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Abstract: Autonomous object manipulation is a challenging task in robotics because it requires an
essential understanding of the object’s parameters such as position, 3D shape, grasping (i.e., touching)
areas, and orientation. This work presents an autonomous object manipulation system using an
anthropomorphic soft robot hand with deep learning (DL) vision intelligence for object detection,
3D shape reconstruction, and object grasping area generation. Object detection is performed using
Faster-RCNN and an RGB-D sensor to produce a partial depth view of the objects randomly located
in the working space. Three-dimensional object shape reconstruction is performed using U-Net based
on 3D convolutions with bottle-neck layers and skip connections generating a complete 3D shape
of the object from the sensed single-depth view. Then, the grasping position and orientation are
computed based on the reconstructed 3D object information (e.g., object shape and size) using U-Net
based on 3D convolutions and Principal Component Analysis (PCA), respectively. The proposed
autonomous object manipulation system is evaluated by grasping and relocating twelve objects not
included in the training database, achieving an average of 95% successful object grasping and 93%
object relocations.

Keywords: deep learning; 3D robot vision; autonomous object grasping; autonomous robots

1. Introduction

Autonomous visuomotor manipulation by a robot hand system is one of the most
widely investigated topics in robotics because of the growing demand for delicate manipu-
lation with robots [1–3]. Enhancing the autonomy of robots could allow service applications
for robots and improve human–robot interaction [4–6]. Autonomous object manipulation
requires various form of machine intelligence such as automatic detection or identification
of the object position [7], 3D shape information [8,9], object orientation, and grasping
(touching) areas [10–12].

Object detection algorithms allow robots to detect and identify objects randomly
located in the working space. Deep learning is widely investigated for object detection
from RGB images due to self-feature extraction [13]. Faster-RCNN is a well-defined object
detector used for real-time applications such as autonomous object manipulation because
of its object detection accuracy and inference speed [14,15]. Recent research focuses on
integrating object detectors with object shape inference to enrich the preserved informa-
tion [16]. For instance, Sudharkar et al. [17] propose the integration of R-3D-YOLOv3 on an
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embedded vision for efficient animal detection and 3D shape reconstruction in dynamic
environments. Sudharkar applied the model to approximately 1600 images of Indian stray
and wild animals, achieving a commendable accuracy of 84.18%. The results demonstrate
the model’s effectiveness in identifying and reconstructing 3D views of moving animals
near roads, showcasing the potential of ensemble systems to generate scene information
with DL-based algorithms.

Once an object is detected based on color information (RGB images), a partial depth
view of the object (i.e., a single view of point clouds) can be obtained with an RGB-D
camera [18]. It is useful for robot motor control when 3D shape or volume information of an
object becomes available. Three-dimensional shape reconstruction was initially attempted
by classifying the partial views of objects in categories of known objects (i.e., a database of
objects) to produce a complete object shape via shape matching [19,20]. Xialong et al. [17]
proposed a system for scene and human reconstruction based on non-rigid deformation
and 2D–3D feature fusion modules. Xialong applied the method to address large-scale
motion challenges. The results demonstrate improved clarity in object identification and
highlight the effectiveness of capturing dynamic scenes with enhanced feature extraction.
These initial works [17,19,20] are limited since only objects in the database can be matched
or reconstructed. Another approach reconstructs 3D shapes using images of the same object
from different angles and patching all the images together. For instance, Xinpeng et al. [21]
proposed a system to capture images of the target scene with nine cameras and reconstruct
the 3D scene using U-Net-based architectures. Instead of matching or using multiple
images, 3D object shapes could be reconstructed using DL. For instance, Valarezo et al. [22]
proposed a 3D object shape reconstructor based on U-Net 3D-CNN with a bottle-neck skip
connection block (3D U-Net-based BNSC) to reconstruct trained and untrained objects
from a single partial view. The idea is to reconstruct the 3D shapes of objects using 3D
U-Net-based BNSC to generate the grasping position and orientation angle.

