceedings of the 17th ACM International Conference on Multimedia, Vancouver, BC, Canada, 19–24 October 2009; pp. 1023–1024. [Google Scholar]
- Vlahakis, V.; Karigiannis, J.; Tsotros, M.; Gounaris, M.; Almeida, L.; Stricker, D.; Gleue, T.; Christou, I.T.; Carlucci, R.; Ioannidis, N.; et al. Archeoguide: First results of an augmented reality, mobile computing system in cultural heritage sites. VR Archeol. Cult. Herit. 2001, 9, 584993–585015. [Google Scholar]
- Chung, N.; Lee, H.; Kim, J.Y.; Koo, C. The role of augmented reality for experience-influenced environments: The case of cultural heritage tourism in Korea. J. Travel Res. 2018, 57, 627–643. [Google Scholar] [CrossRef]
- Deliyiannis, I.; Papaioannou, G. Augmented reality for archaeological environments on mobile devices: A novel open framework. Mediterr. Archaeol. Archaeom. 2014, 14, 1–10. [Google Scholar]
- Pierdicca, R.; Frontoni, E.; Zingaretti, P.; Malinverni, E.S.; Colosi, F.; Orazi, R. Making visible the invisible. augmented reality visualization for 3D reconstructions of archaeological sites. In Proceedings of the Augmented and VR: Second International Conference, AVR 2015, Lecce, Italy, 31 August–3 September 2015; Springer International Publishing: Berlin/Heidelberg, Germany, 2015. Proceedings 2. pp. 25–37. [Google Scholar]
- Panou, C.; Ragia, L.; Dimelli, D.; Mania, K. An architecture for mobile outdoors augmented reality for cultural heritage. ISPRS Int. J. Geo-Inf. 2018, 7, 463. [Google Scholar] [CrossRef]
- Fernández-Palacios, B.J.; Nex, F.; Rizzi, A.; Remondino, F. ARCube—The Augmented Reality Cube for Archaeology. Archaeometry 2015, 1, 250–262. [Google Scholar] [CrossRef]
- Fernández-Palacios, B.J.; Rizzi, A.; Nex, F. Augmented reality for archaeological finds. In Proceedings of the Cultural Heritage Preservation: 4th International Conference, EuroMed 2012, Limassol, Cyprus, 29 October–3 November 2012; Springer: Berlin/Heidelberg, Germany, 2012. Proceedings 4. pp. 181–190. [Google Scholar]
- The Historical Figures AR. Available online: https://play.google.com/store/apps/details?id=ca.altkey.thehistoricalfiguresar (accessed on 31 October 2022).
- Carre, A.L.; Dubois, A.; Partarakis, N.; Zabulis, X.; Patsiouras, N.; Mantinaki, E.; Zidianakis, E.; Cadi, N.; Baka, E.; Thalmann, N.M.; et al. Mixed-reality demonstration and training of glassblowing. Heritage 2022, 5, 103–128. [Google Scholar] [CrossRef]
- Gedenryd, H. How Designers Work—Making Sense of Authentic Cognitive Activities. Ph.D. Thesis, Lund University, Lund, Sweden, 1998. [Google Scholar]
- Keller, C.M.; Keller, J.D. Imagery in cultural tradition and innovation. Mind Cult. Act. 1999, 6, 3–32. [Google Scholar] [CrossRef]
- Di Nuovo, A.; De La Cruz, V.M.; Marocco, D. Special issue on artificial mental imagery in cognitive systems and robotics. Adapt. Behav. 2013, 21, 217–221. [Google Scholar] [CrossRef]
- Di Nuovo, A.; Marocco, D.; Di Nuovo, S.; Cangelosi, A. Embodied mental imagery in cognitive robots. In Springer Handbook of Model-Based Science; Springer: Berlin/Heidelberg, Germany, 2017; pp. 619–637. [Google Scholar]
- Zabulis, X.; Meghini, C.; Dubois, A.; Doulgeraki, P.; Partarakis, N.; Adami, I.; Karuzaki, E.; Carre, A.; Patsiouras, N.; Kaplanidi, D.; et al. Digitisation of traditional craft processes. J. Comput. Cult. Herit. 2022, 15, 1–24. [Google Scholar] [CrossRef]
- Aktas, B.; Mäkelä, M.; Laamanen, T.K. Material connections in craft making: The case of felting. In Proceedings of the Design Research Society International Conference, Brisbane, Australia, 11–14 August 2020; Design Research Society: Brisbane, Australia; pp. 2326–2343. [Google Scholar]
