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Abstract: In recent decades, the widespread use of mobile phones and wireless technologies has led
to a significant increase in radiofrequency electromagnetic fields (RF-EMFs), raising concerns about
continuous RF-EMF exposure among the general population. Recent research indicates that real-life
RF signals are more biologically active than controlled laboratory signals with a low variability,
suggesting that living organisms can adapt to EMF exposure when the pattern has a low variability.
However, using real-life sources with unpredictable variation signals in biological experiments
contradicts the principle of experiment controllability. This paper aims to investigate the nature
of signals generated by current sources of ambient EMFs in terms of stationarity, with the goal of
replicating them in biological experiments to study the effects of EMF exposure. Employing a range of
statistical methodologies, starting with descriptive statistical analysis and progressing to the advanced
APDP and APTF methods, an examination is conducted on a collection of Wi-Fi signal recordings
across various operating modes, with particular attention given to video streaming. The chosen
datasets are scrutinized with respect to their adherence to a Gaussian distribution and the concept of
stationarity. The results indicate that the observed Wi-Fi signals lack stationarity in both the time and
frequency domains. However, based on the analytical findings, it is possible to generate signals in
frequency that authentically replicate Wi-Fi signals, accounting for nonstationarity considerations.

Keywords: electromagnetic field; exposure; stationarity; wireless technologies

1. Introduction

The ubiquitous use of mobile communication and social media has become an integral
aspect of contemporary society [1–3]. The escalating volume of data transmission is driven
less by intensifying electromagnetic radiation and more by altering signal structures and uti-
lizing more suitable frequencies for data transmission. Under various conceptual umbrellas
like “smart appliances”, “Internet of Things”, or “Industry 4.0”, wireless communication
is increasingly integrated into various facets of daily life, providing a more convenient
alternative for data utilization and prompting changes in telecommunications technology.
These changes increasingly involve encoding information into the RF spectrum rather than
increasing the transmission power [4,5].

A multitude of devices utilize electromagnetic waves across a range of frequencies,
with a focus on the primary frequency bands spanning from 800 MHz to 5 GHz. As a result,
urban areas in particular have become saturated with a multitude of radio transmitters,
creating a constantly evolving multispectral RF environment. The nature and distribution
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of everyday exposure to electromagnetic radiation exhibit variability in terms of intensity,
propagation directions, polarization planes, frequencies, and waveforms [6].

To safeguard the population from hypothetical harm, current regulations have estab-
lished safety limits for public exposure to generated electromagnetic waves [7,8]. These
limits are based on the concept that only exposure above certain thresholds may have
adverse effects on human health [9]. While a substantial body of literature examines the
potential effects of exposure to EMF below these thresholds, this remains a contentious and
extensively debated topic [10]. The prevailing consensus is that interactions between EMFs
and living organisms below established exposure limits are too weak to cause harm.

However, the scientific understanding in this area is not yet comprehensive, and
well-documented studies indicate that even low-intensity electromagnetic radiation can
influence biochemical processes and produce measurable physiological effects [11–19].
This situation has gradually raised awareness and concerns among the general population
regarding their continuous exposure to RF fields. The extensive body of research on the
potential consequences of exposure to RF-EMFs associated with mobile phone technologies
encompasses epidemiological investigations, in vivo (animal) experiments, and in vitro
studies [20,21].

Certain epidemiological investigations have reported correlations between frequent
mobile phone users and specific cancer types [22], although limited supportive evidence
from animal cancer studies or underlying mechanisms, potentially attributed to the rudi-
mentary variability patterns in the majority of in vivo and in vitro studies [23]. The general
population is typically subjected to a multifaceted blend of frequencies and signals char-
acterized by varying intensities [24–26]. In contrast, the predominant approach in animal
research has involved the utilization of a single frequency.

Recent reviews on the effects of RF-EMF exposure originating from controlled labo-
ratory sources and commercial off-the-shelf (COTS) mobile phones revealed that signals
originating from authentic COTS sources exhibit a heightened level of bioactivity when
contrasted with the laboratory ones characterized by a reduced variability [25]. This find-
ing implies that living organisms have the capability to adjust to EMF exposure when
the patterns of EMFs display a decreased variability. This adaptive capacity is a funda-
mental attribute shared by all living organisms and plays a pivotal role in the survival of
species [26–28].

Given this conceptual framework, a pertinent inquiry emerges concerning the extent
of variability or stationarity inherent in the RF-EMFs constituting the daily exposure of the
population. This prompts the necessity to assess stationarity for the systematic structuring
of investigations into the biological ramifications of such exposure. Consequently, the
objective of this article is to scrutinize the variability of RF-EMF exposure by delineating
the stationarity attributes of a representative source emblematic of contemporary commu-
nication systems. In this context, the chosen subject is an indoor wireless communication
device: specifically, a Wi-Fi router adhering to the IEEE 802.11g/n standard [29,30].

