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Abstract: This paper proposes a reinforcement learning-based power allocation for underwater
acoustic communication networks (UACNs). The objective function is formulated as maximizing
channel capacity under constraints of maximum power and minimum channel capacity. To solve this
problem, a multi-agent deep deterministic policy gradient (MADDPG) approach is introduced, where
each transmitter node is considered as an agent. Given the definition of a Markov decision process
(MDP) model for this problem, the agents learn to collaboratively maximize the channel capacity
by deep deterministic policy gradient (DDPG) learning. Specifically, the power allocation of each
agent is obtained by a centralized training and distributed execution (CTDE) method. Simulation
results show the sum rate achieved by the proposed algorithm approximates that of the fractional
programming (FP) algorithm and improves by at least 5% compared with the DQN (deep Q-learning
network) -based power allocation algorithm.

Keywords: power allocation; MADDPG; channel capacity

1. Introduction

Underwater acoustic communication networks (UACNs) have many applications for
underwater environments, such as underwater environment monitoring, target tracking,
and ocean data collection, which have attracted a lot of research [1]. The authors studied
the channel state information (CSI) prediction in UACNs based on machine learning [2,3].
Q. Ren et al. investigated the energy-efficient data collection method for an underwater
magnetic induction (MI)-assisted system [4]. In this paper, we focus on the power allocation
study because it plays an important role in UACNs optimization. First, the total channel
capacity can be improved through power allocation for transmitters, which reduces the
negative impact of the limited bandwidth of underwater acoustic channels. Second, power
allocation among nodes balances energy consumption and reduces total energy consump-
tion, which is suitable for an energy-limited system. Finally, power allocation can reduce
the interference between nodes and improve the service quality of the network. There-
fore, considering the particular environment of UACNs, power allocation can overcome
problems such as restricted bandwidth, limited energy, and interference, which have a
substantial impact on underwater acoustic communication.

According to the characteristics of the underwater acoustic communication envi-
ronment, many studies have proposed power allocation algorithms to optimize channel
capacity [5–9]. K. Shen et al. analyzed the multiple-ratio concave–convex fractional pro-
gramming (FP) problem and its application in solving power control problems [5]. Jin
et al. proposed a joint optimization of slot scheduling and power allocation of sensor nodes
to maximize the channel capacity for clustered networks [6]. Authors in [7] investigated
a joint power allocation and transmission scheduling algorithm for UACNs, where the
transmission start-up time and transmission power are co-optimized to maximize the total
transmission capacity. Zhao et al. proposed power allocation based on genetic algorithms
and adaptive greedy algorithms [8], which can maximize the channel capacity and system
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robustness. To adapt to the dynamic underwater acoustic channel, Qarabaqi et al. proposed
an adaptive power allocation method that models the channel as an autoregressive process
and allows the transmitter to adaptively adjust the power allocation based on channel
state information to maximize the signal interference noise ratio (SINR) at the receiver [9].
However, these algorithms require full channel state information (CSI).

Due to the dynamic channel and long propagation delay underwater, it is not efficient
to obtain full CSI and execute model-based optimization. Therefore, mode-free-based
reinforcement learning (RL) has been introduced to optimize the power control problem,
whose model is data driven. The Q-learning and deep Q-networks (DQN) algorithms
have been applied to solve power allocation problems in UACNs [10–12]. However, the Q-
learning-based algorithms result in large action spaces that severely impact computational
complexity. In contrast, the deterministic policy gradient (DPG) approach applies to the
continuous action space. In response, the authors in [13] proposed to combine DQN and
DPG into a deep deterministic policy gradient (DDPG) algorithm based on the actor–critic
(AC) framework, which can solve high-dimensional continuous action space problems.
Based on this, S. Han et al. proposed a DDPG strategy to optimize the continuous power
allocation [14]. However, it takes the nodes as individual agents and does not consider the
collaborative learning of the agents.