- Stefanidi, E.; Partarakis, N.; Zabulis, X.; Zikas, P.; Papagiannakis, G.; Magnenat Thalmann, N. TooltY: An approach for the combination of motion capture and 3D reconstruction to present tool usage in 3D environments. In Intelligent Scene Modeling and Human-Computer Interaction; Springer International Publishing: Cham, Switzerland, 2021; pp. 165–180. [Google Scholar]
- Stefanidi, E.; Partarakis, N.; Zabulis, X.; Papagiannakis, G. An approach for the visualization of crafts and machine usage in virtual environments. In Proceedings of the 13th International Conference on Advances in Computer-Human Interactions, Valencia, Spain, 21–25 November 2020; pp. 21–25. [Google Scholar]
- Bouloukakis, M.; Partarakis, N.; Drossis, I.; Kalaitzakis, M.; Stephanidis, C. Virtual reality for smart city visualization and monitoring. In Mediterranean Cities and Island Communities: Smart, Sustainable, Inclusive and Resilient; Springer: Cham, Switzerland, 2019; pp. 1–18. [Google Scholar]
- Rossau, I.G.; Skovfoged, M.M.; Czapla, J.J.; Sokolov, M.K.; Rodil, K. Dovetailing: Safeguarding traditional craftsmanship using virtual reality. Int. J. Intang. Herit. 2019, 14, 104–120. [Google Scholar]
- Irregularcorporation. Available online: https://theirregularcorporation.com/ (accessed on 27 November 2023).
- Woodwork Simulator. Available online: https://www.igdb.com/games/woodwork-simulator (accessed on 27 November 2023).
- Murray, J.; Sawyer, W. Virtual Crafting Simulator: Teaching Heritage through Simulation. In Proceedings of EDULEARN15; University of Lincoln: Lincoln, UK, 2015; pp. 7668–7675. [Google Scholar]
- Iyobe, M.; Ishida, T.; Miyakawa, A.; Shibata, Y. Kansei retrieval method by principal component analysis of Japanese traditional crafts. In Proceedings of the 23rd International Symposium on Artificial Life and Robotics, Beppu, Japan, 18–20 January 2018; pp. 588–591. [Google Scholar]
- Iyobe, M.; Ishida, T.; Miyakawa, A.; Sugita, K.; Uchida, N.; Shibata, Y. Development of a mobile virtual traditional crafting presentation system using augmented reality technology. Int. J. Space-Based Situated Comput. (IJSSC) 2017, 6, 239–251. [Google Scholar] [CrossRef]
- Iyobe, M.; Ishida, T.; Miyakawa, A.; Shibata, Y. Implementation of a mobile traditional crafting application using kansei retrieval method. IT CoNvergence PRAct. (INPRA) 2017, 5, 15–44. [Google Scholar]
- Kaplan, A.D.; Cruit, J.; Endsley, M.; Beers, S.M.; Sawyer, B.D.; Hancock, P.A. The effects of virtual reality, augmented reality, and mixed reality as training enhancement methods: A meta-analysis. Hum. Factors 2021, 63, 706–726. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Franco, M.; Pizarro, R.; Cermeron, J.; Li, K.; Thorn, J.; Hutabarat, W.; Tiwari, A.; Bermell-Garcia, P. Immersive mixed reality for manufacturing training. Front. Robot. AI 2017, 4, 3. [Google Scholar] [CrossRef]
- Verhey, J.T.; Haglin, J.M.; Verhey, E.M.; Hartigan, D.E. Virtual, augmented, and mixed reality applications in orthopedic surgery. Int. J. Med. Robot. Comput. Assist. Surg. 2020, 16, e2067. [Google Scholar] [CrossRef] [PubMed]
- Alnagrat, A.J.A. Virtual Transformations in Human Learning Environment: An Extended Reality Approach. J. Hum. Centered Technol. 2022, 1, 116–124. [Google Scholar] [CrossRef]
- Pretolesi, D.; Zechner, O. Persuasive XR Training: Improving Training with AI and Dashboards. In Proceedings of the 18th International Conference on Persuasive Technology (PERSUASIVE 2023), Eindhoven, The Netherlands, 19–21 April 2023; p. 8. [Google Scholar]
- Nansense. Available online: https://www.nansense.com, (accessed on 7 December 2023).