2. Statistical Analysis of RF Signals
2.1. Statistical Indicators of Stationarity and Quasistationarity

A stochastic process qualifies as stationary when its statistical parameters remain
constant over time [31]. Additionally, stationarity can be discerned by examining non-
time-dependent moments, specifically those of orders ranging from 1 to 4, such as the
mean, variance, skewness, and kurtosis, denoted as N-th order stationarity. For instance,
second-order stationarity, a prevalent classification, implies that the mean, variance, and
autocorrelation of the stochastic process remain constant and independent of time, while
other statistical measures (higher-order moments) may exhibit temporal fluctuations [32].
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The statistical parameters we use to study these stochastic processes are the mean,
variance or standard deviation, skewness, and kurtosis [33]. For a discrete signal x[n]
having N total samples, the mean is defined as:

mean(x[n]) =
1
N

N−1

∑
i=0

x[i] (1)

The sample variance and standard deviation for the same signal are:

var(x[n]) =
1

N − 1

N−1

∑
i=0

(x[i]− mean(x[n]))2; std(x[n]) =
√

var(x[n]) (2)

According to the NIST, the adjusted Fisher–Pearson coefficient of skewness is given by:

skew(x[n]) =
√

N(N − 1)
N − 2

· 1
N

N−1

∑
i=0

(
x[i]− mean(x[n])

std(x[n])

)3

(3)

Finally, the sample kurtosis is computed using:

kurt(x[n]) =

1
N

N−1
∑

i=0

(
x[i]−mean(x[n])

std(x[n])

)4

(
1
N

N−1
∑

i=0

(
x[i]−mean(x[n])

std(x[n])

)2
)2 (4)

Electromagnetic emissions from ambient sources can be classified as either stationary
or nonstationary based on the variations in electromagnetic field parameters over time [34].
For instance, continuous wave radars in medical applications are considered stationary,
as their signal variance remains constant, indicating consistent power [32,35]. In contrast,
Wi-Fi routers, influenced by data traffic, exhibit temporal changes in signal power or
variance, classifying them at best as first-order stationary, which is the weakest form of
stationarity [36–39].

2.2. Cumulative Effect and Power Distribution

The power spectral density (PSD) characterizes the harmonic composition of a given
signal in the time domain [40]. Mathematically, the power spectral density is defined by
the relation:

p(f) = P(f, f + df)/df (5)

Here, p(f) represents the spectral power density, and P(f, f + df) denotes the power
within the frequency interval df centered around frequency f.

The applicability of PSD is pertinent to the analysis of stochastic processes, such as
noise, exclusively under the condition of stationarity, wherein the probability distribution
function (PDF) remains constant over time. In such instances, the Fourier transformation
can be employed on the autocorrelation function Rxx(τ), which is calculable based on the
probabilistic density function (PDF).

The concept of channel power (CP) in a wireless communication channel pertains
to the comprehensive power encompassed within the specified channel bandwidth. This
measure is derived by integrating the power spectral density (PSD) over the pertinent
frequency range—the channel bandwidth RBW.

CP [mW] =
1
N
·

N

∑
i=1

10(Pi/10) (6)

The symbol N represents the number of spectral components, while Pi signifies the
power level, expressed in dBm, corresponding to the respective spectral component. In
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essence, channel power emphasizes the overall power content within a communication
channel or a designated frequency band. Conversely, the power spectral density provides a
detailed distribution of this power across diverse frequencies.

The peak to average power ratio (PAPR) serves as a metric characterizing the ampli-
tude fluctuations within a signal, delineating the extent to which the peak power of a signal
surpasses its average power [41]. Signals characterized by high PAPRs exhibit pronounced
peaks and rapid fluctuations in amplitude.

A thorough assessment of Wi-Fi exposure also involves considering the concept of
the channel duty cycle [42]. When conducting on-site evaluations of RF-EMF exposure, a
spectrum analyzer typically identifies the maximum field level during the measurement
period. In the case of Wi-Fi channels, where data transmission is not continuous, using a
spectrum analyzer (SA) in max-hold mode leads to a notable overestimation of the time-
averaged field level. Due to the intermittent nature of Wi-Fi signals, it is necessary to adjust
the maximum value by a duty cycle to precisely estimate the total root-mean-square (RMS)
power density.

2.3. Advanced Statistical Assessment of RF Signals

The advanced statistical assessment of RF signals involves the application of sophis-
ticated statistical methodologies to scrutinize and characterize the properties, patterns,
and variations within the RF data [43]. The methodology goes beyond basic descriptive
statistics and explores the underlying statistical structures of the signals by means of several
metrics: the probability distribution function, cumulative distribution function, comple-
mentary cumulative distribution function, or amplitude probability distribution. All the
above-mentioned methods rely on time-domain signal measurements.

