i:;l?é electronics @5

Article

A Time Series-Based Approach to Elastic Kubernetes Scaling

Haibin Yuan and Shengchen Liao *

check for
updates

Citation: Yuan, H.; Liao, S. A Time
Series-Based Approach to Elastic
Kubernetes Scaling. Electronics 2024,
13,285. https:/ /doi.org/10.3390/
electronics13020285

Academic Editors: Hao Xue and
Du Huynh

Received: 13 December 2023
Revised: 3 January 2024
Accepted: 3 January 2024
Published: 8 January 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China;
yuanhb@buaa.edu.cn
* Correspondence: i2439786585@buaa.edu.cn

Abstract: With the increasing popularity of cloud-native architectures and containerized applications,
Kubernetes has become a critical platform for managing these applications. However, Kubernetes
still faces challenges when it comes to resource management. Specifically, the platform cannot
achieve timely scaling of the resources of applications when their workloads fluctuate, leading to
insufficient resource allocation and potential service disruptions. To address this challenge, this study
proposes a predictive auto-scaling Kubernetes Operator based on time series forecasting algorithms,
aiming to dynamically adjust the number of running instances in the cluster to optimize resource
management. In this study, the Holt-Winter forecasting method and the Gated Recurrent Unit
(GRU) neural network, two robust time series forecasting algorithms, are employed and dynamically
managed. To evaluate the effectiveness, we collected workload metrics from a deployed RESTful
HTTP application, implemented predictive auto-scaling, and assessed the differences in service
quality before and after the implementation. The experimental results demonstrate that the predictive
auto-scaling component can accurately predict the future trend of the metrics and intelligently scale
resources based on the prediction results, with a Mean Squared Error (MSE) of 0.00166. Compared to
the deployment using a single algorithm, the cold start time is reduced by 1 h and 41 min, and the
fluctuation in service quality is reduced by 83.3%. This process effectively enhances the quality of

service and offers a novel solution for resource management in Kubernetes clusters.

Keywords: time series forecasting; Kubernetes; cloud computing; cloud native; predictive scaling

1. Introduction

The evolution of cloud computing has been significantly shaped by virtualization tech-
nologies such as KVM and Xen, which have revolutionized the utilization and management
of computing resources [1]. As technology has advanced, containerization has emerged
as a leading paradigm for deploying and managing applications, due to its lightweight,
portable, and efficient nature [2]. Containerization allows applications and their depen-
dencies to be packaged into standalone units, enabling seamless execution across various
environments [2,3]. This development has paved the way for Kubernetes, an open-source
platform that orchestrates these containers, ensuring efficient and reliable application
deployment and management[4,5].

For Kubernetes, its automatic scaling capability is one of its core features [6]. Through
automatic scaling, Kubernetes can flexibly allocate resources for different business objects
to ensure stable operation and resource efficiency. Kubernetes mainly provides two pas-
sive scaling methods: Horizontal Pod Auto-scaling (HPA) and Vertical Pod Auto-scaling
(VPA) [7]. HPA scales by increasing or decreasing the number of Pod replicas, while VPA
scales by adjusting the resource quotas of each Pod. In cloud-native environments, HPA
is the primary scaling method [8]. However, related research indicates that the reactive
scaling methods provided by Kubernetes trigger scaling operations only when metrics
reach certain thresholds, which results in response delays and can impact the stability of
the business, and can even lead to large-scale service interruptions in some cases [7,9].

Electronics 2024, 13, 285. https:/ /doi.org/10.3390/ electronics13020285 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13020285
https://doi.org/10.3390/electronics13020285
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13020285
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13020285?type=check_update&version=1

Electronics 2024, 13, 285

2of 16

In order to address potential issues caused by the traditional passive scaling, numer-
ous studies have emerged. Some of these studies are dedicated to optimizing passive
scaling strategies, while others explore methods of active scaling [10-13]. However, these
optimization strategies often rely on specific, singular algorithms, and the majority of
research primarily focuses on applications in virtualized environments. Meanwhile, related
studies in containerized environments are still in the early stages.

To address the challenges of elastic resource scaling in containerized environments,
this study proposes a Kubernetes scaling strategy based on time-series forecasting. Machine
learning predictive methods, which have been widely applied across various fields [14,15],
offer effective solutions such as traditional Recurrent Neural Networks (RNN) and Long
Short-Term Memory (LSTM) for time-series forecasting [16]. Therefore, the application of
these methods to Kubernetes predictive scaling holds promising potential. To adapt to
containerized scenarios, we developed an automatic scaling system using the Kubernetes
Operator mode. To enhance its versatility, the system allows for the integration of multiple
predictive models. In addition to the Holt-Winter and GRU models integrated within the
system, users can expand to more models through a generic interface to adapt to different
business scenarios. By monitoring the runtime metrics of business objects and predicting
their future trends, we can execute scaling operations before resource demand peaks, thus
ensuring the stable operation of the business.

The experimental results demonstrate that the predictive scaling operator can effec-
tively supervise applications within the Kubernetes cluster, collect application metric data,
and perform predictive scaling. By proactively expanding resources before the arrival
of peak loads, it significantly enhances the stability of the applications. Simultaneously,
it contracts resources during low-load periods, thus preventing resource wastage. This
method provides a new perspective on resource management within the Kubernetes envi-
ronment, allowing for more precise resource allocation. It has made a certain contribution
to improving the efficiency and performance of applications within the Kubernetes cluster.