- Rokoko. Available online: https://www.rokoko.com, (accessed on 7 December 2023).
- Mehta, D.; Sotnychenko, O.; Mueller, F.; Xu, W.; Elgharib, M.; Fua, P.; Seidel, H.-P.; Rhodin, H.; Pons-Moll, G.; Theobalt, C. XNect: Real-time multi-person 3D motion capture with a single RGB camera. ACM Trans. Graph. (TOG) 2020, 39, 82:1–82:17. [Google Scholar] [CrossRef]
- Laraba, S.; Brahimi, M.; Tilmanne, J.; Dutoit, T. 3D skeleton-based action recognition by representing motion capture sequences as 2D-RGB images. Comput. Animat. Virtual Worlds 2017, 28, e1782. [Google Scholar] [CrossRef]
- Qammaz, A.; Argyros, A.A. MocapNET: Ensemble of SNN Encoders for 3D Human Pose Estimation in RGB Images. In Proceedings of the BMVC, Cardiff, UK, 9–12 September 2019; p. 46. [Google Scholar]
- Qammaz, A.; Argyros, A. Occlusion-tolerant and personalized 3D human pose estimation in RGB images. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), IEEE, Milan, Italy, 10–15 January 2021; pp. 6904–6911. [Google Scholar]
- Qammaz, A.; Argyros, A.A. A Unified Approach for Occlusion Tolerant 3D Facial Pose Capture and Gaze Estimation Using MocapNETs. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 3178–3188. [Google Scholar]
- D’Apuzzo, N. Overview of 3D surface digitization technologies in Europe. In Three-Dimensional Image Capture and Applications VII; SPIE: Wallisellen, Switzerland, 2006; Volume 6056, pp. 42–54. [Google Scholar]
- Durou, J.D.; Falcone, M.; Quéau, Y.; Tozza, S. (Eds.) Advances in Photometric 3d-Reconstruction; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–29. [Google Scholar]
- Daneshmand, M.; Helmi, A.; Avots, E.; Noroozi, F.; Alisinanoglu, F.; Arslan, H.S.; Gorbova, J.; Haamer, R.E.; Ozcinar, C.; Anbarjafari, G. 3d scanning: A comprehensive survey. arXiv 2018, preprint. arXiv:1801.08863. [Google Scholar]
- Xiong, Z.; Zhang, Y.; Wu, F.; Zeng, W. Computational depth sensing: Toward high-performance commodity depth cameras. IEEE Signal Process. Mag. 2017, 34, 55–68. [Google Scholar] [CrossRef]
- Zhang, T.; Nakamura, Y. Hrpslam: A benchmark for rgb-d dynamic slam and humanoid vision. In Proceedings of the 2019 Third IEEE International Conference on Robotic Computing (IRC), IEEE, Naples, Italy, 25–27 February 2019; pp. 110–116. [Google Scholar]
- Aguilar, W.G.; Rodríguez, G.A.; Álvarez, L.; Sandoval, S.; Quisaguano, F.; Limaico, A. Visual SLAM with a RGB-D camera on a quadrotor UAV using on-board processing. In Proceedings of the Advances in Computational Intelligence: 14th International Work-Conference on Artificial Neural Networks, IWANN 2017, Cadiz, Spain, 14–16 June 2017; Proceedings, Part II 14. Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 596–606. [Google Scholar]
- Benko, H.; Holz, C.; Sinclair, M.; Ofek, E. Normaltouch and texturetouch: High-fidelity 3d haptic shape rendering on handheld virtual reality controllers. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, Tokyo, Japan, 16–19 October 2016; pp. 717–728. [Google Scholar]
- Choi, I.; Ofek, E.; Benko, H.; Sinclair, M.; Holz, C. Claw: A multifunctional handheld haptic controller for grasping, touching, and triggering in virtual reality. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; pp. 1–13. [Google Scholar]
- Whitmire, E.; Benko, H.; Holz, C.; Ofek, E.; Sinclair, M. Haptic revolver: Touch, shear, texture, and shape rendering on a reconfigurable virtual reality controller. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; pp. 1–12. [Google Scholar]