Recently, DL has also been investigated to produce machine intelligence for generating
grasping information, i.e., object grasping areas and grasping orientation. For instance,
Brahmbhatt et al. [23] proposed an Object Grasping Areas Generator (OGAG) based on
U-Net to estimate the grasping areas over the object using a database of human grasping
demonstrations. Brahmbhatt reported an average matching error of 11.64%. Choi et al. [24]
used a convolutional neural network (CNN) to estimate the most likely grasping direction
and wrist orientation from a collected database of successful grasping samples. Choi’s
system was evaluated by grasping ten objects with a soft robot hand from six grasping
directions and four orientations. These previous works [23,24] show the potential of DL
to estimate object grasping areas. However, they are limited to grasping objects from a
discrete number of wrist orientation angles.

Few previous works performed autonomous object manipulation with anthropomor-
phic robot hands [7,25]. Ficuciello et al. [25] proposed an autonomous object manipulation
using the KUKA lightweight robot 4+, the Schunk five-finger hand, and a single RGB-D
camera. Ficuciello first performed object shape classification based on geometric features
and then used reinforcement learning (RL) combined with human demonstrations to grasp
three objects. Della Santina et al. [7] used the KUKA LWR robot arm, Pisa/IIT anthropomor-
phic soft robot hand, and a single RGB camera (no depth) for autonomous object grasping.
Santina’s system used YOLOv2 to detect the objects and deep neural networks (DNNs) to
estimate the grasping orientation angle from nine discrete orientations.

This work presents an autonomous object manipulation system with a single RGB-D
vision sensor and a flexible anthropomorphic soft robot hand (i.e., the qb Soft Hand [26]) via
deep learning (DL)-based vision intelligence. Our proposed autonomous system involves
the use of machine vision intelligence, including Faster-RCNN, Principal Component
Analysis (PCA), 3D U-Net-based BNSC, and 3D U-Net-based OGAG, to grasp and relocate
various objects with different shapes and sizes. Our contribution is the grasping position
and orientation estimation. First, the grasping position is calculated from the estimated
object grasping areas, which are inferred using the complete object shape and human-like
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grasping areas. Second, the wrist orientation is a continuous angle from lateral (0◦) to top
(90◦) grasping, adapting to each object. The previous works of Choi et al. [24] and Della
Santina et al. [7] only utilized discrete orientation angles such as lateral and top grasping.
The proposed autonomous system was tested by manipulating twelve objects not included
in the training database. The proposed autonomous object manipulation system achieved
an average success rate of 94% in the grasping and relocation tasks.

The rest of the paper is organized as follows. Section 2 describes our proposed
autonomous object manipulation system including each database used to train the DL
vision intelligence, the implementation details, and the definitions of the manipulation
tasks. Section 3 includes qualitative and quantitative results. Section 4 presents a discussion
of the experimental results, a comparison with previous manipulation studies, and the
limitations. Section 5 states the conclusions of this research article.

2. Materials and Methods
2.1. Visuomotor Robot System Setup

Figure 1 shows the visuomotor robot system and workflow of our autonomous object
manipulation system. From the left, the motor components include a UR3 robot arm,
the anthropomorphic soft robot hand (i.e., the qb Soft Hand), and a single vision sensor.
The qb Soft Hand has 19 degrees of freedom (DoF) controlled with a single motor. The
vision sensor is an Intel RealSense D415 RGB-D camera able to sense the color and depth
information of an object at a minimum distance of 45 cm with a 2MP resolution. The vision
intelligence based on DL is operated in three stages. First, Faster-RCNN detects the object.
Its position is found in the working space. The RGB-D sensor captures a partial depth view
of the objects. Second, our 3D U-Net-based BNSC reconstructs the complete 3D shape of the
object from the partial depth view. Third, our 3D U-Net-based OGAG and PCA estimate
the object manipulation parameters of position and orientation, respectively. Finally, the
object is automatically grasped and relocated using the UR3 and qb Soft Hand system.
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2.2. Object Detection and Position Identification
2.2.1. Database

The object detector was trained using Open Images V4 database [27,28]. Open Images
V4 has 1.74 million RGB images with 14.6 million bounding boxes for 600 object categories.
The manually drawn bounding boxes exist in the database with the labels assigned to the
corresponding category. The images from Open Image V4 were divided into 125,436 images
for testing, 41,620 images for validation, and the remaining images for the training datasets.
The resolution of the images is 1600 × 1200 pixels and the size of the detected objects varies
in each image.