2. Related Work

Numerous studies have emerged that address the issues of potential degradation
in application service quality or resource wastage caused by the traditional HPA scaling
methods in Kubernetes. These can be principally categorized into reactive and proactive
scaling methods.

HPA represents a typical reactive scaling method, setting the metrics and thresholds
for auto-scaling. When the application’s metrics reach the corresponding thresholds, HPA
triggers the auto-scaling operation. Some studies, building on horizontal scaling, have
improved this threshold-based auto-scaling method by optimizing threshold selection and
integrating more auto-scaling methods.

In [17], the authors proposed a new scaling framework, Libra, which combines Ku-
bernetes” HPA and VPA to more rationally determine the resource upper limit of each
pod, thereby achieving more precise horizontal scaling. The experimental results demon-
strate that Libra performs better in CPU resource allocation compared to traditional
scaling methods.

Alibaba Cloud has developed a new scaling component, Kubernetes Pod Autoscaler
(KPA) [18], which incorporates various modes, such as stable and emergency modes.
Depending on the application’s status, this component can switch between different modes,
each with distinct scaling thresholds. Through this approach, KPA achieves more flexible
reactive scaling.

The open-source component, Kubernetes Event-Driven Auto-scaling (KEDA), trans-
forms threshold-based reactive scaling into event-driven scaling [19]. By monitoring specific
events of the application, it allocates resources to the application, making the application’s
resource scaling more flexible. Experimental evidence shows that it can effectively optimize
application performance in a cloud-native environment.

Electronics 2024, 13, 285

30f16

However, reactive auto-scaling exhibits a certain degree of latency. Auto-scaling
operations are only triggered when specified thresholds are reached or specific events
are captured. For some applications with longer startup times, the initialization process
may take considerable time after the auto-scaling command is issued. This can impact the
stability of the service during this phase and may significantly affect service quality.

In contrast, proactive auto-scaling is based on certain predictive algorithms that are
used to calculate the load trend of the application and complete auto-scaling operations in
advance, compensating for the shortcomings of reactive scaling. There are some noteworthy
studies on this topic.

In [20], the authors proposed an auto-scaling architecture based on machine learning.
Using load data obtained from the load balancer, the system employs the LSTM model
to predict the future load trend of the application. The experimental results show that,
compared to the Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural
Networks (ANN) models, the LSTM model has a lower prediction loss value.

In [21], a predictive auto-scaling method based on Bidirectional LSTM (Bi-LSTM) was
proposed. The experimental results indicate that this model possesses a higher accuracy
compared to the LSTM model.

In [22], the authors constructed an auto-scaling component that uses Prometheus to
collect and store custom metrics gathered within the cluster. In terms of metric analysis,
the authors used ARIMA, LSTM, Bi-LSTM, and Transformer models to predict the number
of HTTP requests received by the application. Experimental comparisons revealed that the
Transformer model provided the best accuracy in workload prediction.

However, learning-based algorithms require a large amount of data for training, taking
a long time to prepare the model in the context of real-time data collection. Another study
proposed an autoscale controller that includes both reactive and predictive controllers. In
the predictive controller, the Autoregressive Moving Average (ARMA) statistical model
is used to predict the requests received by the application [10]. Although this type of
algorithm does not require a large amount of historical data, its accuracy still needs to be
improved compared to that of learning-based algorithms.

Evidently, while the reactive scaling method is simple to implement, it does not
effectively address the issue of scaling lag. On the other hand, although proactive scaling
methods can complete scaling operations in advance, they require substantial data support.
Moreover, existing studies typically only activate one prediction model, failing to fully
exploit the advantages of different models to adapt to various scenarios.

Inspired by previous studies and in order to accommodate more use cases, ensure
predictions can be made even with limited data, and achieve higher accuracy predictions
with ample data, the predictive scaling method proposed in this paper employs and
manages multiple prediction models. It also supports users in adding custom prediction
models and parameter configurations.

3. Methodology
3.1. Time Series Forecasting Algorithms
3.1.1. Holt-Winter Algorithm

The Holt-Winter algorithm, also known as triple exponential smoothing, is a prevalent
method for forecasting time series data with both seasonal and trend components. Unlike
simple exponential smoothing, the Holt-Winter algorithm incorporates both trend and
seasonal factors, aligning its predictions more closely with real-world scenarios [23].

At its core, the Holt—Winter algorithm forecasts future data by applying exponential
weighted smoothing to historical data. This approach assigns higher weights to recent data
and gradually reduces the reliance on older data, allowing the model to adapt to changes
in the time series dynamically.

The Holt-Winter algorithm comprises three main components: the level, trend, and
seasonal components. These components collectively form the forecasting framework of the
Holt-Winter model. The level and trend components describe the basic shape of the time se-

Electronics 2024, 13, 285

4of 16

ries, while the seasonal component captures the patterns of change across different seasons.
This combination makes the Holt-Winter algorithm particularly effective for forecasting
seasonal time series data with high prediction accuracy. The specific implementation
formulas of the model are as follows:

by =a(yx —sy—1) + (1 —a)(ly—1+by1) (1)
bx = ﬁ(ex - fxfl) + (1 - ,B)bxfl (2)

Sx = 'Y(]/x - gx) + (1 - '7)Sx—L 3)
Pxtm = by + mby + Sx—L+14(m—1) mod L (4)

Equations (1)-(4) represent the formulas for the level component, trend component,
seasonal component, and prediction, respectively. In the formulas mentioned above, /, rep-
resents the level at time x, by represents the trend at time x, y, is the actual observed value
at time x, s, represents the seasonal component at time x, s,_ is the seasonal component
from the previous quarter, s,_ 1 (,—1) mod L i the seasonal component for m periods
into the future, and x4, represents the forecasted value for m periods into the future.
Also,these four formulas have parameters «, 3, and v, all of which are hyperparameters.
Their values need to be determined through an optimization process to achieve the best
forecasting performance.