- Coelho, C.; Tichon, J.; Hine, T.J.; Wallis, G.; Riva, G. Media presence and inner presence: The sense of presence in virtual reality technologies. In From Communication to Presence: Cognition, Emotions and Culture towards the Ultimate Communicative Experience; IOS Press: Amsterdam, The Netherlands, 2006; Volume 11, pp. 25–45. [Google Scholar]
- North, M.M.; North, S.M. A comparative study of sense of presence of traditional virtual reality and immersive environments. Australas. J. Inf. Syst. 2016, 20, 1–15. [Google Scholar]
- Argelaguet, F.; Hoyet, L.; Trico, M.; Lécuyer, A. The role of interaction in virtual embodiment: Effects of the virtual hand representation. In Proceedings of the 2016 IEEE Virtual Reality (VR), IEEE, Greenville, SC, USA, 19–23 March 2016; pp. 3–10. [Google Scholar]
- Kilteni, K.; Groten, R.; Slater, M. The sense of embodiment in virtual reality. Presence Teleoperators Virtual Environ. 2012, 21, 373–387. [Google Scholar] [CrossRef]
- Genay, A.; Lécuyer, A.; Hachet, M. Being an avatar “for real”: A survey on virtual embodiment in augmented reality. IEEE Trans. Vis. Comput. Graph. 2021, 28, 5071–5090. [Google Scholar] [CrossRef] [PubMed]
- Hassan, R. Digitality, virtual reality and the ‘empathy machine’. Digit. Journal. 2020, 8, 195–212. [Google Scholar] [CrossRef]
- Kenanidis, E.; Boutos, P.; Voulgaris, G.; Zgouridou, A.; Gkoura, E.; Gamie, Z.; Papagiannakis, G.; Tsiridis, E. Effectiveness of virtual reality compared to video training on acetabular cup and femoral stem implantation accuracy in total hip arthroplasty among medical students: A randomised controlled trial. Int. Orthop. 2023, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zikas, P.; Protopsaltis, A.; Lydatakis, N.; Kentros, M.; Geronikolakis, S.; Kateros, S.; Kamarianakis, M.; Evangelou, G.; Filippidis, A.; Grigoriou, E.; et al. MAGES 4.0: Accelerating the world’s transition to VR training and democratizing the authoring of the medical metaverse. IEEE Comput. Graph. Appl. 2023, 43, 43–56. [Google Scholar] [CrossRef]
- Saccoccio, S. Towards Enabling Storyliving Experiences: How XR Technologies Can Enhance Brand Storytelling. Master Thesis, University of Milan, Milan, Italy, 2022. [Google Scholar]
- Miller, C.H. Digital Storytelling 4e: A Creator’s Guide to Interactive Entertainment; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Raybourn, E.M. A new paradigm for serious games: Transmedia learning for more effective training and education. J. Comput. Sci. 2014, 5, 471–481. [Google Scholar] [CrossRef]
- Streicher, A.; Smeddinck, J.D. Personalized and adaptive serious games. In Proceedings of the Entertainment Computing and Serious Games: International GI-Dagstuhl Seminar 15283, Dagstuhl Castle, Germany, 5–10 July 2015; Revised Selected Papers. Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 332–377. [Google Scholar]
- Williams-Bell, F.M.; Kapralos, B.; Hogue, A.; Murphy, B.M.; Weckman, E.J. Using serious games and virtual simulation for training in the fire service: A review. Fire Technol. 2015, 51, 553–584. [Google Scholar] [CrossRef]
- Arnab, S. (Ed.) Serious Games for Healthcare: Applications and Implications; IGI Global: Hershey, PA, USA, 2012. [Google Scholar]
- Chittaro, L.; Buttussi, F. Assessing knowledge retention of an immersive serious game vs. a traditional education method in aviation safety. IEEE Trans. Vis. Comput. Graph. 2015, 21, 529–538. [Google Scholar] [CrossRef]
- Chittaro, L.; Sioni, R. Serious games for emergency preparedness: Evaluation of an interactive vs. a non-interactive simulation of a terror attack. Comput. Hum. Behav. 2015, 50, 508–519. [Google Scholar] [CrossRef]
