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Abstract: Conventional sense amplifiers limit the performance of current RRAM computing-in-
memory (CIM) macro circuits, resulting in high latency and energy consumption. This paper intro-
duces a multi-bit quantization technology low-latency voltage sense amplifier (MQL-VSA). Firstly,
the multi-bit quantization technology enhances circuit quantization efficiency, reducing the number
of operational states in conventional VSA. Secondly, by simplifying the sequential logic circuits
in conventional VSA, the complexity of sequential control signals is reduced, further diminishing
readout latency. Experimental results demonstrate that the MQL-VSA achieves a 1.40-times decrease
in readout latency and a 1.28-times reduction in power consumption compared to conventional VSA.
Additionally, an 8-bit input, 8-bit weight, 14-bit output macro circuit utilizing MQL-VSA exhibited a
1.11times latency reduction and 1.04-times energy savings.

Keywords: RRAM; computing-in-memory; voltage sense amplifier; low latency

1. Introduction

In recent years, AI chips based on computing-in-memory (CIM) architecture are in-
creasingly being integrated into cloud computing, the Internet of Things (IoT), and AI
edge devices, demonstrating revolutionary advantages. Among various CIM architectures,
those based on resistive random access memory (RRAM) arrays have garnered widespread
attention in both academia and industry due to their high integration, low power con-
sumption, low readout latency, and compatibility with traditional CMOS processes [1–3].
This makes RRAM-based CIM architectures a potent area for research and application.
Nonetheless, the majority of CIM architectures employ traditional ADCs for quantization,
where the high resolution of these ADCs leads to greater latency and energy consumption,
thus limiting further performance improvements [4–6].

Consequently, an increasing number of researchers are adopting sense amplifiers
(SA) as quantizers, replacing traditional ADCs. Feraj Husain proposed a parallel-sensing
multi-level SA based on a 65nm CMOS process [7]. Wang Ye et al. developed a reference-
subtracting current sense amplifier that not only saves power but also achieves higher
linearity and a smaller common-mode input range. However, due to its serial data readout
scheme, there is margin for improvement in the readout latency of this CSA [8]. Byung-
Kwon An designed a CSA based on dynamic reference, which showed significant im-
provements in power and latency performance compared to conventional CSA [9]. Hua
Zhang et al. implemented a bit-line-clamping circuit to enhance the pre-charging speed of
VSA circuits, reducing readout latency at the expense of additional power consumption
and area [10].

The research above indicates that while SAs offer significant power advantages over
traditional ADCs, they are limited by low resolution, quantizing only one bit per cycle. This
single-bit quantization necessitates multiple cycles for multi-bit digital code quantization,
leading to redundancy and complexity in the circuit’s operational states, sequential control
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signals, and decoding circuits. Consequently, conventional SA readout latency still accounts
for 40% of the total operational delay in CIM architectures [11]. Thus, reducing SA readout
latency is crucial for enhancing the speed of CIM macro circuits.

To address the high latency issue of SAs, we propose a multi-bit quantization technol-
ogy low-latency voltage sense amplifier (MQL-VSA):

(1) The introduction of multi-bit quantization technology allows for two-bit digital output
in a single quantization cycle using two voltage references, improving upon the
inefficiency of conventional VSA’s one-bit-per-cycle mode. This reduces the number
of operational states and thereby decreases readout latency;

(2) The use of simple combinational logic circuits for two-bit quantization avoids the
complexity of comparators, registers, and other circuits found in conventional VSA,
simplifying the design and reducing the complexity of sequential control signals,
further optimizing readout latency performance.

2. Architecture of CIM Macro Based on RRAM Arrays
2.1. Composition of the Architecture

In current research, CIM architectures based on RRAM arrays predominantly consist of
two components, as depicted in Figure 1 [12]. The CIM architecture is primarily composed
of an RRAM array (Weight Array in Figure 1) and peripheral circuits (Peripheral Circuit in
Figure 1), where:

(1) The RRAM array stores the convolution kernel’s weight information (W[k:0]) and
reads the stored weights via the WL drive module;

(2) The peripheral circuit is responsible for performing subsequent multiply-accumulate
(MAC) operations. Under the control of sequential signals generated by the CIM
Control module, the analog output from the RRAM array is quantized by the VSA
circuit, eventually outputting the digital result of multiple multiplication calculations
(∑n

i=0 IN[m : 0]×W). Thus, the readout latency of the VSA significantly impacts the
system’s overall performance.
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The digital combiner (DC) performs the final weighted summation (MACOUT[n:0])
of the results from k channels, facilitating complete matrix convolution operations.