In summary, the Holt-Winter algorithm, through smoothing of historical data and
consideration of time series’ level, trend, and seasonal characteristics, accomplishes the
forecasting of future data. Its major advantage is that it does not require complex training
processes; you only need to set the hyperparameters, and you can directly make predictions.
This makes the Holt-Winter algorithm widely valuable in time series forecasting.

3.1.2. Gated Recurrent Units

Gated Recurrent Unit (GRU) is a popular recurrent neural network architecture in-
troduced by Cho and others in 2014 [24]. The design of the GRU network structure aims
to address the challenges faced by traditional Recurrent Neural Networks (RNNs) in han-
dling long-term dependencies while maintaining a more concise computational complexity
compared to Long Short-Term Memory (LSTM) networks [25].

The key feature of GRU networks is the introduction of two structures: the update
gate and the reset gate. The update gate determines how much of the previous hidden state
information should be retained when generating the current hidden state, while the reset
gate controls the influence of past hidden state information when generating the candidate
hidden state. These two gating mechanisms enable GRU to effectively capture long-term
dependencies in time series data. The design effectively resolves the gradient explosion
problem in RNNs [26].

The unit structure of GRU is as shown in the diagram (Figure 1).

th
Ry hy
1 X aF >

X J——— ————(x

Tt 2t Tbt
o o tanh

Tt

Figure 1. GRU Unit Structure Diagram.

Electronics 2024, 13, 285 50f 16
The corresponding forward propagation equations are as follows.

zt = 0(Wz - [hp—1, xt] + bz) ()

re = o(Wr - [hy_1, x¢] + by) (6)

hy = tanh(Wj, - [r: © hy_1, x¢] + by) (7)

h=01-z)0h1+zOh (8)

GRU uses different subscripts to represent its weight matrices, where x corresponds
to input, r represents the update gate, h stands for the hidden state, and z denotes the reset
gate. Additionally, GRU includes bias vectors b, , b, and by, which correspond to different
structural components. By summing the parameters of the three gates, the total number of
parameters for the GRU can be obtained as: 3 * ((Xgin + Ngim) * Bagim + aim)-

Furthermore, GRU is more concise compared to LSTM, primarily because GRU has
only two gating mechanisms while LSTM has three. This results in GRU having fewer
parameters than LSTM, reducing the model’s computational complexity and training
difficulty. Simultaneously, in terms of accuracy, in some non-complex scenarios, GRU and
LSTM achieve similar levels of precision [24]. Therefore, for tasks that require efficient
training with limited computational resources, GRU is often a better choice.

3.2. Predictive Model Management Method

To seamlessly integrate with Kubernetes clusters, this study designed and imple-
mented a custom resource definition (CRD) and a corresponding Kubernetes Operator for
fine-grained control. The CRD includes information about the data source interface for
data acquisition, the metrics to be monitored, and the prediction models to be used for
prediction. Each metric supports multiple prediction models for prediction (Figure 2).

Figure 2. Metric-Model Correspondence Diagram.

Users can define monitoring metrics and prediction models through a YAML config-
uration file. In the metric configuration, users can specify the query expression, weight,
and all relevant prediction models corresponding to the metric. In the prediction model
configuration, users need to provide the category of the prediction model, whether it needs
to be trained, and the hyperparameter configuration. Once the YAML configuration file
has been created, users send it to the Kubernetes API Server. When the API Server receives
the YAML configuration file, it triggers the corresponding Operator’s reconciling process.
The process diagram is as follows (Figure 3).

Upon completion of initialization, the Operator continuously receives information
about CRD instances that need to be processed from the API Server, and performs Reconcile
operations on each CRD object. Initially, the Operator obtains the spec information for
each CRD object, which is provided by the user-defined YAML configuration file, enabling
the Operator to identify the desired state of the CRD object. To obtain the current state
of the CRD object, the Operator retrieves the current CRD object from the local CRD
object cache built during the initialization stage, based on the key value of the CRD object
being processed at that moment. It then compares the current state with the desired

Electronics 2024, 13, 285 60f 16

state, executing a creation operation if the current object does not exist, or a modification
operation if both exist. Ultimately, this predictive auto-scaling CRD instance will be
deployed in the form of a Pod within the Kubernetes cluster and managed by the cluster.

Initialize operator

|

while
true

run reconcile

CRD |

reconcile process

for each CRD
instance

start

|

get instance spec

|

adjustinstance |, — |

based on the spec

|

write instance status

|

end

/

apiVersion: group/version
kind: customKind
metadata:
name: instanceName
namespace: default

spec:
scaleTargetRef:
kind: targetKind
name: targetName
apiVersion: apps/vl
collector:
address: urlAddress
config: collectorinfo
metrics:
metricl:
metriclnfo
metric2:
metricinfo
models:
metriclModels:
ModelsInfo
metric2Models:
ModelsInfo

status:
scaleHistory

InstanceCurrentinfo

next

Figure 3. Operator reconcile process.