In the field of statistics, the probability distribution function (PDF) serves to articulate
the likelihood that a random variable X assumes a particular value x, whereas the cumula-
tive distribution function (CDF) provides the probability that the random variable X attains
a value less than or equal to x [31]. The CDF is mathematically expressed as the integral of
the PDF. In the case of a discrete random variable, the CDF manifests as the summation of
probabilities up to a specified point.

Within the domain of Wi-Fi communications, the PDF finds its application in de-
lineating the distribution patterns of signal strength levels, elucidating the probabilities
associated with distinct signal intensities. Concurrently, the CDF is instrumental in charac-
terizing the cumulative distribution of signal strength levels, conveying the probabilities of
encountering signal strengths equal to or below specific thresholds.

While the CDF is not conventionally utilized in signal analysis, the complementary
cumulative distribution function (CCDF) emerges as a statistical metric employed for
evaluating the power distribution of a signal [44]. The CCDF provides insights into the
likelihood that the mean signal power amplitude will surpass a given threshold, expressed
as a percentage. CCDF curves play a pivotal role in elucidating the characteristics of signals
encountered in contemporary communication systems employing digital modulation [31].
These curves find diverse applications in design scenarios, including the visualization of
the impact of modulation formats, the amalgamation of multiple signals through system
components, and the design and testing of RF components. A CCDF curve offers a repre-
sentation of the duration for which a signal operates at or exceeds a specified power level,
typically expressed in decibels relative to the average power. Notably, modern real-time
spectrum analyzers have incorporated this metric into their analytical frameworks.

The amplitude probability distribution (APD) method stands out as an effective ap-
proach for examining alterations in signal amplitude. Specifically, APD is defined as
the fraction of time during which the instantaneous amplitude of the waveform under
measurement surpasses a predetermined amplitude threshold within the measurement
duration [45]. The temporal evolution of the amplitude of the measured signal is conceptu-
alized as a stochastic process with a temporal parameter, and it is formally articulated as
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the complementary function of the CDF. The APD measurement technique has long been
explored as a means for statistically analyzing electromagnetic noise [46].

In the pursuit of concurrently monitoring the triad of frequency, time, and corre-
sponding amplitude axes for nonstationary signals, there arises a necessity for specialized
measurement methods. The evolution from traditional spectrum analyzers utilizing fre-
quency sweep methodologies to frequency analysis has markedly enhanced the real-time
assessment of frequency versus time-varying characteristics.

The APDP (average power delay profile) method is widely used for evaluating signal
and channel stationarity in time and frequency domains [34]. The method uses a number of
measurements or snapshots performed in either the time or frequency domain as input data.
We will consider the case of Wi-Fi transmission and assume the input signals are numerical,
provided by real-time measurement systems (high-speed analog-to-digital converters), or
simply obtained from spectrum analyzers using various techniques, as described in the
following section.

For N measurements performed in the time domain, the first step of the APDP method
is to compute the instantaneous power delay profiles (PDPs):

Px,i[n] = |xi[n]|2, n = 0, . . . , Ns, i = 1, . . . , N (7)

where xi[n] is the N snapshot of the measured signal, and Ns is the number of samples for
each measurement.

Afterwards, the average power delay profiles (APDP) are computed by considering a
sliding window across multiple measurements:

Px,j[n] =
j+l−1

∑
i=j

|xi[n]|2, n = 0, . . . , Ns, j = 1, . . . , (N − l + 1) (8)

where l is the size of the sliding window.
For every pair of APDP vectors separated by a time delay ∆t, a correlation coefficient

is computed:

cx,j,∆t = corr
(

Px,j[n], Px,j+d[n]
)
=

cov
(

Px,j[n], Px,j+d[n]
)

√
var

(
Px,j[n]

)
· var

(
Px,j+d[n]

) (9)

where d is an integer that corresponds to the time delay ∆t between the measurements; d
also depends on the sweep time or duration required for each measurement. Of course, the
covariance and variance of the two vectors are defined by:

var
(
Px,j[n]

)
=

1
Ns − 1

Ns−1

∑
n=0

(
Px,j[n]− Px,j,m

)2 (10)

cov
(

Px,j[n], Px,j+d[n]
)
= 1

Ns−1

Ns−1
∑

n=0

(
Px,j[n]− Px,j,m

)(
Px,j[n]− Px,j+d,m

)
,

j = 1, . . . , (N − d − l + 1)
(11)

and

Px,j,m =
1

Ns

Ns−1

∑
n=0

Px,j[n] (12)

Each time delay ∆t or integer d will yield a different correlation vector. The maximum
time delay for which all correlation coefficients within the corresponding vector are greater
than a chosen threshold is considered the stationarity region or stationarity interval in the
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time domain. The aforementioned threshold is called an allowance of similarity level (ASL)
and is chosen in practice to be at least 0.5:

dt = max
{

∆t
∣∣cx,j,∆t ≥ cASL, ∀j

}
(13)

However, if this condition is not met for any reasonable ∆t value, the signal is consid-
ered to be nonstationary.