2.2. Architectural Computation Sequence

Combining with Figures 1 and 2, the computational process in CIM architectures
initiates when the system clock CLK arrives, activating the RRAM array. RRAM array
interacts with the external input IN[m:0], generating the IBL current. The IBL current is
then fed into the CVS module (Current-to-Voltage-Stacking, CVS), which converts it into a
corresponding voltage, VSUM. Subsequently, VSUM is quantized in the VSA module and
produces the corresponding digital code value.
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As analyzed, the essence of RRAM array-based CIM architectures lies in transforming
matrix convolution operations into analog voltage multiply–accumulate operations, ulti-
mately quantifying the analog voltage (VSUM) into digital output using VSA. Therefore, the
readout latency of VSA is critical to the speed performance of the CIM architecture.

Conventional VSAs, with their simplistic structure, quantize only one bit per cycle,
leading to inefficiency and elevated readout latency, especially when dealing with high bit
outputs. As illustrated in Figure 1, conventional VSA comprises comparators, multiplexers,
and output registers [13]. Each quantization cycle in the VSA involves comparing VIN with
VREF to produce a one-bit result, which is then stored in a register. The subsequent cycle’s
VREF is adjusted based on this output, and the comparison with VIN continues until all
digital codes are quantified.

Although this single-bit quantization method is straightforward, it is not efficient,
with conventional VSA readout latency accounts for approximately 40% of the total system
cycle [11]. Hence, optimizing the readout latency of VSA could significantly enhance the
system’s operational speed.

3. The Proposed MQL-VSA

As deduced from Section 2.2, the primary reason for the high readout latency in
conventional VSA circuits is the excessive number of operational states. To address this,
we introduce a multi-bit quantization technology that accomplishes two-bit digital code
quantization within a single cycle, thereby reducing the number of operational states in the
VSA circuit.
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The proposed MQL-VSA, as shown in Figure 3, comprises four main components:

(1) The sampling structure, consisting of four sampling switches (SW3–SW6) and two
sampling capacitors (C0, C1), samples the voltage values of VREFL, VREFH, and VSUM
(VREFL = 1/4 VDD, VREFH = 3/4 VDD, VSUM is the input voltage that is quantized);

(2) The LSB sensing includes three MOS transistors NO (N1), P0 (P1), P2 (P3), a switch
SW1 (SW2), and an inverter, generating the OUT2 (OUT2B) signal for the LSB-
detecting circuit;

(3) The latch comprises two cascaded inverters formed by N2, P4 and N3, P5 along with
two switching MOS transistors (N4, P6), producing SAOUT[1] by comparing the
voltages at nodes Q1B and Q1;

(4) The LSB-detecting circuit, a 2-to-1 selector, selects between OUT2 and not (OUT2B)
based on the value of SAOUT[1] to determine the SAOUT[0] result.
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3.1. Architectural Computation Sequence

As deduced in Section 2.2, conventional VSAs compare a single reference voltage
VREF with the input voltage VIN in each quantization cycle, yielding a one-bit output.
This implies that with an increase in VSA output bits, the reference voltage VREF requires
frequent switching, and the registers must continually store the results of each quantization
cycle, leading to a multitude of operational states in the VSA circuit [14].