The multi-agent deep deterministic policy gradient (MADDPG) [15], as one of the AC
algorithms, has been applied to much research such as unmanned aerial vehicle (UAV) [16],
vehicle networks [17], and other resource allocation because of its high efficiency and
collaboration. It also has been applied to power allocation in wireless mobile networks [18].
Inspired by these works, we proposed a power allocation algorithm based on MADDPG for
UACNs in this paper, because the multiple underwater nodes generate high-dimensional
action and state space, and the collaboration of nodes has the advantage in learning. We take
the transmitter nodes as agents and multiple agents can cooperate and share information
for network training. Accordingly, we propose to maximize the channel capacity as the
objective function, with the constraints of maximum power and minimum channel capacity.
We model the power allocation problem as a Markov decision process (MDP) and apply the
MADDPG approach to optimize power allocation. The actor and critic network of DDPG
is trained using a central trainer, and its parameters are broadcast to multiple agents. Each
agent updates its own actor network and inputs state to obtain actions for execution. This
centralized training and distributed execution (CTDE) method iteratively trains the neural
network until convergence to obtain a power allocation strategy. The main contributions of
this study are as follows.

We propose a MADDPG-based power allocation scheme for UACNs. A MDP model
is formulated and then the MADDPG is used to solve it. To the best of our knowledge, we
first study using the MADDPG approach to solve the power allocation problem in UACNs.
Although the MADDPG structure comes from [15], we define the action, state, observation
space, and reward function according to the objective function, and thus the MADDPG can
be applied to the underwater network power allocation problem.

The consideration of the history information of CSI in the MDP model makes the
proposed algorithm applicable to the underwater network involving mobility. Through the
CTDE process, the multiple agents are trained collaboratively and make power allocation
decisions adaptively to adapt to the changing underwater environment. Our approach is
therefore better suited to underwater channels that vary due to fading and node movement.

The MDP model proposed in this paper can provide more QoS requirements in design.
In the study, we guarantee QoS by requiring a minimum channel capacity. However, other
QoS metrics, such as throughput, delay, or success transmission rate, can also be combined
into the objective function. As a result, the MDP model can be adjusted to meet these QoS
requirements and the MADDPG structure is still valid in these cases.

Simulation results show the total channel capacity of the proposed MADDPG power
allocation performs better than that of DQN-based [19] and DDPG-based [13] algorithms
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with independent agent training. Also, the proposed method has a much lower running
time compared with the FP algorithm, particularly with large networks.

2. System Model and Problem Formulation
2.1. System Model

In this paper, we consider a UACN consisting of M transmitter nodes and N receiver
nodes, where the transmitter nodes are deployed at the water bottom and each node
is configured with an underwater acoustic transducer, as shown in Figure 1. We use
M ≜ {1, 2, · · ·M} and N ≜ {1, 2, · · ·N} to denote the transmitter nodes and the receiver
nodes, respectively. Thus, there are M× N links in the system. When a node transmits
the signal to the target receiver, the signals from other transmitter nodes are considered as
interference. We assume that the transmission of all nodes in the network starts and ends
at the same time slot for a duration of Ts.
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We assume the channel is slowly time varying and quasi-stationary with flat fad-
ing during a time slot. At the time slot t, the channel gain g(t)j,i between receiver node
Nj

(
Nj ∈ N

)
and transmitter nodeMi (Mi ∈ M) is denoted by [20]:

g(t)j,i = κ · 10 log d(t)j,i + d(t)j,i · 10 log a( f ), (1)

where i ∈ M, j ∈ N . f represents the signal transmission frequency, and d(t)j,i represents
the distance between Nj and Mi in the time slot t. The expansion factor κ is typically
1.5. The a( f ) represents the absorption coefficient. According to the Francois ∝ Garrison
model [20], the coefficient a( f ) is expressed by

a( f ) =
A1P1 f1 f 2

f 2 + f 2
1

+
A2P2 f2 f 2

f 2 + f 2
2

+ A3P3 f 2, (2)

where A1, A2, A3 denote the impacts from boric acid, magnesium sulfate salt, and pure
water components, respectively. They are functions of seawater temperature, the potential
of hydrogen (pH), sound speed, and salinity. The symbols P1, P2, P3 denote the water depth
pressure of boric acid, magnesium sulfate salt, and pure water components. The f1, f2
denote the relaxation frequency of the boric acid and magnesium sulfate salts, which also
depend on seawater temperature and salinity [21].

Considering the real network scenario of acoustic communication, the signal is in-
terfered with underwater noise. The power spectral density of the noise N( f ) is denoted
by

N( f ) = Nt( f ) + Ns( f ) + Nw( f ) + Nth( f ), (3)
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where Nt( f ), Ns( f ), Nw( f ), Nth( f ) denote turbulence noise, shipping noise, wave noise,
and thermal noise, respectively. These noises are mainly affected by signal frequency,
shipping activity coefficient, and wind speed, as discussed in [21].