Notably, during the creation operation, the Operator instantiates the prediction model
based on the information and parameters in the spec. The Operator integrates various dif-
ferently implemented prediction models via communication, currently supporting TCP and
UDS protocols. Therefore, during model scheduling, triggering the model and managing
different models can be conveniently achieved by invoking the unified abstract interface at
the upper layer.

In terms of data support for the prediction model, the Operator will create a Collector
based on the data source address and configuration information in the spec. This Collector
adopts a global singleton pattern and is shared by all CRD instances. The Collector, based
on the PromQL statements contained in the metrics of each instance, initiates corresponding
subroutines which query and fetch data from the data source in real-time in the background.
All these subroutines are managed by the global Collector. When the prediction model
needs data for training or prediction, it obtains the corresponding data from the subroutines
managed by the Collector.

Finally, the Operator successfully creates a CRD instance object, establishes a mapping
between the metrics and prediction models in the object, and configures the data source to
ensure that each model can effectively obtain data from the configured data source.

Overall, once the CRD object has been successfully created or modified, the scheduler
in the Operator will train or update the models. Then, the Operator will place the model
corresponding to each metric in a min-heap sorted by loss value. When a prediction
is needed, each metric will use the optimal model at the top of the heap to predict the
corresponding metric, and finally obtain the prediction value of each metric. The overall
diagram of model management is as follows (Figure 4).

Electronics 2024, 13, 285

7 of 16

Scheduler
YAML
Configuration Q
Operator <
update
History User
Metric Data

update @ <}:| Metric Collector
trained .) -
metric metric, | L. metric,
@ l 2 -
Min Heap,, @

<;:

Min Heap,

optimal optimal optimal
model; model,) ¢ model,

predicted predicted predicted
metricy metric, | T metric,,

<

Figure 4. Model management diagram.

To effectively manage and coordinate models, we have designed and implemented
the Scheduler component in the Operator, with its core responsibility being the intelligent
management of predictive models input by the user. Once the user inputs relevant models
through YAML configuration files, The Scheduler component will initiate two coroutines:
the main coroutine and the update coroutine. In the main coroutine, the scheduler first
enters an initialization phase. During this phase, the scheduler waits for all non-training
models to collect data, with the data volume equal to the sum of input and output dimen-
sions. Subsequently, a simulation prediction is performed on these non-training models,
and this prediction does not trigger scaling operations. After obtaining the predicted results,
the scheduler compares them with the ground truth, calculates the mean squared error
(MSE) for each model, and places the models into the corresponding min-heap based on
the MSE value and the associated metrics. Following the conclusion of this phase, the
scheduler initiates an update coroutine responsible for training and updating the models.

As for the computational complexity, with the number of metrics as m, and with each
metric containing n predictive models, the time complexity for each stage is calculated as
follows. Since the initialization complexity of each heap is O(n), the time complexity for
constructing the mapping of all indicators and models is O(mn). After the initialization
stage, the update of each model may adjust its position in the heap. According to the nature
of the heap, the time complexity of adjusting a single element is O(log). Therefore, the
overall time complexity of model updates is O(mnlogn). In the prediction stage, as the
top model in the heap is already the optimal model, the time complexity for selecting the
model is O(m).

Electronics 2024, 13, 285

8 of 16

In the main coroutine, the primary function is to periodically trigger the currently
available models and make predictions for relevant metrics. It is noteworthy that the
output dimensions for all models are set to the same value in the YAML configuration.
Therefore, the scheduler’s time interval is configured to match the time length of the output
dimensions of all models. This configuration ensures that after each prediction-based
scaling operation is triggered, the replicas for the next cycle can be effectively planned,
avoiding situations of redundant predictions. The Flowchart of the main coroutine is
as follows (Figure 5).

The main coroutine starts

|

Place models that do not require
training into the min-heap

v

launch the update coroutine

v

Whether the time point for invoking Wait for the next predictor
. —N—> . S X
the predictor has been reached invocation time point
A
|
Y
v
Iterate all user-configured metrics to Scale the object in the cluster
be predicted according to the replicas
i A
Whether there are metrics Compute the final replicas for the
> N—> .
that have not been processed next period
l
Y

Use the predictor at the top of the heap corresponding to the
metric to predict the value of that metric for the next period

Y

Transform the metric value into
replicas according to the formula

|

Add the replica sequence to the final replica
sequence by the weight of the metric

Figure 5. Flowchart of the main coroutine.

When the Scheduler performs predictions, it selects the model at the top of the min-
heap associated with the required predictive metric to ensure that the model being used
has the lowest error. Subsequently, the Scheduler uses the historical metric data to make
predictions about the trend of the metrics in the next time interval. Once the predicted
metrics have been obtained, the scheduler transforms these metrics into the number of
replicas according to Formula (9). Subsequently, it scales the corresponding workloads of
applications in the cluster (Deployment, StatefulSet, etc.) based on the resulting replica
count sequence.

n=fuxb] ©)

Electronics 2024, 13, 285

9of 16

In the above formula, 1 represents the number of replicas determined based on the
predicted metrics, p represents the forecasted metric data, and g represents the target metric
data that are obtained from the user-configured YAML file. u represents the the number of
copies corresponding to the target metric, with a default value of one, and can be configured
in the YAML file.