To address this issue, we propose a multi-bit quantization improvement. The MQL-
VSA introduces two reference voltages, VREFL and VREFH, where VREFL = 1/4 VDD and
VREFH = 3/4 VDD. As shown in Figure 4a, VREFL and VREFH divide the quantization range
into four regions, each corresponding to a specific two-bit digital code. Capacitors C0
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and C1, under the control of sampling switches (SW3–SW6), sample the voltages of VREFL,
VREFH, and VSUM. The voltage differences at nodes X2 andX1 is given by:

∆V1 = VSUM −VREFL (1)

∆V2 = VREFH −VSUM (2)
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As indicated by Equations (1) and (2), the sign of ∆V1 represents the magnitude rela-
tionship between VSUM and VREFL, and similarly, the sign of ∆V2 indicates the relationship
between VSUM and VREFH. The correspondence between the signs of ∆V1 and ∆V2 and
the digital codes is listed in Figure 4b. Finally, capacitors C1and C0couple ∆V1 and ∆V2,
respectively, to the inputs of the latch structure. The latch, by determining the relation-
ship between ∆V1 and ∆V2, identifies the range in which the VSUM falls and outputs the
corresponding result.

Thus, the MQL-VSA, by introducing two reference voltages as comparison bench-
marks, achieves two-bit digital code output in a single quantization cycle, reducing the
operational states associated with reference voltage switching and intermediate data storage
in conventional VSA, thereby shortening readout latency.

3.2. Workflow of the MQL-VSA

The workflow of the MQL-VSA, as depicted in Figure 5, begins with the circuit in
its initial state, where all switches in Figure 3 are off and the MOS transistors are in the
cut-off region. As the MQL-VSA prepares to transition to the working state, it enters the
standby phase. P2 and P3 are on (PRE = 0) to pre-charge the voltages at nodes Q1B and Q1,
respectively, to VDD. Subsequently, the circuit transitions to the working state, comprising
three phases:
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(1) PH1. This phase carries out the sampling of VSUM, VREFL, and VREFH. As shown in
Figure 6a, SW3 and SW4 are on to pass VSUM to X1 and VREFL to X2, respectively.
Concurrently, SW1 and SW2 are on, distributing the charge from nodes Q1B, Q1 to
nodes Q2B, Q2, resulting in all four nodes attaining a voltage of 1/2 VDD;

(2) PH2. This phase achieves voltage differencing and ∆V coupling. Illustrated in
Figure 6b, SW5 and SW6 are on, resulting in a voltage swing of ∆V1 at X2and of
∆V2 atX1. Since the voltages across capacitors C0 and C1 cannot change abruptly,
∆VQ1B = ∆V2, ∆VQ1 = ∆V1. Concurrently, SW1 and SW2 are turned off, and N0, P0
and N1, P1 formed inverter structures, causing voltage swings at nodes Q2B and Q2
opposite to those at Q1B and Q1, respectively;

(3) PH3. This phase accomplishes the output of SAOUT[0] and SAOUT[1]. As Figure 6c
illustrates, with SAEN1 = 1, the voltages at Q2 and Q2B are processed through
inverters to generate OUT2 and OUT2B, respectively. Then, with SAEN2 = 1, the
latch is activated to compare the voltages at nodes Q1andQ1B, determining the
relationships of ∆V1 and ∆V2 and outputs the MSB of SAOUT[1:0]. Simultaneously,
the 2-to-1 selector activates, outputting SAOUT[0] as the OUT2B when SAOUT[1] = 1
and as the OUT2 when SAOUT[1] = 0.
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Figure 6. Sequential schematic of MQL-VSA circuit: (a) PH1; (b) PH2; (c) PH3; (d) control signal
sequence for MQL-VSA output quantized as “11”.

Thus, MQL-VSA completes a two-bit quantization cycle and then resets to the initial
state, preparing for the next quantization cycle.