The procedure is similar for frequency-domain measurements. In this case, average
power transfer functions (APTFs) are computed instead of the APDPs. For N measurements
performed by a spectrum analyzer, the instantaneous power transfer functions are:

PX,i[k] = |Xi[k]|2, k = 0, . . . , M, i = 1, . . . , N (14)

where M is the number of points in the amplitude spectrum. Note that these values are
obtained directly from the spectrum analyzer.

Next, the APTFs are computed:

PX,j[k] =
j+l−1

∑
i=j

|Xi[k]|2, k = 0, . . . , M, k = 1, . . . , (N − l + 1) (15)

where l is the size of the sliding window.
Correlation coefficients are then computed based on APTF vector pairs, separated by

a frequency deviation ∆f:

cx,j,∆ f = corr
(

PX,j[n], PX,j+d[n]
)
=

cov
(

PX,j[n], PX,j+d[n]
)

√
var

(
PX,j[n]

)
· var

(
PX,j+d[n]

) (16)

Then, similar to the time-domain APDP, the lower thresholds of the correlation vectors
are analyzed in order to determine any potential stationary frequency bands. These will be
defined here as:

d f = max
{

∆ f
∣∣∣cx,j,∆ f ≥ cASL, ∀j

}
(17)

In a practical case, the APTF will be computed by averaging the magnitude spectrums
measured in the frequency domain, one component at a time. In the case of spectrum
analyzer measurements, both methods (APTF and APDP) can be used to evaluate signal
stationarity in frequency and time domains, despite the spectrum analyzer’s capability
to only yield magnitude values in the frequency domain. This is justified by Parseval’s
theorem, which states that:

Px[n] =
N

∑
n=0

|x[n]|2 =
1
N

N

∑
k=0

|X[k]|2, X[k] = DFT(x[n]) (18)

where DFT represents the discrete Fourier transform.
This means that each sweep of the measured frequency band can yield a power value,

and analyzing multiple frequency sweeps will allow us to evaluate the signal’s power
variation in time.

3. Materials and Methods

The prevailing wireless communication systems presently deploy the IEEE 802.11g/n
standard, operating within the frequency bands of 2.4 GHz and 5 GHz [41,47]. As stipulated
by the standard specifications [32], the 2.4 GHz Wi-Fi band, particularly in Europe, is
structured into 11 channels, each occupying a 22 MHz bandwidth. A 2 MHz guard band is
designated for each channel to alleviate potential interchannel interference. The physical
layer of this standard employs orthogonal frequency division multiplexing (OFDM) [36].
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Typically, the channel bit rate stands at 54 Mbps for 802.11g and 100 Mbps for 802.11n. It
is noteworthy, however, that data rates may fall below 11 Mbps during video multicast
transmission [32,48].

To comprehensively characterize the signal variability emanating from a typical Wi-
Fi source and establish a reference for analyzing population exposure to radiofrequency
electromagnetic fields (RF-EMFs), an experimental platform was devised and implemented.
This platform aimed to ascertain the emitted field under various Internet connection
scenarios, specifically configuring the Wi-Fi router to operate on a particular channel in the
2.45 GHz band. The field was measured using a log-periodic antenna (HyperLOG 60100
from Aaronia, Strickscheid, Germany) and a spectrum analyzer (Spectran 6080-V4, also
from Aaronia, Strickscheid, Germany) spanning the 10 MHz–6 GHz band, connected to a
computer running dedicated software. Subsequently, the acquired data files were converted
and transferred to the MATLAB environment for further analysis and processing.

To enhance the generated field level in alignment with the IEEE 802.11g/n communi-
cation protocol, a device (laptop) accessing a webpage containing streaming video data
was connected to the field generator (Wi-Fi router). Since the spectrum analyzer is of
swept-tune type, only frequency measurements were obtained. The primary emphasis
of the measurements pertained to the 20 MHz bandwidth Wi-Fi channel designated for
operation by the generator, with various durations being recorded. The measuring device
parameters during sequences were set as follows: RBW = 100 kHz, VBW = 100 kHz, sweep
time = 500 ms, and peak detector [49].