During the scaling, to avoid frequent fluctuations in workload replicas, if the time
interval for replica changes is less than the set minimum action time interval, the Scheduler
aggregates the replica sequence. It uses a sliding window with a length equal to the number
of time points within a minimum action time window and selects the maximum number of
replicas within the window for scaling operations during each slide. This strategy helps
maintain the stability of the workload.

The update coroutine is initiated by the main coroutine and is primarily responsible
for the training and updating of models. The workflow diagram is shown below (Figure 6).

Update coroutine starts

|

Whether the update Waiting for the next
time point has been reached update time point

Y

v

Iterate all predi ‘

}

Are there predictors that
have not been updated

U
Y

v

Whether the predictor

need to be trained _Yl

Update the loss value for this predictor and))
Whether this predictor

update the position of this predictor within the heap Y—o e
has completed training

Whether the model has Whether this predictor
reached the time point for retraining ¥ is being trained

N N
Update the loss value for this predictor and Mark this predictor Launch a coroutine to train this
update the position of this predictor within the heap as being trained predictor asynchronously

Figure 6. Flowchart of the update coroutine.

The update coroutine also periodically updates all models, but the interval for this
process is different from that in the main coroutine. This interval can be configured by
the user in the YAML file and is generally longer than the scheduling interval in the main
coroutine. When the update time point is reached, the update coroutine will categorize
the models into two types: models that require training and those that do not. For models
that do not require training, as is the case during the model initialization phase in the main
coroutine, all models that do not require training have already gathered sufficient data for
simulated predictions, the update coroutine will directly simulate predictions for all such
models. Subsequently, it computes their MSE and adjusts the positions of the models in the
heap based on this value.

As for models that require training, the update coroutine checks whether the model has
completed training. If the model has finished training but has reached the user-configured
retraining time point, the scheduler will retrain the model. Otherwise, it will obtain the
model’s latest MSE through a simulated prediction and adjust its position in the heap.
For models that have never been trained, the scheduler will initiate their training. It is
important to note that during training, as it typically takes a considerable amount of time,

Electronics 2024, 13, 285

10 of 16

the update coroutine internally starts a new coroutine and communicates asynchronously
with it through a channel. When the new coroutine receives the training result, the update
coroutine receives the message through the channel and places the model in the heap based
on the training error and the corresponding metric.

4. Results

In this section, simulation will be conducted to validate the Kubernetes scaling method
based on time series forecasting proposed in this research.

4.1. Application Configuration

In order to simulate a real-world environment, the simulation constructed a Kuber-
netes cluster with one master and three worker nodes. The configuration of the nodes is as
follows (Table 1):

Table 1. Kubernetes cluster specifications.

Node Role CPU Core Count RAM Capacity (GB)
controlplane 2 2
worker 2 2
worker 2 2
worker 2 2

After building the cluster, the predictive scaling component implemented in this article
was extended to the cluster as a Kubernetes Operator. Within the cluster, a simple product
detection backend server was developed and deployed, which exposes two HTTP interfaces
to the outside. The interfaces are as follows (Table 2):

Table 2. Server URI List.

URI Name HTTP Method Caption

Upload product information and
get detection result
/product/list GET List all product information

/product/create POST

The server is deployed in the cluster in the form of a deployment and implements
load-balancing capabilities through a service and ingress workload, providing services to
the outside world.

To simulate service quality, the server has a rate-limiting mechanism. When the
number of requests reaches a certain threshold, it will directly return an HTTP status code
of 500 to the client. On the client side, periodic random requests are sent to the server.
After receiving requests on the server, Prometheus deployed in the cluster collects request
data [27]. The predictive scaling component will use the data collected by Prometheus to
perform training and predictions.

The software used in this experiment includes (Table 3):

Table 3. Software List.

Software Name Software Version
Ubuntu 23.04
Kubernetes 1.26.3
Docker 23.0.6
Prometheus 2.47

Golang 1.19

Electronics 2024, 13, 285

11 of 16

4.2. Experimental Results

In the experiment, a client process was launched to consistently send HTTP requests
to the service deployed in the cluster. These requests were periodic, with the introduction
of some random disturbances. Simultaneously, the operator collected the requests received
by the service in the cluster. Based on the collected historical data, in the case of the Holt—
Winter forecasting algorithm, predictions were made for the future 60 time points using
data from the past 120 time points. For GRU, a total of 2000 data points were divided into
1821 sets of data with input dimensions of 120 and output dimensions of 60, and were used
as the training dataset. Predictions were made for the future 60 time points based on data
from the past 120 time points. The results are as follows (Figure 7):

—— Predicted Values
50 4 Actual Values

—— Actual Values
Predicted Values
50

ol |) \ |
\ \ | N A | N

1 i /f [W/ ‘ // v\\ | \m/ M

RPS
RPS

104 \ I
!

0 10 20 30 40 50 60 0 10 2 30 40 50 60

Time Point(3s/Interval) Time Point(3s/Interval)

(a) (b)
Figure 7. Predictive results graph. (a) Holt—-Winter result. (b) GRU result.