2.2. Problem Formulation

At time slot t, the SINR of the communication link (j, i) formed from the transmitter
nodeMi to receiver node Nj is expressed as

SINR(t)
j =

∣∣∣g(t)j,i

∣∣∣2 p(t)i

∑k∈M, k ̸=i

∣∣∣g(t)j,k

∣∣∣2 p(t)k + σ2
n

i, k ∈ M, j ∈ N , (4)

where g(t)j,i denotes the channel gain of the link (j, i). The symbols p(t)i and p(t)k denote

the transmit power of Mi and Mk at time slot t, respectively. The σ2
n is noise power.

Accordingly, the channel capacity of Nj in time slot t is denoted by

C(t)
j = log2

(
1 + SINR(t)

j

)
. (5)

Our objective is to maximize total channel capacity by optimizing the power allocation,
which is subject to maximum transmitting power and quality of service (QoS) requirements.
This optimization problem is then formulated as

P1 : maximize
p(t)i

N
∑

j=1
C(t)

j

s.t. 0 ≤ p(t)i ≤ Pmax, ∀i ∈ M

C(t)
j ≥ qth, ∀j ∈ N,

(6)

where Pmax is the maximum transmit power and qth is a threshold. The qth ensures the
minimum channel capacity of a single link, which is regarded as the QoS requirement. To
solve P1, we formulate this problem as a Markov decision process (MDP) model and then
apply the MADDPG to solve the problem, which can obtain the power allocation policy.

3. Reinforcement Learning
3.1. Introduction to Actor–Critic

In RL, the agent interacts with the environment and learns the optimal policy to
maximize the expected total reward over a time horizon. At time slot t, the agent takes
action a(t) ∈ A in state s(t) ∈ S , where A and S represent action space and state space,
respectively. After that, the environmental feedbacks reward r(t) to the agent, and then the
agent moves to the next state s′(t). It then forms a sample of experience (a(t), s(t), r(t), s′(t))
and stores it into replay memory D. The agent trains the neural network to maximize the
discounted future reward when it obtains enough experience samples and then obtains
optimal decision strategy. The discounted future reward R(t) is defined as [22]:

R(t) =
∞

∑
η=0

γηr(t+η+1), (7)

where γ is a discount factor.
The policy updates include the value function-based method and the policy gradient-

based method. The actor–critic framework combines these two methods. As shown in
Figure 2, the AC network consists of an actor neural network and a critic neural network,
with network parameters θ and µ, respectively. Considering continuous action and state
space, we exploit DDPG to solve our objective function; therefore, the actor network
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updates θ using the deterministic policy gradient πθ , while the critic updates µ using the
gradient of the loss function.
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The actor and critic are defined as follows:
Actor: The actor network updates policy πθ , which maps state space S into action

space A, which is denoted by
πθ(S ) : S 7→ A. (8)

According to policy πθ(S), the actor selects the action by the following rules:

a(t) = πθ(S) + U (t)
(

a(t) ∈ A
)

, (9)

where U (t) is a random process.
Critic: The critic network estimates the action value Qµ

(
s(t+1)

)
. It evaluates the new

state by the temporal difference (TD) error, which is

δ(t) = r(t+1) + γQµ

(
s(t+1)

)
−Qµ

(
s(t)

)
. (10)

The action selection weight will be enhanced if the TD error is positive. Otherwise, it
is decreased with a negative TD error. The critic network and actor network parameters are
updated as follows:

(1) Updates: µ AC uses replay buffer D to store empirical samples (a(t), s(t), r(t), s′(t)).