3.3. Sizing Methodology for MOS Transistors, Switches, and Capacitors in MQL-VSA

Sections 3.1 and 3.2 discussed the circuit architecture and operational principles of
MQL-VSA. This section will detail the method for determining the dimensions of MOS
transistors, switches, and capacitors within the circuit. It primarily conducts a theoretical
analysis of the latch, LSB-sensing, and sampling modules in the circuit depicted in Figure 3.
The specifics are as follows:
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(1) Latch module. The latch module in Figure 3 consists of inverters sequentially con-
nected, formed by N3, P5 and N2, P4. Its equivalent circuit is illustrated in Figure 7.
Due to the circuit’s symmetrical structure, the transconductance (gm), output impedance
(Rout), and load capacitance (CL) of the two inverters are equal. Based on Kirchhoff’s
Law and the analysis method for first-order circuit time domain responses [15], we
can derive the following at nodes X and Y:

gmVx +
Vy

Rout
+ CL

dVy

dt
= 0 (3)

gmVy +
Vx

Rout
+ CL

dVx

dt
= 0 (4)
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Defining A = gmRout, τ = RoutCL, the voltage difference ∆V between nodes X and Y
can be determined as:

∆V = Vx −Vy =
τ

A− 1
d∆V

dt
≈ τ

A
d∆V

dt
(5)

Based on Equation (5), the expression for ∆V is determined as:

∆V = ∆V0×eT/τ (6)

In Equation (6), ∆V0 represents the initial voltage difference between points X and Y.
When the operating period of the MQL-VSA is determined, the required time constraint “T”
can be established. Thus, by adjusting the W/L of the MOS transistors in the latch module,
the value of τ at nodes X and Y can be controlled, ensuring the latch module completes a
comparison within the time “T”.

When the W/L of the MOS transistors increases, the MOS transistor’s on-resistance
has a more significant impact on τ than the parasitic capacitance [16]. Therefore, enlarging
the MOS transistor size appropriately can reduce the comparison delay of the latch module,
meeting the setup time requirements.

(2) LSB-sensing module. As shown in Figure 3, the primary function of this module is
to sense the voltage changes at node Q1 (Q1B). Thus, during the PH1 phase of the
circuit, the trip-point voltage VTRIP of the inverter made up of N1, P1 (N0, P0) should
equal the VQ1B voltage at that time, which is VTRIP = VQ1B = 1/2 VDD. Due to the
different mobilities of N-channel and P-channel MOSFETs, the W/L of P1 (P0) should
be about 4 to 5 times that of N1 (N0) to set the inverter’s trip-point voltage VTRIP to
1/2 VDD. P2 (P3) is used as a charging transistor, so the smallest size is adequate.

(3) Sampling module. According to Figure 3, when the capacitors and switches are
in operation, they can be equivalently analyzed as a low-pass filter. The equivalent
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circuit is shown in Figure 8, where Ron represents the on-resistance of the switch. Since
the switches in Figure 3 are all transmission gate structures, Ron can be expressed as:

Ron = Ron,PMOS ‖ Ron,NMOS (7)

Ron,NMOS =
1

µnCox(W/L)N(VDD−VIN −VTHN)
(8)

Ron,PMOS =
1

µpCox(W/L)P(VIN − |VTHP|)
(9)
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During the voltage build-up process, defining the VOUT voltage reaching 99% of its
intended target as the steady state, the constraint relationship can be expressed as:

Ron ×C <
TS

2ln 10
(10)

According to Equation (10), to meet the setup time requirements, it is necessary to
increase the size of the transmission gates to reduce Ron. The choice of capacitance size
involves a trade-off. Under the premise of satisfying setup time constraints, the capacitance
should be increased appropriately so that it significantly exceeds the parasitic capacitance
at nodes X1 (X2), Q1 (Q1B), aiming to minimize error as much as possible.

We have now finished the theoretical analysis of the latch, LSB-sensing, and sampling
modules in Figure 3. Based on Equations (3)–(10) and subsequent practical calculations,
the dimensions of all MOS transistors, switches, and capacitors have been summarized
in Table 1.

Table 1. Summary of MOS transistor/switch/capacitor sizes.