After normalizing the output of the prediction model and the true values, the Mean
Squared Error (MSE) is calculated using the following formula:

MSE = (i —9:)* (10)

S|
.M:

I
—

1

In this context, MSE stands for Mean Squared Error, # represents the length of the time
series, y; is the actual observed value at time point i, and #; is the corresponding predicted
value. The results are as follows (Table 4):

Table 4. Comparison of key metrics for two algorithms.

Evaluation Metrics Holt-Winter GRU
MSE 0.01756 0.00166
Prediction Time Consumption 0.06551 ms 11.94018 ms
Training Time Consumption N/A 7.98333 min

Based on the data in the table, we can observe that compared to deploying only the
GRU model, the system’s cold start time, which is the time during data collection and
model preparation when the system is unable to function, has decreased by (2000 — 120) *
3/60 + 7.98 min, or about 1 h and 41 min.

When the predictive scaling component is not deployed in the cluster, the request
handling status of the backend server, as well as the number of pods in the Grafana
monitoring panel, are as follows (Figure 8):

Electronics 2024, 13, 285

12 of 16

ﬁ“\ M J“‘H j“w \”\ ‘\

RTS

14:07:00

= success

100%]

|
97.5% L‘

14:06:00
== SLA

14:08:00

failure

14:07:00

14:09:00

T
‘\ H J
‘\

14:08:00

~
Spod 4o JaquinN

i I INAN
LYIWiNnR

: RN
! w \ ﬁY‘H

o u’ X
I | ‘,“ | | | L]0 |
[T N Ry
‘ YT T A
| v | I
L) L) L) \J

0.5

14:21:00
== pod

14:10:00 14:11:00 14:12:00 14:13:00 14:14:00 14:15:00 14:16:00 14:17:00 14:18:00 14:19:00 14:20:00

Figure 8. The monitoring panel for the backend service before the deployment of the scaling component.

When evaluating the quality of backend business services, we adopted Service-Level
Agreements (SLA). SLAs encompass various types, including availability, accuracy, system
capacity, and latency, each applicable to different scenarios and with distinct metrics. For
instance, availability SLA measures the success rate of API calls to assess the availability
of interfaces, accuracy SLA employs the rate of system exception throws as a metric, and
capacity SLA uses the maximum number of requests the system can handle as a metric, and
so on. As the application monitored in this experiment is a RESTful HTTP service where
HTTP status codes indicate the status of interface requests, we chose to assess using SLA
for availability. The specific evaluation metric is the ratio of HTTP 200 responses to the
total responses, representing the success rate of requests. The SLA is calculated by dividing
the number of successfully processed requests by the total number of requests. It can be
observed that during peak request times, the SLA reaches 80.3%, indicating that there is
still some room for improvement in achieving a highly reliable service quality (Figure 9).

] |
l |

R

N

h

T
u ‘ !
(-

o
| |

|

14:09:00 14:10:00 14:11:00 14:12:00 14:13:00 14:14:00 14:15:00 14:16:00 14:17:00 14:18:00 14:19:00 14:20:00

Figure 9. Before the deployment of the scaling component, the SLA status for the backend service.

The relevant parameters of the model are defined in the CRD YAML configuration file
(Figure 10), and after submitting it to the Kubernetes API Server using the ‘kubectl apply -f’
command, corresponding CRD objects are created in the cluster, enabling predictive scaling

functionality.

During prediction, the component selects the best available model for the moment and
uses it for predictions. Based on the prediction results, it scales resources for the backend
service up during peak request periods and scales them down during off-peak times. The

Grafana monitoring panel is shown below (Figure 11):

Electronics 2024, 13, 285 13 of 16

- attr:
address: "/tmp/uds_socket"

- attr: resp_recv_address: "/tmp/rra.socket”
slen : "12" look_back: "100"
look_forward : "24" look_forward: "24"
look_backward : "60" train_size: "2000"
alpha : "0.716" batch_size: "10"
beta : "0.029" epochs: "260"

gamma : "0.993" RLEiEnaR 5L

N " debug: "true"
debug: "true)
needTrain: true
needTrain: false :
preTrained: true

type: GRU

@) (b)
Figure 10. Model configurations. (a) Holt-Winter model parameter configuration in CRD YAML
configuration. (b) GRU model parameter configuration in CRD YAML configuration.

type: holt_winter

RTS
w
S
Spod 40 JaquinN

[18
18:21:00 18:22:00 18:23:00 18:24:00 18:25:00 18:26:00 18:27:00 18:28:00 18:29:00 18:30:00 18:31:00 18:32:00 18:33:00 18:34:00 18:35:00 18:36:00

== success failure == pod

Figure 11. After the deployment of the scaling component, the monitoring panel for the backend service.

It can be seen from Figure 12 that after the component deployment, the minimum SLA
is 87%, and the number of SLA fluctuations has decreased from 24 times in the 15 min
before deployment to 4 times in the subsequent 15 min. This indicates a improvement in
overall service quality.

102%

100% |

18:21:00 18:22:00 18:23:00 18:24:00 18:25:00 18:26:00 18:27:00 18:28:00 18:29:00 18:30:00 18:31:00 18:32:00 18:33:00 18:34:00 18:35:00 18:36
= SLA

Figure 12. After the deployment of the scaling component, the SLA status for the backend service.

Electronics 2024, 13, 285

14 of 16

5. Discussion

We conducted experiments to compare the deployment of the predictive auto-scaling
component with the non-deployment scenario, and observed a significant improvement in
performance in the cluster in which the component was deployed.