2.2.2. Object Detector

Faster-RCNN was adopted for object detection, which is an artificial neural network
based on 2D CNN with two stages [15]. First, a regional proposed network (i.e., RPN)
generates proposals of the detected bounding boxes with different sizes and objectness
scores for each proposal. Second, Fast R-CNN detects the objects based on the proposals
generated by RPN [15]. Faster-RCNN was previously evaluated, achieving a mean average
precision (mAP) of 42.7% with the MS COCO database [29]. The pixel information from
the detected bounding box is paired with the depth information sensed from the RGB-D
camera to produce a depth view of the seeing object surface as a point cloud.

2.3. 3D Object Shape Reconstruction
2.3.1. Database

The Grasp database has information on 590 objects sensed and saved as mesh mod-
els [30]. The objects are groceries, tools, toys, drugstore products, and household objects.
The sizes and materials depend on the object. For instance, tin cans are about 10 cm in
height and made of aluminum, cracker boxes are about 25 cm in height and made of carton.
All objects in the Grasp database are expressed in a voxel grid 40 × 40 × 40 as binvox
files. Binvox is a software that rasterizes 3D object models into 3D voxel grids [31,32]. The
binvox object’s files were built following the guidelines of [33]. First, the meshes were
placed in Gazebo, homepage: https://gazebosim.org/home. Gazebo is a 3D software used
for robot simulations [34]. Then, various partial depth views of the object from different
angles were created using a virtual depth camera. Finally, a 3D gridded mesh of the visible
pixels was produced using Binvox, where label 1 corresponds to object voxels and label 0
to the background.

2.3.2. Three-Dimensional Object Shape Reconstructor

Our object shape reconstructor is based on U-Net with 3D convolutional layers, bottle-
neck layers, and skip connections (U-Net-based BNSC 3D-CNN). The 3D convolutional
layers are used because of their larger 3D receptive field [35]. The skipped connections
propagate the features and training error to the whole network, and the bottle-neck layers
reduce the trainable parameters [22].

The 3D U-Net-based BNSC method is an artificial neural network with a contractive
path, expensive path, and skip connections [36]. The contractive path captures the object’s
contextual information (i.e., shape and size) using two BNSC blocks and two max pooling
layers. The expansive path reconstructs the object shape using two BNSC blocks and
two up-sampling layers. The skip connections connect the layers from the contractive
path with their equivalent layers in the expansive path. Also, two skip connections were
added around each BNSC block in the contractive path to maximize feature sharing and
backpropagation of the training error. The details of the 3D U-Net-based BNSC architecture
are available in [22].

https://gazebosim.org/home
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2.4. Grasping Parameters
2.4.1. Object Grasping Areas Database

ContactDB is a public database with grasping area information of objects based on
human hands (i.e., object grasping areas) [23,37]. ContactDB provides object grasping areas
for 50 household objects. The object grasping areas were created by measuring the heat
left by the touch of the human hand on the object using a thermal camera. The objects
were 3D-printed in their original sizes using thermoplastic polyester (i.e., PLA) to retain
the thermal human handprints. The object grasping areas are expressed as voxel grids of
40 × 40 × 40, where the inner area of the object is marked as occupied grids to match the
objects from the Grasp database.

2.4.2. Object Grasping Areas Generator (OGAG)

Our 3D U-Net-based OGAG is based on the work of Brahmbhatt et al. [23] because
of its average matching error for object grasping area estimation. The original structure
was modified by adding the bottle-neck skip connections block (BNSC block) to reduce the
network size and improve the feature shearing for training.