- Mystakidis, S.; Besharat, J.; Papantzikos, G.; Christopoulos, A.; Stylios, C.; Agorgianitis, S.; Tselentis, D. Design, development, and evaluation of a virtual reality serious game for school fire preparedness training. Educ. Sci. 2022, 12, 281. [Google Scholar] [CrossRef]
- Checa, D.; Miguel-Alonso, I.; Bustillo, A. Immersive virtual-reality computer-assembly serious game to enhance autonomous learning. Virtual Real. 2021, 27, 3301–3318. [Google Scholar] [CrossRef]
- Rebolledo-Mendez, G.; Avramides, K.; De Freitas, S.; Memarzia, K. Societal impact of a serious game on raising public awareness: The case of FloodSim. In Proceedings of the 2009 ACM SIGGRAPH Symposium on Video Games, New Orleans, LA, USA, 3–7 August 2009; pp. 15–22. [Google Scholar]
- De Jans, S.; Van Geit, K.; Cauberghe, V.; Hudders, L.; De Veirman, M. Using games to raise awareness: How to co-design serious mini-games? Comput. Educ. 2017, 110, 77–87. [Google Scholar] [CrossRef]
- Zarzuela, M.M.; Pernas, F.J.D.; Martínez, L.B.; Ortega, D.G.; Rodríguez, M.A. Mobile serious game using augmented reality for supporting children’s learning about animals. Procedia Comput. Sci. 2013, 25, 375–381. [Google Scholar] [CrossRef]
- Checa, D.; Bustillo, A. A review of immersive virtual reality serious games to enhance learning and training. Multimed. Tools Appl. 2020, 79, 5501–5527. [Google Scholar] [CrossRef]
- Avola, D.; Cinque, L.; Foresti, G.L.; Marini, M.R. An interactive and low-cost full body rehabilitation framework based on 3D immersive serious games. J. Biomed. Inform. 2019, 89, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.; Mayer, S.; Buschek, D. Introduction to Intelligent User Interfaces. In Proceedings of the Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, New York, NY, USA, 8–13 May 2021; pp. 1–4. [Google Scholar]
- Hitzler, P.; Bianchi, F.; Ebrahimi, M.; Sarker, M.K. Neural-symbolic integration and the semantic web. Semant. Web 2020, 11, 3–11. [Google Scholar] [CrossRef]
- Shadbolt, N.; Berners-Lee, T.; Hall, W. The semantic web revisited. IEEE Intell. Syst. 2006, 21, 96–101. [Google Scholar] [CrossRef]
- Ławrynowicz, A. Creative AI: A new avenue for the Semantic Web? Semant. Web 2020, 11, 69–78. [Google Scholar] [CrossRef]
- Card, S. Information visualization. In Human-Computer Interaction; CRC Press: Boca Raton, FL, USA, 2009; pp. 199–234. [Google Scholar]
- Nakao, Y.; Strappelli, L.; Stumpf, S.; Naseer, A.; Regoli, D.; Gamba, G.D. Towards responsible AI: A design space exploration of human-centered artificial intelligence user interfaces to investigate fairness. Int. J. Hum. Comput. Interact. 2023, 39, 1762–1788. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Partarakis, N.; Zabulis, X. A Review of Immersive Technologies, Knowledge Representation, and AI for Human-Centered Digital Experiences. Electronics 2024, 13, 269. https://doi.org/10.3390/electronics13020269
Partarakis N, Zabulis X. A Review of Immersive Technologies, Knowledge Representation, and AI for Human-Centered Digital Experiences. Electronics. 2024; 13(2):269. https://doi.org/10.3390/electronics13020269
Chicago/Turabian StylePartarakis, Nikolaos, and Xenophon Zabulis. 2024. "A Review of Immersive Technologies, Knowledge Representation, and AI for Human-Centered Digital Experiences" Electronics 13, no. 2: 269. https://doi.org/10.3390/electronics13020269
APA StylePartarakis, N., & Zabulis, X. (2024). A Review of Immersive Technologies, Knowledge Representation, and AI for Human-Centered Digital Experiences. Electronics, 13(2), 269. https://doi.org/10.3390/electronics13020269