The experimental results reveal that, with the deployment of the predictive auto-
scaling Operator, it is effective at acquiring application metrics, predicting based on these
metrics, and executing scaling operations. Regarding metric prediction, Table 4 indicates
that, when comparing the Holt-Winters algorithm with the GRU, GRU achieves a lower
MSE, with a value of 0.01756, whereas the MSE for Holt-Winters is 0.00166. However,
in real-time data environments, GRU requires more preparation time. The multi-model
management approach in the Operator leverages the strengths of both algorithms, reducing
the cold start time of predictive auto-scaling by 1 h and 41 min compared to the start
time observed when using only the GRU model, demonstrating an earlier effectiveness of
the system.

In terms of application service quality, after deploying the Operator, a noticeable
decrease in request errors is observed, with more requests being correctly processed,
leading to an 83.3% reduction in the frequency of service-quality fluctuations, as depicted
in Figures 8 and 11. In terms of SLA, a comparison between Figures 9 and 12 shows that
the minimum SLA of the application has increased from 80.3% to 87%, and after deploying
the Operator, the SLA is maintained at 100% for a longer duration.

This system is applicable in cloud-native environments based on Kubernetes. The
development model of the Kubernetes Operator allows the system to be directly managed
by Kubernetes itself, ensuring reliability. Additionally, the system'’s architecture supports
the extension of more predictive models, adapting to diverse application scenarios.

6. Conclusions

Scalability is a crucial attribute in cloud environments, aiming to enhance the elasticity
and enable more effective management and scaling of resources in the cloud. This study
designs and implements a predictive Kubernetes operator that utilizes various time series
forecasting algorithms to predict various metrics of monitored services. The experimental
results demonstrate that the predictive auto-scaling component helps the system better
meet the performance metrics defined in the SLA, validating our initial hypothesis that
predictive auto-scaling has a positive impact on service quality in Kubernetes environments.

In this paper, we solely focused on the deployment and integration of algorithms in
the experimental environment, and the number of integrated algorithms is limited. Future
research can focus on the following directions: further optimization of the integration of
predictive algorithms to achieve more efficient and real-time performance prediction and
expanding the research scope to a wider range of cloud-native scenarios to examine the
adaptability of predictive auto-scaling to different applications and workloads. Finally,
another potential topic could be in-depth research on improving training and tuning
strategies for predictive models to adapt to constantly changing workload conditions.

Author Contributions: Methodology, S.L.; Software, S.L.; Validation, S.L.; Writing—original draft,
S.L.; Writing—review & editing, H.Y.; Supervision, H.Y.; Project administration, H.Y. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2024, 13, 285 15 of 16

Abbreviations

The following abbreviations are used in this article:

HPA Horizontal Pod Autoscaling
VPA Vertical Pod Autoscaling
RNN Recurrent Neural Network
GRU Gated Recurrent Unit

LSTM Long Short-Term Memory
CRD Custom Resource Definitions
UDS Unix Domain Socket

TCP Transmission Control Protocol
MSE Mean Squared Error

SLA Service Level Agreement

References

1. Abeni, L; Faggioli, D. Using Xen and KVM as real-time hypervisors.]. Syst. Archit. 2020, 106, 101709. [CrossRef]

2. Malviya, A.; Dwivedi, RK. A comparative analysis of container orchestration tools in cloud computing. In Proceedings of
the 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India,
23-25 March 2022 ; pp. 698-703.

3. Anderson, C. Docker [software engineering]. IEEE Softw. 2015, 32, 102-c3. [CrossRef]

4. Pahl, C; Brogi, A.; Soldani, J.; Jamshidi, P. Cloud container technologies: A state-of-the-art review. IEEE Trans. Cloud Comput.
2017, 7, 677-692. [CrossRef]

5. Shah, J; Dubaria, D. Building modern clouds: Using docker, kubernetes and Google cloud platform. In Proceedings of the 2019
IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7-9 January 2019;
pp- 184-189.

6. Burns, B.; Beda,].; Hightower, K.; Evenson, L. Kubernetes: Up and Running; O’Reilly Media, Inc.: Newton, MA, USA, 2022.

7. Nguyen, T.T,; Yeom, Y.J; Kim, T.; Park, D.H.; Kim, S. Horizontal pod autoscaling in kubernetes for elastic container orchestration.
Sensors 2020, 20, 4621. [CrossRef] [PubMed]

8. Choi, B,; Park, J.; Lee, C.; Han, D. pHPA: A proactive autoscaling framework for microservice chain. In Proceedings of the 5th
Asia-Pacific Workshop on Networking (APNet 2021), Shenzhen, China, 24-25 June 2021; pp. 65-71.

9. Zhao, A.; Huang, Q.; Huang, Y.; Zou, L.; Chen, Z.; Song,]. Research on resource prediction model based on kubernetes container
auto-scaling technology. IOP Conf. Ser. Mater. Sci. Eng. 2019, 569, 052092. [CrossRef]

10. Kan, C. DoCloud: An elastic cloud platform for Web applications based on Docker. In Proceedings of the 2016 18th International
Conference on Advanced Communication Technology (ICACT), Pyeongchang, Republic of Korea, 31 January-3 February 2016;
pp. 478-483.