Figure 2 shows the structure of the 3D U-Net-based OGAG. A 3D convolutional layer
extracts 64 features (@64) from the reconstructed object using a kernel size of 4 × 4 × 4
as the input. The contractive path extracts features using four BNSC blocks and one max
pooling layer right after the second BNSC block. Also, skip connections were added around
each BNSC block to maximize the depth features shared inside the contractive path and
with the expansive path. The expansive path has four BNSC blocks, one up-sampling layer
after the second BNSC block, and the skip connections from the contractive path. At the
output, a 3D convolutional layer infers the grasping area over the object using a kernel size
of 4 × 4 × 4 and one feature (@1).
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Additionally, the 3D U-Net-based OGAG uses average, addition, and concatenation
layers to ensemble the extracted features, as shown in Figure 2. The average layer performs
an averaging between the features extracted from the first and last layers of the BNSC block.
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The addition layer is used to ensemble the features extracted between the BNSC block of
the contractive path. Finally, the concatenation layers groups the features extracted from
the contractive path with the features from the expansive path.

Each BNSC block is composed of four convolutional layers, including bottle-neck
layers, as shown in Figure 2. The bottle-neck layers are convolutional layers with a kernel
size 1 × 1 × 1 used to reduce or restore the feature maps [38,39]. The main advantage of
bottle-neck layers is reducing the network size because of their 1 × 1 × 1 kernel. The first
convolutional layer of the BNSC block extracts 64 features using a kernel size of 4 × 4 × 4.
The second convolutional layer is a bottle-neck layer that reduces the number of features
from @64 to @16. The third convolutional layer extracts 16 features using a kernel size of
4 × 4 × 4. At the output of the BNSC block, a bottle-neck layer restores the features from
@16 to @64. Batch normalization is used after each convolutional layer.

The qb Soft Hand does not allow independent control of each finger (i.e., one motor
controls the entire grasping motion of the fingers). Thus, the inferred object grasping areas
are reduced to a single centroid point (i.e., grasping position). The anthropomorphic soft
robot hand closes to grasp the objects after reaching the grasping position and opens to
release the object in the relocation target position.

2.4.3. Grasping Orientation Angle

The grasping orientation angle aligned the anthropomorphic soft robot hand to the
object for power grasping. Power grasping is defined as grasping the object with most of
the fingers around it to maximize the area in contact. The grasping orientation is the angle
of the principal component regarding the robot frame (i.e., the world frame). The principal
component is computed using PCA over the point cloud of the 3D-reconstructed object.
Then, the soft robot hand can be aligned in a continuous range from 0◦ (for lateral grasping)
to 90◦ (for top grasping) according to the direction of the object’s principal component.

2.5. Implementation Details

The Intel RealSense RGB-D camera is set up using the Python library Pyrealsense2
from Intel [40]. The UR3 robot arm is connected to a PC using a TCP/IP via an Ethernet
socket. UR3 moves to the grasping position using the inverse kinematics package from the
URX Python library [41]. The qb Soft Hand is connected via a USB cable and controlled
using the C++ library from qb Robotics [26]. The grasping enclosure force was set to 80%
of its capacity. Grasping positions less than 6.5 cm high (Z-axis) were not executed to avoid
collision with the table.

2.6. Manipulation Tasks and Objects

The object manipulation tasks involved the grasping and relocation of twelve objects.
The grasping task is defined as approaching the object and lifting it. The relocation task is
defined as repositioning the object at the target position without dropping it. The objects
manipulated with the proposed autonomous system are a Pringles can, tea box, air can,
box, thermos, milk box, tiger, toy, ball, Monster can, flashlight, and bottle. The twelve
manipulated objects were not included in the training datasets of 3D U-Net-based BNSC or
3D U-Net-based OGAG. However, the training datasets include some objects similar to the
twelve tested objects in their shape and size.