The critic network randomly selects G mini-batch samples
{
(a(g), s(g), r(g), s′(g))

}G

g=1
for

network training, and updates the parameters by minimizing the mean-squared loss
function between the target Q-value and the estimated Q-value. The loss function is
formulated by [13]:

L(µ) =
1
G

G

∑
g=1

[(
y(g) −Qµ

(
s(g), a(g)

))]2
, (11)

µ← µ + αµ∇L(µ), (12)

where y(g) = r(g) + γQµ′

(
s′(g), π′θ

(
s′(g)

))
denotes the Q-value calculated by the target

network and αµ ∈ (0, 1) is the step size of the iterative update. The target network
with parameter µ′ is used to maintain the stability of the Q-value, where µ′ is updated
periodically by µ as

µ′ ← τµ + (1− τ)µ′, τ ≪ 1, (13)

where τ is used to slowly update the target network.
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(2) Update θ: The actor network is performed by a deterministic strategy, whose
parameters are also trained from randomly selected samples. The goal of the actor is to
find strategies that maximize the average long-term reward. The network parameters θ are
updated by [13]:

∇θ J(θ) ≈ Es(g)∼D

[
∇πθ

Qµ

(
s(g), a(g)

)∣∣∣a(g)=πθ(s(g)) ∗ ∇θπθ

(
s(g)

)]
, (14)

θ ← θ + αθ∇J(θ), (15)

where αθ ∈ (0, 1) is the step size of an iterative update to ensure that the critic is updated
faster than the actor. The operation ∇ represents gradient descent for functions. Similar to
the critic network, the t update for the actor target network parameter θ′ is

θ′ ← τ′θ +
(
1− τ′

)
θ′, τ′ ≪ 1, (16)

where τ′ is used to update the target network.

3.2. MADDPG

The UACNs environment contains multiple nodes. It is more efficient to use multi-
agent reinforcement learning like MADDPG than DDPG with independent training by a
single agent. However, training multiple agents leads to instability and invalid experience
replay. To address these challenges, MADDPG utilizes a centralized training and decentral-
ized execution (CTDE) framework, where a central trainer handles the learning process
using the DDPG and broadcasts the training parameters to each agent. The central trainer
includes the actor network, target actor network, critic network, and target critic network.
The single agent only contains an independent actor network, whose parameters come
from the central trainer. The single agent inputs the state to its actor network and obtains
the action. This separation of training and execution allows more stable and efficient multi-
agent learning. Each agent benefits from the shared learning while acting independently
during execution.

There are M agents in the UACNs, and for the agent Mi, the parameters of the
actor network and its local policy are denoted by θi and πθi respectively. Therefore,
the network parameters related to M agents are described by θ = (θ1, . . . , θM) and
π =

(
πθ1 , . . . , πθM

)
. The learning processes of multiple agents can be represented by

a MDP model, which is defined by the state S , action A1, . . . ,AM, observation O1, . . . ,OM,
and state transfer function Γ. AgentMi uses the deterministic policy πθi (O) : Oi 7→ Ai
for action selection and moves to the next state according to the state transition func-
tion Γ : S ×Ai × · · · × AM 7→ S . It then receives the reward ri : S ×Ai 7→ Ri and also
obtains the observation oi : S 7→ Oi.

The central trainer updates the parameters of the critic network by minimizing the
loss function [15]:

L(θi) = Es,a,r,s′∼D

[(
y(g) −Qπ

i

(
s(g), a(g)

1 , · · · , a(g)
M

))2
]

, (17)

where y(g) = r(g)
i + γQπ′

i

(
s′(g), a′(g)

1 , · · · , a′(g)
M

)
|
a(g)

i =πθi
(oi)

is the Q-value of the target

network, and π’ =
(

π′θ1
, · · · , π′θM

)
is the set of target policies, which is updated by

Equation (16).
The actor network of agentMi performs parameter updates by the gradient descent

algorithm with the deterministic policy πθi . The loss function is [15]:

∇θi J(θi) ≈ Es(g),a(g)∼D

[
∇ai Qπθi

(
s(g), a(g)

1 , . . . , a(g)
M

)∣∣∣∣a(g)
i =πθi

(oi)
∗ ∇θi πθi (oi)

]
, (18)
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where the replay buffer D stores samples from M agents at each time slot, which are(
s(t), a(t)1 , . . . , a(t)M , r(t)1 , . . . , r(t)M , s′(t)

)
. After the training in the central trainer, the parameters

of the ith actor network are broadcasted to each agent. Each agent then uses the received
parameters to independently update the actor network.