11. Igbal, W.; Erradi, A.; Abdullah, M.; Mahmood, A. Predictive auto-scaling of multi-tier applications using performance varying
cloud resources. IEEE Trans. Cloud Comput. 2019, 10, 595-607. [CrossRef]

12. Saxena, D.; Singh, A K. A proactive autoscaling and energy-efficient VM allocation framework using online multi-resource neural
network for cloud data center. Neurocomputing 2021, 426, 248-264. [CrossRef]

13. Xue, S.; Qu, C.; Shi, X,; Liao, C.; Zhu, S.; Tan, X.; Ma, L.; Wang, S.; Wang, S.; Hu, Y.; et al. A Meta Reinforcement Learning
Approach for Predictive Autoscaling in the Cloud. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, Washington, DC, USA, 14-18 August 2022; pp. 4290-4299.

14. Hag, M.A. SMOTEDNN: A novel model for air pollution forecasting and AQI classification. Comput. Mater. Contin. 2022, 71, 1403
-1425.

15. Haq, M.A. CDLSTM: A novel model for climate change forecasting. Comput. Mater. Contin. 2022, 71, 2363-2381.

16. Masini, R.P.; Medeiros, M.C.; Mendes, E.F. Machine learning advances for time series forecasting. J. Econ. Surv. 2023, 37, 76-111.
[CrossRef]

17. Balla, D.; Simon, C.; Maliosz, M. Adaptive scaling of Kubernetes pods. In Proceedings of the NOMS 2020—2020 IEEE/IFIP
Network Operations and Management Symposium, Budapest, Hungary, 20-24 April 2020; pp. 1-5.

18. Knative Pod Autoscaler. Available online: https://www.alibabacloud.com/help/en/ack/ack-managed-and-ack-dedicated/
user-guide/enable-automatic-scaling-for-pods-based-on-the-number-of-requests / ?spm=a2c63.p38356.0.0.551741bbBm0ZNB
(accessed on 10 October 2023).

19. Kubernetes Event-Driven Autoscaling. Available online: https://keda.sh/docs/2.12/concepts/#architecture (accessed on 7
December 2023).

20. Imdoukh, M.; Ahmad, L; Alfailakawi, M.G. Machine learning-based auto-scaling for containerized applications. Neural Comput.
Appl. 2020, 32, 9745-9760. [CrossRef]

21. Dang-Quang, N.M.; Yoo, M. Deep learning-based autoscaling using bidirectional long short-term memory for kubernetes. Appl.

Sci. 2021, 11, 3835. [CrossRef]

http://doi.org/10.1016/j.sysarc.2020.101709
http://dx.doi.org/10.1109/MS.2015.62
http://dx.doi.org/10.1109/TCC.2017.2702586
http://dx.doi.org/10.3390/s20164621
http://www.ncbi.nlm.nih.gov/pubmed/32824508
http://dx.doi.org/10.1088/1757-899X/569/5/052092
http://dx.doi.org/10.1109/TCC.2019.2944364
http://dx.doi.org/10.1016/j.neucom.2020.08.076
http://dx.doi.org/10.1111/joes.12429
https://www.alibabacloud.com/help/en/ack/ack-managed-and-ack-dedicated/user-guide/enable-automatic-scaling-for-pods-based-on-the-number-of-requests/?spm=a2c63.p38356.0.0.551741bbBm0ZNB
https://www.alibabacloud.com/help/en/ack/ack-managed-and-ack-dedicated/user-guide/enable-automatic-scaling-for-pods-based-on-the-number-of-requests/?spm=a2c63.p38356.0.0.551741bbBm0ZNB
https://keda.sh/docs/2.12/concepts/#architecture
http://dx.doi.org/10.1007/s00521-019-04507-z
http://dx.doi.org/10.3390/app11093835

Electronics 2024, 13, 285 16 of 16

22.

23.
24.

25.

26.

27.

Shim, S.; Dhokariya, A.; Doshi, D.; Upadhye, S.; Patwari, V.; Park, J.Y. Predictive Auto-scaler for Kubernetes Cloud. In
Proceedings of the 2023 IEEE International Systems Conference (SysCon), Vancouver, BC, Canada, 17-20 April 2023; pp. 1-8.
Chatfield, C. The Holt-winters forecasting procedure. J. R. Stat. Soc. Ser. 1978, 27, 264-279. [CrossRef]

Cho, K.; Van Merriénboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.

Shewalkar, A.; Nyavanandi, D.; Ludwig, S.A. Performance evaluation of deep neural networks applied to speech recognition:
RNN, LSTM and GRU. |. Artif. Intell. Soft Comput. Res. 2019, 9, 235-245. [CrossRef]

Kanai, S.; Fujiwara, Y.; Iwamura, S. Preventing gradient explosions in gated recurrent units. In Proceedings of the Advances in
Neural Information Processing Systems, Long Beach, CA, USA, 4-9 December 2017; Volume 30.

Brazil, B. Prometheus: Up and Running: Infrastructure and Application Performance Monitoring; O’Reilly Media, Inc.: Newton, MA,
USA, 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2307/2347162
http://dx.doi.org/10.2478/jaiscr-2019-0006

	Introduction
	Related Work
	Methodology
	Time Series Forecasting Algorithms
	Holt–Winter Algorithm
	Gated Recurrent Units

	Predictive Model Management Method

	Results
	Application Configuration
	Experimental Results

	Discussion
	Conclusions
	References

