A Time Series-Based Approach to Elastic Kubernetes Scaling
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. Time Series Forecasting Algorithms
3.1.1. Holt–Winter Algorithm
3.1.2. Gated Recurrent Units
3.2. Predictive Model Management Method
4. Results
4.1. Application Configuration
4.2. Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HPA | Horizontal Pod Autoscaling |
VPA | Vertical Pod Autoscaling |
RNN | Recurrent Neural Network |
GRU | Gated Recurrent Unit |
LSTM | Long Short-Term Memory |
CRD | Custom Resource Definitions |
UDS | Unix Domain Socket |
TCP | Transmission Control Protocol |
MSE | Mean Squared Error |
SLA | Service Level Agreement |
References
- Abeni, L.; Faggioli, D. Using Xen and KVM as real-time hypervisors. J. Syst. Archit. 2020, 106, 101709. [Google Scholar] [CrossRef]
- Malviya, A.; Dwivedi, R.K. A comparative analysis of container orchestration tools in cloud computing. In Proceedings of the 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 23–25 March 2022; pp. 698–703. [Google Scholar]
- Anderson, C. Docker [software engineering]. IEEE Softw. 2015, 32, 102-c3. [Google Scholar] [CrossRef]
- Pahl, C.; Brogi, A.; Soldani, J.; Jamshidi, P. Cloud container technologies: A state-of-the-art review. IEEE Trans. Cloud Comput. 2017, 7, 677–692. [Google Scholar] [CrossRef]
- Shah, J.; Dubaria, D. Building modern clouds: Using docker, kubernetes and Google cloud platform. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019; pp. 184–189. [Google Scholar]
- Burns, B.; Beda, J.; Hightower, K.; Evenson, L. Kubernetes: Up and Running; O’Reilly Media, Inc.: Newton, MA, USA, 2022. [Google Scholar]
- Nguyen, T.T.; Yeom, Y.J.; Kim, T.; Park, D.H.; Kim, S. Horizontal pod autoscaling in kubernetes for elastic container orchestration. Sensors 2020, 20, 4621. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.; Park, J.; Lee, C.; Han, D. pHPA: A proactive autoscaling framework for microservice chain. In Proceedings of the 5th Asia-Pacific Workshop on Networking (APNet 2021), Shenzhen, China, 24–25 June 2021; pp. 65–71. [Google Scholar]
- Zhao, A.; Huang, Q.; Huang, Y.; Zou, L.; Chen, Z.; Song, J. Research on resource prediction model based on kubernetes container auto-scaling technology. IOP Conf. Ser. Mater. Sci. Eng. 2019, 569, 052092. [Google Scholar] [CrossRef]
- Kan, C. DoCloud: An elastic cloud platform for Web applications based on Docker. In Proceedings of the 2016 18th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Republic of Korea, 31 January–3 February 2016; pp. 478–483. [Google Scholar]
- Iqbal, W.; Erradi, A.; Abdullah, M.; Mahmood, A. Predictive auto-scaling of multi-tier applications using performance varying cloud resources. IEEE Trans. Cloud Comput. 2019, 10, 595–607. [Google Scholar] [CrossRef]
- Saxena, D.; Singh, A.K. A proactive autoscaling and energy-efficient VM allocation framework using online multi-resource neural network for cloud data center. Neurocomputing 2021, 426, 248–264. [Google Scholar] [CrossRef]
- Xue, S.; Qu, C.; Shi, X.; Liao, C.; Zhu, S.; Tan, X.; Ma, L.; Wang, S.; Wang, S.; Hu, Y.; et al. A Meta Reinforcement Learning Approach for Predictive Autoscaling in the Cloud. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022; pp. 4290–4299. [Google Scholar]
- Haq, M.A. SMOTEDNN: A novel model for air pollution forecasting and AQI classification. Comput. Mater. Contin. 2022, 71, 1403–1425. [Google Scholar]
- Haq, M.A. CDLSTM: A novel model for climate change forecasting. Comput. Mater. Contin. 2022, 71, 2363–2381. [Google Scholar]
- Masini, R.P.; Medeiros, M.C.; Mendes, E.F. Machine learning advances for time series forecasting. J. Econ. Surv. 2023, 37, 76–111. [Google Scholar] [CrossRef]
- Balla, D.; Simon, C.; Maliosz, M. Adaptive scaling of Kubernetes pods. In Proceedings of the NOMS 2020—2020 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 20–24 April 2020; pp. 1–5. [Google Scholar]
- Knative Pod Autoscaler. Available online: https://www.alibabacloud.com/help/en/ack/ack-managed-and-ack-dedicated/user-guide/enable-automatic-scaling-for-pods-based-on-the-number-of-requests/?spm=a2c63.p38356.0.0.551741bbBm0ZNB (accessed on 10 October 2023).