3. Results

This section describes the validation of each stage of the proposed autonomous object
manipulation system separately. The results include qualitative and quantitative validation.
The qualitative validation shows time series frames from a complete grasping and relocation
attempt for some representative objects. Also, pictures from different grasping attempts
for three objects are shown. The quantitative validation shows the number of successful
grasping and relocation attempts over ten attempts using random initial positions for
each object.
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3.1. Three-Dimensional Object Shape Reconstruction

The object shape reconstructor is validated qualitatively using samples of some repre-
sentative objects. Extensive quantitative validation of 3D U-Net-based BNSC is available
in [22], where the Jaccard similarity index (i.e., Intersection over Union) was used to as-
sess the reconstruction performance, achieving an average reconstruction performance of
72.17% with the ShapeNet database and 87.03 with the Grasp database. Figure 3 shows
the detected objects, sensed partial view of each object, and the reconstructed objects via
3D U-Net-based BNSC. Figure 3 presents the identified objects in the first column, the
corresponding sensed partial views in the second column, and the reconstructed objects in
the third column. Figure 3a–c depict the reconstruction results for the milk box, toy, and
Pringles can, respectively.
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3.2. Object Grasping Areas

Figure 4 shows the estimated object grasping areas. Figure 4a shows samples of the
object grasping areas generated from the reconstructed milk box. The reconstructed 3D
object is shown in yellow. The red points are the generated object grasping areas identified
using 3D U-Net-based OGAG. Figures 4b and 4c present samples of the object grasping
areas for the reconstructed toy and Pringles can, respectively.
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3.3. Grasping Orientation Angle

Figure 5 shows samples of the objects’ principal components for some representative
objects. Figure 5a shows some reconstructed milk boxes and the direction of the principal
component as a vector in red. Figure 5b and Figure 5c show the direction of the objects’
principal components for the reconstructed toy and Pringles can, respectively.
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3.4. Autonomous Object Grasping and Relocation with Soft Hands

Figure 6 shows time series frames from each attempt at object grasping and relocation
for three objects by our proposed autonomous system. Figures 6a and 6b show the soft
robot hand approaching the tiger and toy, respectively. Then, the soft hand rotates to grasp
the objects and relocate them out of the working space. Figure 6c shows the soft hand
grasping and relocating the milk box.
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Figure 7 shows samples of the autonomous grasping for three representative objects.
Figure 7a shows the soft hand grasping the tiger from the top, i.e., a hand orientation angle
around 90◦ (for top grasping). Figure 7b shows the soft hand grasping the toy according to
the object’s shape, i.e., a hand orientation angle between 0◦ and 90◦. Figure 7c presents the
soft hand grasping the milk box from the side of the object, i.e., a hand orientation angle
around 0◦ (for lateral grasping).
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manipulation system for the tiger (a), toy (b), and milk box (c).

Table 1 shows the results of the quantitative validation. For the grasping task, the ball,
thermos, flashlight, bottle, tiger, and milk box were successfully grasped ten times over ten
attempts. The Pringles can, air can, box, tea box, Monster can, and toy were successfully
grasped nine times over ten attempts. For the relocation task, the ball, thermos, flashlight,
and bottle were successfully relocated ten times over ten attempts. The Pringles can, air
can, box, tea box, Monster can, tiger, toy, and milk box were successfully relocated nine
times over ten attempts.

Table 1. Number of successful object manipulations out of ten attempts.

Object Pringles
Can Ball Air

Can Thermos Flashlight Bottle Box Tea Box Monster
Can Tiger Toy Milk

Box

Grasping 9 10 9 10 10 10 9 9 9 10 9 10

Relocation 9 10 9 10 10 10 9 9 9 9 9 9



Electronics 2024, 13, 379 10 of 13

4. Discussion

Three-dimensional object shape reconstruction is one of the crucial components for
autonomous object manipulation because it provides complete object information to com-
pute the grasping parameters (i.e., position and orientation). The reconstructed 3D objects’
shapes are affected by the detected and segmented partial view of the objects. For instance,
the 3D U-Net-based BNSC reconstructs the arms and legs of the toy because the object’s
partial view includes some information about them, as shown in Figures 3b, 4b and 5b.

The manipulated objects are not included in the training dataset of 3D U-Net-based
BNSC, nor for 3D U-Net-based OGAG. The proposed autonomous object manipulation
system generates grasping positions and orientation angles suitable for grasping all tested
objects based on the knowledge developed with the trained objects. Thus, the DL algorithms
estimate grasping parameters for manipulating objects with similar characteristics to those
in the training datasets.