4. Power Allocation Based on MADDPG
4.1. MDP Model

In this paper, we regard each transmitter node as an agent. Therefore, there are
multiple agents in the system. The multi-agents must consider both their observations and
other agents’ actions, and their actions also affect surrounding agents’ policies. To obtain a
collaborative advantage, the CTDE framework is used in this paper to train the network by
the centralized trainer, as is shown in Figure 3. Each agent interacts with the environment
and other agents with the information exchange demonstrated by 1⃝/ 2⃝/ 3⃝/ 4⃝. The central
trainer includes the actor and critic training networks of all agents and their respective target
networks. Training samples come from experiences

(
s(t), a(t)1 , · · · , a(t)M , r(t)1 , · · · , r(t)M , s(

′t)
)

sent by each agent and stored in replay memory D. During the centralized training, the
central trainer selects the samples randomly from D and updates AC network parameters
via DDPG. After central training, the trainer broadcasts new actor parameters to each agent.
For the distributed execution, the individual agent executes its action output by its local
actor and then receives rewards and moves to the new state. A new sample experience is
then obtained by each agent, which is sent back to the central trainer.
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Based on the objective function, we define the action, state, and reward functions to
formulate a MDP model.

(1) Action Space A: We assume all nodes have the same maximum power constraint.
During the time slot, the action a(t)i of agent Mi is defined as the transmission power
allocated by an agent. This results in the action space being defined as

A =
{

a(t)i = pi

∣∣∣0 ≤ pi ≤ Pmax

}
,

pi = Pmin +
x
X
(Pmax − Pmin), x = 0, · · · , X,

(19)

where X is the number of discretized power levels and Pmin = 0 is assumed.
(2) State Space S : The state of the Mi at time slot t consists of two parts, i.e.,

st
i =

{
o(t)i , a(t)i

}
, in which o(t)i =

{
ϕ
(t)
i , ρ

(t)
i

}
is the current observation. The symbol

ϕ
(t)
i =∥ g(t−1)

(j,i) , g(t)
(j,i) ∥ represents the channel state information, containing the channel gain

from the transmitterMi to receiver Nj at time slot t− 1 and t. The ρ
(t)
i denotes the system
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state information. It includes the interference and noise received byNj at the previous two

time slots, and channel capacity C(t−1)
j,i and C(t−1)

l,k for the adjacent link, which is denoted by

ρ
(t)
i =

[
∑k∈M,k ̸=ig

(t−2)
j,k p(t−2)

k + N( f ), ∑k∈M,k ̸=ig
(t−1)
j,k p(t−1)

k + N( f ), C(t−1)
j,i , C(t−1)

l,k

]
, (20)

where N( f ) denotes noise power. The historical information of CSI considered in state
space makes our proposed algorithm applicable to varying channel environments.

(3) Reward: In the objective function, we require each user to maintain a minimum
channel capacity. Therefore, we define the reward function such that channel capacity yields
a positive reward, while interference results in a negative reward. We also consider the
minimum channel capacity constraint. At time slot t, the reward function r(t)i is defined as

r(t)i = C(t)
j − ζ1∑ I(t)l,i

l∈N,l ̸=j

− ζ2

∣∣∣C(t)
j − qth

∣∣∣, (21)

where C(t)
j denotes the channel capacity. The elements ∑ I(t)l,i

l∈N,l ̸=j

represents the interference

caused by signals fromMi to receivers Nl (l ̸= j), calculated as I(t)l,i = C(t)
l∖i − C(t)

l , with

the C(t)
l∖i being the channel capacity of Nl without interference fromMi. The coefficient ζ1

adjusts the penalty ratio for interference. The
∣∣∣C(t)

j − qth

∣∣∣ represents the deviation from the
minimum capacity threshold qth, weighted by ζ2.

4.2. Power Allocation Algorithm

Based on the MDP model defined in Section 4.1, we present a power allocation
algorithm using MADDPG. At time slot t, agent Mi inputs the state s(t)i into its local

actor network, and outputs action a(t)i = p(t)i according to the policy πθi . Agent Mi

then transmits signals to the receiver Nj with power p(t)i . If the signals are received
successfully, the receiver Nj feedbacks the channel gain. Meanwhile, agent Mj sends
communication requests to the neighboring agent Mk. The Mk responds to Mi with
information including of g(t)l,k , g(t)j,k , p(t)k , and N( f ). With the receiving information and the
stored history information in t− 1 and t− 2, theMi calculates the current observation
o(t)i and obtains reward r(t)i to form the state s(t)i =

{
o(t)i , a(t)i

}
. Note that this process

is carried out in parallel for all agents. Although agents can interact with all neighbors
for information exchange, we assume that each agent interacts only with its two nearest
neighbors in the simulation due to long propagation delays in underwater channels.