The transmitting and receiving antennas have a fixed position at a distance of 1.5 m
from each other, which at 2.4 GHz is greater than 10 wavelengths, enabling far-field
measurements to be performed. Both antennas presented in Figure 1, the Wi-Fi pigtail
and log-periodic receiving antenna, have a vertical polarization, and are directional in the
vertical plane. The transmitting router uses a TP-LINK RP-SMA 2.4 GHz Wi-Fi antenna,
model TL-ANT2405CL, with a 5 dBi gain. On the receiver side, the Aaronia HyperLOG
60100 has a gain of 5 to 6 dBi in its entire operating frequency range, from 0.68 to 10 GHz.
The radiation patterns for the two antennas are presented in Figure 2. According to their
corresponding manufacturers, both antennas have a beamwidth of about 50 degrees at
−3 dB or half power, at 2.4–2.5 GHz. The shielded room prevents any unwanted signals
from the outside to interfere with the Wi-Fi transmission. The devices and antennas used
for the experimental setup are placed on wooden tables, that will not reflect the transmitted
wave. This results in a line-of-sight transmission, with no fading.
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The APTF and APDP were implemented in order to evaluate the measured Wi-Fi
signal’s stationarity. Multiple sliding window sizes and frequency/time deviations were
tested when computing the correlation vectors. Depending on the size of the dataset, the
sliding window varied from 10 samples to about 10% of the dataset size. The offset between
each vector pair, required to compute the correlations, varied from about 10% to 80% of
the dataset size. In each case, the allowance of similarity level was analyzed. The case
in which the correlation vector had the highest ASL was considered optimal with respect
to the chosen sliding window and offset (time delay or frequency deviation) sizes. The
stationarity intervals as well as the optimal values for the sliding window sizes were also
determined for each measured Wi-Fi dataset.

4. Results

For a comprehensive analysis of the signal variability, the measurement apparatus
was configured to record signals within a specific frequency band over a designated time
span. Figure 3 illustrates a typical power spectral density (PSD) for emissions from the
streaming video data. A noteworthy field level increase of about 50 dB is observed when
compared to the scenario without streaming.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 20 
 

 

case in which the correlation vector had the highest ASL was considered optimal with 
respect to the chosen sliding window and offset (time delay or frequency deviation) sizes. 
The stationarity intervals as well as the optimal values for the sliding window sizes were 
also determined for each measured Wi-Fi dataset. 

   
(a) (b) 

Figure 2. Radiation patterns for the transmitting and receiving antennas presented in Figure 1 (ver-
tical plane), according to the manufacturers’ datasheets: (a) Aaronia HyperLOG 60xx Series; (b) TP-
LINK TL-ANT2405CL pigtail antenna. 

4. Results 
For a comprehensive analysis of the signal variability, the measurement apparatus 

was configured to record signals within a specific frequency band over a designated time 
span. Figure 3 illustrates a typical power spectral density (PSD) for emissions from the 
streaming video data. A noteworthy field level increase of about 50 dB is observed when 
compared to the scenario without streaming. 

 
Figure 3. Typical spectral distribution for video data streaming. 
Figure 3. Typical spectral distribution for video data streaming.



Electronics 2024, 13, 301 9 of 20

In order to depict in Figure 4 the time variation of the PSD within the designated
channel, two illustrations are employed: the waterfall in the upper side, and the persistence
representation in the lower side, respectively.
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(upper side) and persistence (lower side).

As discerned from the measurements, Wi-Fi signals consistently manifest fluctuations
in their frequency content over time. Conventional time-domain or frequency-domain
representations may inadequately capture these dynamic characteristics. The waterfall
representation, characterized by its time–frequency plot, furnishes a more encompassing
perspective on the temporal evolution of the signal’s frequency content. The power level
corresponding to each spectral component is illustrated by a color code represented in the
upper part of the graph, the x-axis represents frequency values, and the y-axis represents
the sweep index or measurement time.

Conversely, the representation of spectrum persistence integrates details regarding
the enduring presence of spectral characteristics within a signal, elucidating the temporal
persistence of diverse frequencies. The frequency values are depicted along the x-axis, while
the power level is conveyed along the y-axis. The persistence of frequency components
is visually conveyed through a color code situated in the upper segment of the graph. In
this color code, higher frequencies on the scale correspond to more frequent repetitions of
spectral components in the signal.

The temporal evolution of power levels within the scrutinized frequency band is
visually represented in a waterfall-type display. The recorded data were stored in a file that
included discretized frequency band values along with corresponding power levels for
each spectral component. Subsequently, the file underwent processing in MATLAB, and
the data were formatted for subsequent analyses. Aaronia MCS software (version 2.1.5)
produced measurement files in a txt-compatible format, containing various measurement
data in addition to frequency and spectral level values. To address this, a MATLAB script
was designed to methodically import the entire content of the text file into a character
vector. The script then proceeded to ascertain the sequential frequency values, enumerate
the sweeps, and identify the initial and final positions for each sweep. Subsequently, the
values associated with individual spectral components within each sweep were extracted.
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Finally, a conversion from string format to double format was implemented for all the
extracted values.