Our proposed autonomous object manipulation system is scalable to manipulate
variously shaped objects because the continuous orientation angles (i.e., in the range of 0◦

to 90◦) are calculated using PCA. The object manipulation results show the soft robot hand
adopting an angle around 90◦ (for top grasping) to orientate the hand for grasping the tiger,
as shown in Figure 6a. The soft hand rotates between 0◦ and 90◦ to grasp the toy according
to the object shapes (in between top and lateral grasping), as shown in Figure 6b. The soft
hand slightly rotates to manipulate the milk box, adopting an angle around 0◦ (for lateral
grasping), as shown in Figure 6c.

Most successful grasping attempts lead to successful relocations for all tested objects
because the grasping position and orientation angle are computed according to the recon-
structed and complete object shape. Then, the soft robot hand adapts to the object. Only
the tiger and milk box slipped out of the robot’s hand in one attempt each before finishing
the relocation motion.

Previous works performed autonomous object manipulation using different frame-
works to compute the grasping parameters and hardware setups [7,25]. For example, Della
Santina et al. [7] sensed objects using only an RGB camera (no depth) and grasped them
using a Soft Hand. Della Santina’s system first detects the object using YOLOv2 from
color images and then estimates the grasping parameters via DNN, achieving an average
grasping rate of 81.1% with 36 objects. The objects included a mug, salt shaker, bottle, box,
glass, book, ball, container, screwdriver, knife, etc. Ficuciello et al. [25] utilized an RGB-D
camera and the Schunk hand with 20 DoFs to grasp untrained objects. Ficuciello’s system
first classified the objects based on criteria of similarity between the sensed point cloud and
the spherical or cylindrical shapes using RANSAC models. Then, RL was used to estimate
a grasping strategy, achieving an average of 4.6/5 successful grasping attempts with three
objects. Ficuciello’s system was evaluated using a ball, bottle, and plastic strawberry. Our
proposed DL-based vision intelligence uses object detection and 3D shape reconstruction to
generate human-like grasping areas and continuous hand-grasping orientation angles. For
the manipulation tasks, our system achieved an average success rate of 95% and 93% for
the grasping and relocation tasks with the twelve objects, respectively. Despite not being
a direct comparison with previous work due to the use of different robot setups and the
number of objects, this comparison shows the usefulness of the proposed system.

The average inference time of Faster-RCNN is 5.1 s, that of 3D U-Net-based BNSC is
3.05 s, and that of 3D U-Net-based OGAG is 6.2 s. One of the limitations of our proposed
autonomous object manipulation system is that the estimated object grasping areas are not
fully utilized due to the hardware limitations of the qb Soft hand; i.e., it does not allow
independent control of the fingers. Future work should test our proposed methodology
using an anthropomorphic hand with full DoFs for much more delicate object manipulation.

5. Conclusions

In conclusion, our research represents a stride in the realm of robotic visuomotor
manipulation. Rather than simply showcasing an automated robotic system for a specific
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object position or discrete grasping orientation, our work stands out because of the esti-
mated object grasping areas and because the grasping orientation has a continuous range
of angles from lateral to top grasping. We introduce a pioneering approach to autonomous
visuomotor manipulation by integrating deep learning algorithms. The crux of our innova-
tion lies in the development of a DL-based vision intelligence system, encompassing object
detection, 3D shape reconstruction, and grasping area inference. Our vision intelligence
employs Faster-RCNN to detect objects randomly positioned in the working space. Subse-
quently, the 3D U-Net-based BNSC estimates the reconstruction of complete object shapes,
providing full object information for effective robot manipulation. Our anthropomorphic
soft robot hand’s adaptability to diverse objects underscores our approach’s versatility.
We achieved an average success rate of 95% and 93% for grasping and relocation tasks
across twelve different objects not included in the training database, respectively. This
underscores the efficacy and practicality of our DL-based vision intelligence in real-world
manipulation scenarios.

Our autonomous object manipulation system lays the groundwork for the develop-
ment of more dexterous anthropomorphic robot systems. In fact, our research marks a
pivotal step forward, not merely in showcasing robotic capabilities, but in advancing the
theoretical underpinnings of autonomous visuomotor manipulation.
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