After the communication process completes at the end of time slot t, each agent sends
experience data

(
s(t), a(t)1 , · · · , a(t)M , r(t)1 , · · · , r(t)M , s′(t)

)
to the central trainer and the expe-

rience data is stored in D. Once sufficient sample data is collected, the central trainer ran-
domly selects a batch of G samples to update the actor–critic network parameters through
gradient descent. The updating process has been described in Equations (17) and (18). The
trainer broadcasts the updated actor parameters after completing centralized training.
The agents then update their actor networks for action selection in the next time slot. If
the environment changes slowly, the actor network parameters by centralized training
can broadcast to the agent at intervals of several time slots. For an individual agent, the
centralized training reduces computational requirements and saves energy.

We conclude the proposed method in Algorithm 1.
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Algorithm 1: MADDPG power allocation

Initialization: Randomly initialize θ and µ; Initialize D, G, target network parameter update
period Tu
1: for each episode do

Initialize the environment and state space S .
2: for t = 1 to Tm do
3: for i = 1 to M do

4: Input state s(t)i to Actori, and agent Mi outputs action: a(t)
i = p(t)

i
5: Mi interacts with Mj to obtain g(t)

j,i

6: Mi interacts with Mk to obtain g(t)
l,k , g(t)

j,k , p(t)
k and N(f)

7: Calculates observations : o(t)i
8: Receives reward : r(t)i
9: Forms state : s(t)i =

{
o(t)i , a(t)i ,

}
10: Updates next state : s′(t)i = s(t)i
11: Forms sample data and transmits to D : (s(t)i , a(t)i , r(t)i , s′(t)i )
12: end for
13: Selects G batches samples from D :

(
s(g), a(g), r(t), s′(t)

)
14: Calculate y(g) = r(g)i + γQπ ′

i

(
s′(g), a′(g)1 , · · · , a′(g)M

)
|
a(g)

i =πθi (oi)

15: Update Critic network by Equation (17)
16: Update Actor network by Equation (18)
17: Broadcast Actori network parameter to agent
18: end for
19: if t == Tu then
20: Update the target network parameters for critic and actor by Equations (13) and (16)
21: end if
22: end for

5. Simulation Results

In this section, we evaluate the performance of the proposed MADDPG power alloca-
tion through simulations. We assume that M = 10 and N = 10, and all source nodes are
deployed underwater, as shown in Figure 4. The source nodes are located 20 m underwater
with 100 m between adjacent nodes. The receivers are on the water surface, with communi-
cation distances of 20 ∼ 500 m from the source nodes. The simulation parameters of the
underwater acoustic environment are shown in Table 1, where the wind speed, salinity, pH,
temperature, and sound speed data are measured from the Yellow Sea of China in 2015 [23].
We also assume the underwater acoustic channel is slow time varying and quasi-static flat
fading, which means g(t)j,i is constant within a time slot.
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Table 1. Simulation parameters.

Parameters Value

Frequency ( f ) 20, 000 Hz
Maximum Doppler frequency ( fd) 12 Hz

Shipping activity coefficient (µ) 0.5
Maximum transmission power (Pmax) 1 W

Time slot length (Ts) 2.0 s
Wind speed (w) 0.1 m/s

Salinity (H) 31.8%
pH 8.17

Temperature (T) 9.6 °C
Speed of sound (c) 1480.9 m/s

According to [24], the underwater sensor nodes are anchored and restricted by a cable,
which can float in water. The nodes move at a speed of 0.83–1.67 m/s within the limit of
the cable length [24]. We adopt a moving speed of 0.9 m/s in the simulation. Therefore, the
maximum Doppler frequency is 12 Hz. To avoid the space–time uncertainty caused by the
long propagation delay of underwater acoustic transmission, we assume that the time slot
length is long enough to complete information exchange and power allocation in the same
time slot. Based on transmission distance and sound velocity, the time slot is assumed to
be 2 s.

We compared the proposed MADDPG algorithm with fractional programming (FP)
power allocation algorithm [5], DQN training-based power allocation algorithm [19], DDPG
algorithm without collaboration [13], random power allocation, and maximum transmitting
power (full power).