- Kubernetes Event-Driven Autoscaling. Available online: https://keda.sh/docs/2.12/concepts/#architecture (accessed on 7 December 2023).
- Imdoukh, M.; Ahmad, I.; Alfailakawi, M.G. Machine learning-based auto-scaling for containerized applications. Neural Comput. Appl. 2020, 32, 9745–9760. [Google Scholar] [CrossRef]
- Dang-Quang, N.M.; Yoo, M. Deep learning-based autoscaling using bidirectional long short-term memory for kubernetes. Appl. Sci. 2021, 11, 3835. [Google Scholar] [CrossRef]
- Shim, S.; Dhokariya, A.; Doshi, D.; Upadhye, S.; Patwari, V.; Park, J.Y. Predictive Auto-scaler for Kubernetes Cloud. In Proceedings of the 2023 IEEE International Systems Conference (SysCon), Vancouver, BC, Canada, 17–20 April 2023; pp. 1–8. [Google Scholar]
- Chatfield, C. The Holt-winters forecasting procedure. J. R. Stat. Soc. Ser. 1978, 27, 264–279. [Google Scholar] [CrossRef]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Shewalkar, A.; Nyavanandi, D.; Ludwig, S.A. Performance evaluation of deep neural networks applied to speech recognition: RNN, LSTM and GRU. J. Artif. Intell. Soft Comput. Res. 2019, 9, 235–245. [Google Scholar] [CrossRef]
- Kanai, S.; Fujiwara, Y.; Iwamura, S. Preventing gradient explosions in gated recurrent units. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30. [Google Scholar]
- Brazil, B. Prometheus: Up and Running: Infrastructure and Application Performance Monitoring; O’Reilly Media, Inc.: Newton, MA, USA, 2018. [Google Scholar]
Node Role | CPU Core Count | RAM Capacity (GB) |
---|---|---|
controlplane | 2 | 2 |
worker | 2 | 2 |
worker | 2 | 2 |
worker | 2 | 2 |
URI Name | HTTP Method | Caption |
---|---|---|
/product/create | POST | Upload product information and get detection result |
/product/list | GET | List all product information |
Software Name | Software Version |
---|---|
Ubuntu | 23.04 |
Kubernetes | 1.26.3 |
Docker | 23.0.6 |
Prometheus | 2.47 |
Golang | 1.19 |
Evaluation Metrics | Holt-Winter | GRU |
---|---|---|
MSE | 0.01756 | 0.00166 |
Prediction Time Consumption | 0.06551 ms | 11.94018 ms |
Training Time Consumption | N/A | 7.98333 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, H.; Liao, S. A Time Series-Based Approach to Elastic Kubernetes Scaling. Electronics 2024, 13, 285. https://doi.org/10.3390/electronics13020285
Yuan H, Liao S. A Time Series-Based Approach to Elastic Kubernetes Scaling. Electronics. 2024; 13(2):285. https://doi.org/10.3390/electronics13020285
Chicago/Turabian StyleYuan, Haibin, and Shengchen Liao. 2024. "A Time Series-Based Approach to Elastic Kubernetes Scaling" Electronics 13, no. 2: 285. https://doi.org/10.3390/electronics13020285
APA StyleYuan, H., & Liao, S. (2024). A Time Series-Based Approach to Elastic Kubernetes Scaling. Electronics, 13(2), 285. https://doi.org/10.3390/electronics13020285