In order to verify the precision of this representation, Figure 5 illustrates, for compar-
ative analysis, the cascade representation of a 2-min measurement sequence within the
frequency band of 2427–2447 MHz. This representation is generated both by using Aaronia
MCS software—on the left side—and with MATLAB—utilizing the recorded data and the
imagesc function—on the right side, respectively. The juxtaposition of the two images
serves to illustrate that the processing of the recording file in MATLAB aptly extracted
pertinent data pertaining to the temporal variations in the spectral content of the signal.
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For each frequency sweep, the total channel power is computed using Equation (6).
The resulting data, representing the time variation of the total power within the designated
Wi-Fi channel, is analyzed by applying descriptive statistics methods. The results are
illustrated in Figure 5 and the corresponding parameters are given in Table 1. The histogram
also includes a red continuous line representing the Gaussian distribution characterized by
the same mean and standard deviation parameters as the dataset.

Table 1. Comparative results of the measurement datasets and corresponding channel power variation.

Dataset
Parameters Channel Power (CP) Descriptive Statistics

Bandwidth Duration Mean [dBm] Standard Deviation [dBm] Skewness Kurtosis

1 20 MHz 2 min −62.5238 14.1263 −0.4333 1.7261
2_1 20 MHz 25 min −80.3227 16.0795 0.6711 2.2847
2_2 20 MHz 30 min −82.7335 17.6729 0.9765 2.4174
3_1 20 MHz 60 min −91.1383 12.4992 1.6836 5.7821
3_2 100 MHz 7.5 min −74.7298 20.1055 0.4105 1.6322

In order to detect a recognizable pattern of fluctuation in the evolution of the Wi-Fi
signal, multiple sets of data were collected through the successive monitoring of Wi-
Fi activity. Subsequently, five datasets were chosen for the ensuing analysis based on
specific criteria:

• The initial dataset, denoted as dataset 1, served as the reference for measurements.
It was recorded for a brief duration of 2 min while the Wi-Fi source continuously
streamed video data on a specific 20 MHz bandwidth channel.

• Datasets 2_1 and 2_2 were captured over an extended time frame of 25 and 30 min,
respectively, while maintaining the same bandwidth.
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• The third set of measurements resulted in datasets 3_1 and 3_2, expanding the analysis
further. Dataset 3_1 had a duration of 60 min, while dataset 3_2 covered an extended
frequency band ranging from 2.4 GHz to 2.5 GHz within a constrained temporal
duration of 7.5 min.

For each frequency sweep of the designated bandwidth, the channel power was
computed. Table 1 provides the main parameters and descriptive statistics of channel
power variation for these datasets.

The channel power distribution, depicted in histogram form, was undertaken for
all datasets. Figure 6 presents this distribution for the initial dataset, while Figures 7–10
display the corresponding histograms for the subsequent datasets.
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Figure 7. Dataset 2_1. (a) Histogram representation of channel power distribution; (b) waterfall
visualization of the temporal fluctuations in the spectrum.
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Figure 8. Dataset 2_2. (a) Histogram representation of channel power distribution; (b) waterfall
visualization of the temporal fluctuations in the spectrum.
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Figure 9. Dataset 3_1. (a) Histogram representation of channel power distribution; (b) waterfall
visualization of the temporal fluctuations in the spectrum.

Every histogram depiction of the datasets additionally incorporates a visual represen-
tation of the Gaussian distribution characterized by the same mean and standard deviation
parameters corresponding to the respective dataset. Concurrently, the temporal evolution
of the spectrum is visually represented in a waterfall format alongside the histograms in
Figures 7–10.
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Figure 10. Dataset 3_2. (a) Histogram representation of channel power distribution; (b) waterfall
visualization of the temporal fluctuations in the spectrum.

5. Discussion

In order to identify a discernible pattern of fluctuation in the signal evolution within a
Wi-Fi channel, multiple datasets were amassed, each spanning durations surpassing those
of the initial dataset. Subsequently, to ascertain the recurrence of spectrum variability on
broader scales, the frequency band was expanded for the final dataset, denoted as 3_2. The
duration and recording band parameters were varied precisely to identify their impacts
on the statistical parameters. To offer a unified perspective on the temporal variation of
channel power across all datasets, two metrics are utilized: the boxplot representation
and the cumulative distribution. The boxplot is a statistical visualization summarizing
the distribution of a dataset, including the median—red line, the quartiles—blue box, and
potential outliers—red points. Figure 11 presents a consolidated depiction of the boxplot
representation illustrating the variation in channel power across all datasets.
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Figure 11. Boxplot distribution of all datasets.