MOS Transistor/Switch/Capacitor Size

N0, N1 W = 220 nm, L = 180 nm

N2–N4 W = 880 nm, L = 180 nm

P0, P1 W = 970 nm, L = 180 nm

P2, P3 W = 220 nm, L = 180 nm

P4–P6 W = 880 nm, L = 180 nm

SW1–SW6 PMOS: W = 7.5 µm, L = 180 nm
NMOS: W = 2.5 µm, L = 180 nm

C0 C1 W = 10 µm, L = 10 µm
Capacitance = 197.5 fF
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3.4. Advantages of the MQL-VSA in Readout Latency

As demonstrated in Figure 9, for the quantization of two-bit data, the proposed
MQL-VSA, compared to conventional VSA, eliminates intermediate states associated with
reference voltage switching and intermediate data storage (as shown in PH2, PH3, and
PH5 in Figure 9b), this reduction lowers the number of operational states from six to
three. In conventional VSA, the process of switching and stabilizing the reference voltage,
often constrained by the analog buffer and circuit parasitic, results in considerable latency,
significantly impeding the readout latency performance of conventional VSA [17].

Electronics 2024, 13, x FOR PEER REVIEW 11 of 18 
 

 

data is indisputably more efficient than the serial operations employed by conventional 
VSA. Additionally, the MQL-VSA omits the use of multi-bit registers (two-bit register) 
and multiplexers (MUX) or other sequential logic circuits, thereby circumventing the ad-
ditional delays caused by complex gate circuits. It also obviates the need for consideration 
of inter-module timing coordination, which leads to waiting times, thus further optimiz-
ing the circuit’s latency. Consequently, MQL-VSA demonstrates superior performance in 
terms of readout latency. 

VIN
V

R
EF

1
V

R
EF

2
V

R
EF

3

 MUX

1b OUT[0]

 OUT[1]

Conventional VSA
EN

CMP

VSUM

VREFH

VREFL

C0

C1

Coupling

SAEN
Q1B

Q1
SAOUT[1]

OUT2 OUT2B

Inverter
Latch

 MUX

SAOUT[0]

Initial 
State

PH1 
Sample

PH2 
Subtraction

PH3 
OUTPUT 2bits

Initial 
State

PH1 
Compare

PH2 
Storage 1bit

PH3 
VREF  Switch

PH4 
Compare

PH5 
Storage 1bit

PH6 
OUTPUT 2bits

 MQL-VSA

2-bit
register

(a) (b)  
Figure 9. Comparison of operational states in MQL-VSA and conventional VSA for 2-bit quantiza-
tion: (a) structure of MQL-VSA; (b) structure of conventional VSA. 

4. Experiments Result and Comparison 
4.1. Verification of MQL-VSA Functionality 

This section conducts experimental validation of the MQL-VSA circuit using the 
MXIC L18B 180 nm CMOS process, with a supply voltage of VDD = 1.8 V. The layout of 
the CIM macro circuit and the designed MQL-VSA are shown in Figure 10, with the CIM 
macro circuit and MQL-VSA total size being 2630 µm × 2149 µm and 170 µm × 135 µm, 
respectively. The validation encompasses two main aspects: 
(1) Testing the functionality and readout latency performance of the MQL-VSA; 
(2) Evaluating the readout latency characteristics of the RRAM array-based CIM macro 

circuit which utilizes MQL-VSA. The macro circuit employs the CIM architecture 
shown in Figure 10, with parameters set to m = 8, k = 8, and n = 14, forming an 8-bit 
input, 8-bit weight, 14-bit output CIM macro. The RRAM array consists of 
TiN/HfO2/TiN-based binary memristors [18,19], with the memristor unit simulated 
using the MuHAM model [20–22]. The array size is 0.5-Mb (1024 rows × 512 columns). 
Based on the experimental results from (1) and (2), we will expand a comparison 

between conventional VSA and MQL-VSA in terms of readout latency and power con-
sumption. 

Figure 9. Comparison of operational states in MQL-VSA and conventional VSA for 2-bit quantization:
(a) structure of MQL-VSA; (b) structure of conventional VSA.

The MQL-VSA, by incorporating multi-bit quantization technology, reduces the delay
associated with three operational states, particularly avoiding the high latency induced
by reference voltage switching. Furthermore, its parallel quantization of two-bit data is
indisputably more efficient than the serial operations employed by conventional VSA.
Additionally, the MQL-VSA omits the use of multi-bit registers (two-bit register) and
multiplexers (MUX) or other sequential logic circuits, thereby circumventing the additional
delays caused by complex gate circuits. It also obviates the need for consideration of
inter-module timing coordination, which leads to waiting times, thus further optimizing
the circuit’s latency. Consequently, MQL-VSA demonstrates superior performance in terms
of readout latency.