Figure 5 shows that the proposed MADDPG algorithm obtains a better sum rate
compared with other power allocation strategies. The sum rate here refers to the sum
channel capacity of all links. The sum rate of the proposed MADDPG power allocation
remains above 1.7 bps/Hz, in which the bps means bits per second. The FP algorithm
is a model-driven method and has full CSI, whereas the deep learning methods such as
DQN, DDPG, and MADDPG are only data driven without full CSI, resulting in lower
performance than the FP algorithm. In the DQN and DDPG algorithms, each single agent
is trained independently without interacting with the surrounding environment. However,
the agents in MADDPG interact with each other and can use global data for centralized
training, which obtains a better performance than DQN and DDPG. Random power and
full power do not optimize power allocation, thus resulting in the worst performance.
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Figure 6 compares the spectral efficiency (SE) performance of different algorithms in
single-episode training. It can be seen that the SE of MADDPG is close to FP and outper-
forms other algorithms. Moreover, the MADDPG power allocation obtains convergence
within 5000 training time steps, which has the same convergence rate as DQN.
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Figure 6. SE performance of different algorithms for single-episode training.

In the objective function P1, the threshold qth is required to ensure the minimum
channel capacity of each link. Figure 7 compares the sum rate of MADDPG power allocation
with (qth = 1 bps/Hz) and without (qth = 0 bps/Hz) minimum channel capacity constraint.
The algorithm considering qth = 1 bps/Hz maintains a channel capacity of approximately
1.75 bps/Hz which performs 75% higher than that of without considering minimum
channel capacity. Therefore, considering the minimum channel capacity constraint and
penalty for interference in the reward function of our algorithm, each link can ensure a
minimum channel capacity, which improves the system sum rate.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 13 
 

 

 
Figure 6. SE performance of different algorithms for single-episode training. 

In the objective function 𝒫ଵ, the threshold 𝑞௧௛ is required to ensure the minimum 
channel capacity of each link. Figure 7 compares the sum rate of MADDPG power alloca-
tion with (𝑞௧௛ = 1 bps/Hz) and without (𝑞௧௛ = 0 bps/Hz) minimum channel capacity con-
straint. The algorithm considering 𝑞௧௛ = 1 bps/Hz maintains a channel capacity of ap-
proximately 1.75 bps/Hz, which performs 75% higher than that of without considering 
minimum channel capacity. Therefore, considering the minimum channel capacity con-
straint and penalty for interference in the reward function of our algorithm, each link 
can ensure a minimum channel capacity, which improves the system sum rate. 

 
Figure 7. The influence on sum rate. 

Figure 8 compares the computational complexity of different algorithms as the num-
ber of network nodes increases. We use the program running time to complete one-time 
power allocation as a metric. From Figure 8, we can see that the number of nodes affects the 
complexity of the algorithm. The algorithms of MADDPG, DQN, and DDPG have ap-
proximately the same complexity, while FP is much higher. The per-iteration complexity of 
FP is 𝑂(𝑀ଶ), while the others are 𝑂(𝑀) or less. Note that random and maximum power 
allocation algorithms are excluded from Figure 8 since they do not need additional cal-
culations. 

Figure 7. The influence on sum rate.

Figure 8 compares the computational complexity of different algorithms as the number
of network nodes increases. We use the program running time to complete one-time power
allocation as a metric. From Figure 8, we can see that the number of nodes affects the complex-
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ity of the algorithm. The algorithms of MADDPG, DQN, and DDPG have approximately the
same complexity, while FP is much higher. The per-iteration complexity of FP is O(M2), while
the others are O(M) or less. Note that random and maximum power allocation algorithms
are excluded from Figure 8 since they do not need additional calculations.
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6. Conclusions

This paper proposes a power allocation algorithm based on reinforcement learning,
which optimizes the channel capacity of UACNs. The action, state, observation, and reward
functions of a MDP model are designed to solve the objective function. To take advantage
of collaborative training, the MADDPG structure is applied to this problem, which is
implemented by centralized training and distributed execution. An actor–critic network of
all agents is trained by a centralized trainer, while the independent actor network of each
agent is used to execute actions. The minimum channel capacity constraint ensures the
QoS requirement of each link. Simulation results demonstrate that the proposed algorithm
outperforms the DQN- and DDPG-based power allocation algorithms of both sum rate and
spectral efficiency. Furthermore, as the number of network nodes increases, the proposed
method has a much lower running time compared with the FP algorithm.
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