The CDF is a statistical tool that illustrates the cumulative probability distribution of a
random variable. It calculates the cumulative probabilities by assessing the proportion of
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data points less than or equal to each value in the dataset. This information is graphically
represented, revealing the progressive accumulation of probabilities as values increase.
Figure 12 illustrates the CDFs for all datasets.
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Stationarity analysis, using the APTF and APDP methods, was also performed on
the measured Wi-Fi datasets presented in Table 1. For each dataset, we determined the
allowance of similarity level, as well as average correlation values, computed for fixed (op-
timal) window lengths but different correlation offsets: time delays for APDP or frequency
deviations for APTF. A general correlation average was also computed for each dataset,
regardless of sliding window or offset lengths. These results are presented in Table 2.

Table 2. APTF and APDP results for measured Wi-Fi datasets.

Dataset

Frequency Time

Allowance of
Similarity

Level

Highest
Correlation

Average

Average
Correlation (for

All ∆f and Sliding
Window Sizes)

Allowance of
Similarity

Level

Highest
Correlation

Average

Average
Correlation (for

All ∆t and Sliding
Window Sizes)

1 0.32 0.4728 0.2728 0.18 0.6311 0.3889

2-1 0.03 0.3289 0.1628 0.13 0.4795 0.1507

2-2 0.3 0.3537 0.2 0.07 0.4208 0.1430

3-1 0.17 0.4101 0.2243 0.02 0.3421 0.0686

3-2 0.03 0.5525 0.2228 0.19 0.4165 0.2429

The results show a low or insignificant correlation. The only dataset that could be
considered for potential stationarity is the first. This dataset corresponds to the shortest
Wi-Fi measurement (2 min), which indicates that longer exposure times, comparable to the
other datasets, may require stationarity analysis.

Table 3 presents the optimal values that enable the highest allowance of similarity
level for each dataset. It is worth noting that without real-time frequency measurements,
the stationary time interval can only be determined based on spectrum analyzer sweep
time. This limits the APDP algorithm’s capacity for precise stationarity evaluation.
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Table 3. Optimal values for highest allowance of similarity level.

Dataset

Frequency Time

Frequency Deviation
∆f/Stationary

Bandwidth [MHz]

Sliding Window Size
[MHz]

Time Delay
∆t/Stationary Interval [s] Sliding Window Size [s]

1 14.55 2.35 63.6 13.25

2-1 14.205 2.22 1055.3 63.96

2-2 16.395 2.235 954.24 55.38

3-1 13.5 2.45 1114.9 10.26

3-2 50.35 9.65 275.87 56.3

Figures 13 and 14 present the correlation results yielded by the APTF and APDP
algorithms. The correlation coefficients generally vary between 0.1 and 0.5, indicating a
low correlation. It is also worth noting that for dataset 3.2, any multiple of 10 MHz could
have a good value to enable a high allowance of similarity, though 50 MHz was chosen as
it yields the greatest average correlation.
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Though the minimum and average correlation values are similar to the APTF results,
there are instances, especially for longer exposure datasets like 3.1, where correlation values
close to unitary are achieved.

According to Equation (16), each frequency deviation ∆f will yield a different cor-
relation coefficient vector. The Average correlation presented in Figure 13a is the mean
computed for each of these vectors, each corresponding to a different ∆f. Figure 13b
presents the correlation coefficient vectors for fixed ∆f values, one for each dataset, which
are presented in Table 3.
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These fixed values for ∆f are the ones that yield the highest allowance of similarity
level (CASL), as mentioned in Equations (13) and (17). In other words, out of all simulations
performed in MATLAB, the correlation vectors corresponding to these fixed frequency
deviations have the greatest minimum value.

Out of all frequency deviations ∆f for which the corresponding correlation values
overcome this threshold, the greatest ∆f value is retained and becomes the stationarity
interval or bandwidth, as suggested in Equation (17).

The determined CASL values, which are presented in Table 2, are also underlined in
Figure 13b, using annotations, as the minimum values of the correlation vectors computed
for each dataset.

Figure 14 shows that similar results were obtained for the time-domain (APDP) sta-
tionarity analysis.

Based on the APTF and APDP analyses, the conclusion is that the measured Wi-Fi
signals are not stationary in either time or frequency domains. This result presents an
issue regarding the possibility of simulating Wi-Fi signals. It shows that implementing
the modulations specific to the 802.11 standards (OFDM and DSSS) [32], even with added
Gaussian noise, may not be enough if you want to simulate a real Wi-Fi signal.

Based on the five datasets’ average statistical parameters, we generated multiple
discrete frequency domain signals that would correspond to a real Wi-Fi signal, measured
with a spectrum analyzer. The statistical parameters for the five measured datasets are
presented in Table 4.