4. Experiments Result and Comparison
4.1. Verification of MQL-VSA Functionality

This section conducts experimental validation of the MQL-VSA circuit using the MXIC
L18B 180 nm CMOS process, with a supply voltage of VDD = 1.8 V. The layout of the
CIM macro circuit and the designed MQL-VSA are shown in Figure 10, with the CIM
macro circuit and MQL-VSA total size being 2630 µm × 2149 µm and 170 µm × 135 µm,
respectively. The validation encompasses two main aspects:

(1) Testing the functionality and readout latency performance of the MQL-VSA;
(2) Evaluating the readout latency characteristics of the RRAM array-based CIM macro

circuit which utilizes MQL-VSA. The macro circuit employs the CIM architecture
shown in Figure 10, with parameters set to m = 8, k = 8, and n = 14, forming an
8-bit input, 8-bit weight, 14-bit output CIM macro. The RRAM array consists of
TiN/HfO2/TiN-based binary memristors [18,19], with the memristor unit simulated
using the MuHAM model [20–22]. The array size is 0.5-Mb (1024 rows× 512 columns).
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Figure 10. The layout of CIM macro circuit and the designed MQL-VSA: (a) the layout of CIM macro
circuit; (b) the layout of MQL-VSA.

Based on the experimental results from (1) and (2), we will expand a comparison between
conventional VSA and MQL-VSA in terms of readout latency and power consumption.

The functional verification of the MQL-VSA is illustrated in Figure 11. The specific
signals function as follows: SAOUT[0] and SAOUT[1] represent the MSB and the LSB
of the 2-bit output, respectively; PRE, SW12, SW56, SW78, SAEN1, and SAEN2 serve as
the control signals of the circuit; the voltage signals Q1 (Q1B) are crucial for outputting
SAOUT[1]; Q2 (Q2B) and OUT2 (OUT2B) act as inputs for the LSB Detecting, generating
SAOUT[0] (details in Section 3.2).
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When VSUM = 1.7 V, the quantization process of MQL-VSA is as follows:

(1) In the first cycle, with VREFH = 1.35 V and VREFL = 0.45 V, the quantization results
of MQL-VSA are SAOUT[1]=1 and SAOUT[0] = 1, respectively;

(2) In the second cycle, with VREFH = 1.6875 V and VREFL = 1.4625 V, the quantization
results are SAOUT[1] = 1 and SAOUT[0] = 1.

The voltage time-domain waveforms of the crucial signals in Figure 11 demonstrate
that the MQL-VSA accurately achieves the quantization function while reducing readout
latency, meeting the anticipated requirements.

Furthermore, to mitigate the impact of overshoots during switch transitions on the cir-
cuit’s normal operation, this experiment implemented measures to minimize
these effects. Specifically:

(1) For the digital signals in Figure 11 (OUT2, OUT2B, SAOUT[0]), all digital signals
in the experiment pass through a digital buffer to filter overshoots before output,
resulting in clean and well-defined signals in Figure 11.

(2) To reduce overshoots in the analog signals of Figure 11 (including Q1, Q1B, Q2, Q2B,
SAOUT[1]), a non-overlapping control signal for all switches was employed. For
example, during the transition from PH1 to PH2 phase, the falling edge of SW12 and
SW34 and the rising edge of SW56 are non-overlapping. This prevents simultaneous
conduction of switches during state transitions, thereby only minor overshoots occur
in the analog signals, which are clear and well-defined, and these overshoots do not
affect the final quantization outcome.

Thus, by addressing signal overshoots, the MQL-VSA demonstrates significant re-
silience against such non-ideal factors, which stands as one of its major advantages.