Table 4. Statistical parameters for the measured Wi-Fi datasets, in the frequency domain.

Dataset Mean Variance Skewness Kurtosis

1 9.6532 × 10−4 4.6564 × 10−6 1.9185 6.8177

2.1 2.0697 × 10−4 1.5282 × 10−6 7.3206 70.4443

2.2 2.4991 × 10−4 2.1950 × 10−6 8.3283 96.3299

3.1 8.9638 × 10−5 9.3443 × 10−7 15.8252 300.1463

3.2 4.8693 × 10−4 8.0357 × 10−6 3.3214 13.8578

Average 3.9975 × 10−4 3.4699 × 10−6 7.3428 97.5192

Using these values, we generated random vectors of length 1000 from the Pearson
system of distributions. These vectors all have the same mean and variance as the aver-
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age values computed for the five datasets, while the skewness and kurtosis vary with a
maximum of ±5% from the average values presented in Table 5. As these vectors simulate
a frequency domain power measurement, the APTF method was used to evaluate their
stationarity. The results are presented in Table 5. The ASL is around 0.1, and the average
correlation varies between 0.3 and 0.4. The results are similar to the practical datasets
regarding both the allowance of similarity level and average correlation.

Table 5. Statistical parameters and APTF results for the simulated Wi-Fi vectors.

Simulated Wi-Fi Dataset 1 2 3 4 5 6 7 8 9 10

Mean 3.9975 × 10−4

Variance 3.4699 × 10−6

Skewness 7.5140 7.4710 7.6260 7.6960 7.6733 7.6472 7.6631 7.6854 7.7020 7.5881

Kurtosis 102.1945 92.7767 95.6092 94.2125 98.4178 97.9201 93.5759 93.8203 95.6573 92.6714

Allowance of
similarity level 0.12 0.10 0.09 0.07 0.09 0.09 0.08 0.08 0.08 0.08

Highest correlation average 0.3724 0.3759 0.3473 0.3553 0.3460 0.3587 0.3295 0.3785 0.3510 0.3507

Average correlation 0.1160 0.1109 0.1125 0.1110 0.1138 0.1151 0.1130 0.1102 0.1110 0.1116

Programmable devices, such as an SDR or RFSoC, can also be used to generate similar
nonstationary Wi-Fi vectors. This can represent a solution for a noncommercial, laboratory
Wi-Fi generator, that can be developed to comply to biomedical standards in order to be
used in experiments of this nature. The method can be migrated to other technologies
and applications, such as LoRa, NB-IoT, or BLE. From a mobile standpoint, any practical
implementation should also take into account the antenna orientation and distance to the
Wi-Fi transmitter [50], and measurements should be performed accordingly in order to
update the statistical parameters of the generated Wi-Fi signals.

6. Conclusions

The stationarity of electromagnetic emission sources, particularly those generating
time-varying EMFs, can significantly impact living organisms. Exposure to nonstationary
sources with dynamic signals limits an organism’s ability to adapt to the changing stimulus.
The consideration that real-life source signals may be more biologically active raises con-
cerns about the accuracy and relevance of laboratory sources in experiments studying the
effects of RF-EMF exposure. However, using real-life sources with unpredictable variations
contradicts the principle of experiment controllability. The investigation into the impact of
Wi-Fi routers on living organisms is crucial, as these emission sources exhibit either weak
stationarity or nonstationarity, potentially leading to adverse effects on human health.

The paper describes the examination of temporal variations in ambient electromagnetic
exposure emanating from Wi-Fi communication devices which involves the application
of diverse statistical methodologies. The objective is to ascertain the stationarity of these
signals. The ultimate outcome aims to produce laboratory-controlled signals that faith-
fully replicate the authentic variability observed in real-life signals generated by Wi-Fi
communication devices.

Several datasets were obtained from various frequency-domain measurements with a
spectrum analyzer. A stationarity analysis was performed for the measured datasets, in
both time and frequency domains, using the ADPD and APTF methods.

The findings derived from the analysis using APTF and APDP indicate that the
observed Wi-Fi signals lack stationarity in both the time and frequency domains. This
outcome poses a challenge with respect to simulating Wi-Fi signals, suggesting that the
incorporation of modulations exclusive to the 802.11 standards (OFDM and DSSS), along
with the introduction of Gaussian noise, may prove insufficient for an accurate emulation
of authentic Wi-Fi signals.
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We suggest, in this case, simulating the spectrum analyzer measurement by generating
vectors from the Pearson system of distributions, with statistical parameters that correspond
to practical measurements. The quality of these simulated Wi-Fi waveforms will depend on
the measurements used to train the algorithm. These waveforms could be used for further
EMF investigation by generating them using a portable SDR device, without requiring a
Wi-Fi router with Internet access.
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