Significantly, this study conducted PVT and 200 Monte Carlo tests on the MQL-
VSA across a broad spectrum of input voltages. This involved step scanning in 10 mV
increments within a 0–1.8 V range, yielding 180 voltage inputs. The findings of these
experiments reveal:

(1) In the PVT experiments, five MOS corners (ff, tt, ss, sf, fs), three capacitor corners (ff,
tt, ss), three power supply voltages (1.44 V, 1.8 V, and 2.16 V, which represent a ±20%
fluctuation in supply voltage), and three temperature environments (−40 ◦C, 27 ◦C,
125 ◦C) were selected, totaling 135 scenarios. In all 135 different PVT conditions, the
MQL-VSA consistently produced accurate quantization results. For instance, with
input voltages of 0.36 V, 0.99 V, and 1.7 V, the MQL-VSA output the binary codes
0010, 1001, and 1111, respectively, in each of the 135 PVT experiments, demonstrating
robust PVT characteristics.

(2) In the Monte Carlo simulations, the MQL-VSA underwent 200 tests, consistently
yielding correct quantization results. For example, with input voltages of 0.36 V, 0.99 V,
and 1.7 V, the MQL-VSA output the binary codes 0010, 1001, and 1111, respectively, in
each of the 200 tests. This indicates that even in the presence of device mismatches,
the MQL-VSA maintains its accurate quantization capabilities.

As analyzed and evidenced by the experimental results, the proposed MQL-VSA,
through two identical quantization cycles, accomplishes the quantization of 4-bit data. Each
2-bit output reduces the delay of three operational states compared to conventional VSA.
Thus, the entire 4-bit quantization process diminishes the delay of six operational states,
effectively reducing the readout latency of VSA through multi-bit quantization technology.

4.2. Performance Comparison of MQL-VSA and Conventional VSA

As depicted in Figure 12, when quantizing 4-bit data, the overall readout latency of
the MQL-VSA circuit, in comparison to the conventional VSA [10], is reduced from 70 ns
to 50 ns, a decrease by a factor of 1.40. This reduction in readout latency is attributed
to the fewer operational states required by MQL-VSA, eliminating the need for frequent
switching of reference voltage and intermediate data storage prevalent in conventional
VSA. Moreover, the overall power consumption of the circuit is reduced from 90.42 µW to
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70.64 µW, a decrease by a factor of 1.28. This reduction is due to the fewer operational states
in MQL-VSA, significantly reducing the need for frequent switching within the circuit and
consequently lowering dynamic power consumption.
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4.3. Comparison Based on CIM Architectures

As shown in Figure 13, when comparing macro circuits utilizing conventional VSA [10]
with those using MQL-VSA, the overall computational latency of the macro circuit in-
corporating MQL-VSA is reduced from 830 ns to 750 ns, a decrease by a factor of 1.11.
Concurrently, the power consumption is lowered from 4.06 mW to 3.90 mW, a reduction
by a factor of 1.04. The relatively modest decrease in macro circuit power consumption
can be attributed to the RRAM array, which accounts for a significant portion of the power
usage. As a result, the power consumption reduction contributed by MQL-VSA is less
pronounced, leading to a less substantial overall decrease in power consumption for the
macro circuit.
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4.4. Comparison with Previous SAs

Table 2 summarizes the performance of sense amplifiers (SAs) from other studies and
compares them with the proposed MQL-VSA. The results indicate that in the context of
quantizing 4-bit data, the MQL-VSA’s performance in terms of readout latency and power
consumption is comparable to other works utilizing advanced processes.

Table 2. Performance summary and comparison.

[7] [8] [9] [10] This Work

Technology node (nm) 65 28 40 130 180

Memory N/A RRAM RRAM Flash RRAM

Supply voltage (V) 1 0.8 1.1 1.2 1.8

Sensing approach Current Current Current Voltage Voltage

Power (µW) 59.38 7.132 48.44 90.42 70.64

Readout latency (ns) 30 26.4 14 70 50

Quantify bit/cycle 1 1 1 1 2

FoM * 3.65 14.87 5.90 2.05 10.19
* FoM = 100 × (Technology node) × (Quantify bit/cycle)/[(Power) × (Readout Delay)].

To provide a more comprehensive assessment of SA circuit performance, the concept
of FoM is introduced in Table 2. The FoM is designed to evaluate the performance of SA
circuits from multiple perspectives, including process, quantization bits, power consump-
tion, and readout latency. As seen from Table 2, the FoM value of the proposed MQL-VSA
significantly surpasses that of the studies in references [7,9,10], indicating its superior over-
all performance. However, the proposed MQL-VSA does have limitations when compared
to the 28 nm high-speed, low-voltage process used in reference [8]. Despite this, the mature
commercial 180 nm process, with its lower design complexity and cost, offers considerable
advantages for the widespread adoption and application in computing-in-memory chips.

It is noteworthy that the MQL-VSA is also compatible with advanced processes below
130 nm. This compatibility stems from the use of standard devices, such as MOS transistors
and MIM capacitors, which operate under large signal conditions. Unlike traditional analog
circuits, the biasing requirements for MQL-VSA are less stringent, allowing it to function
effectively in the low-voltage modes of advanced processes. Compared to the ultra-deep
submicron processes utilized in references [7–10], the proposed MQL-VSA based on the
mature commercial 180 nm process from MXIC significantly reduces chip manufacturing
costs and development complexity. This makes it more conducive to the proliferation and
application of computing-in-memory chips. Furthermore, as process technology advances,
there is substantial margin for improvement in the readout latency and power consumption
performance of MQL-VSA.

5. Discussion

Based on the above analysis and experimental validation, the proposed multi-bit
quantization technology effectively reduces the excessive number of operational states
in conventional VSA. This reduction avoids lengthy readout latency caused by frequent
reference voltage switching and intermediate data storage in registers. Additionally, the
MQL-VSA’s simplified structure results in superior power and area consumption compared
to conventional VSA.

(1) Power Consumption: as analyzed in Section 3, the MQL-VSA’s simplified circuit
leads to lower power consumption. Experimental results from Section 4 show that
the circuit’s power consumption decreased from 90.42 µW in conventional VSA to
70.64 µW in MQL-VSA, a 1.28-times reduction;

(2) Area: as seen from Figure 3, the MQL-VSA circuit uses simple components like
inverters, switches, capacitors, and latch structures, avoiding the complex circuit
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elements like dynamic comparators and multiplexers found in conventional VSA.
This simplicity also translates to a reduction in area usage;

(3) Common mode input range: conventional VSA structures employing dynamic com-
parators are limited in their common-mode input level (which must exceed the thresh-
old voltage of the comparator’s input pair). Thus, they require an additional common-
mode level input to function correctly. However, MQL-VSA, utilizing a latch structure
instead of dynamic comparators, has no such limitation in its input common-mode
range, indirectly reducing the circuit’s power consumption.

Essentially, VSA is a circuit that converts analog voltage into digital signals. Thus,
the proposed MQL-VSA is also applicable in other scenarios requiring analog-to-digital
conversion, especially in applications demanding low readout latency and low power
consumption. Furthermore, by configuring control signals, MQL-VSA can perform multi-
cycle quantization to achieve higher bit outputs, allowing customization based on different
application requirements.

6. Conclusions

This paper introduces a multi-bit quantization technology low-latency voltage sense
amplifier (MQL-VSA) and validates its functionality and performance using a CIM macro
circuit based on RRAM arrays. Compared to conventional VSA, the proposed MQL-VSA:

(1) Utilizes multi-bit quantization technology to reduce the number of operational states
in each quantization cycle by quantizing 2-bit data within one cycle;

(2) Employs combinational logic circuits and Latch structures for MSB and LSB detection,
decreasing the complexity of sequential control signals and further optimizing readout
latency while simplifying the circuit structure.

Experimental results demonstrate that the MQL-VSA reduces latency by 1.40 times
and power consumption by 1.28 times compared to conventional VSA. In CIM macro
circuits based on RRAM arrays, using MQL-VSA reduces system latency by 1.11 times and
power consumption by 1.04 times, indicating effective enhancement in latency performance
for CIM circuits.

The proposed MQL-VSA not only improves readout latency but also shows improve-
ments in area and power consumption. It is suitable for new computing-in-memory
architectures and high-speed signal acquisition systems requiring high energy efficiency,
offering a wide range of potential applications.
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