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Abstract: Growing and diverse user needs, along with the need for continuous access with minimal
delay in densely populated machine-type networks, have led to a significant overhaul of modern mo-
bile communication systems. Within this realm, the integration of advanced physical layer techniques
such as relaying-assisted transmission in beyond fifth-generation (B5G) networks aims to not only
enhance network performance but also extend coverage across multicellular orientations. However,
in cellular environments, the increased interference levels and the complex channel representations
introduce a notable rise in the computational complexity associated with radio resource management
(RRM) tasks. Machine and deep learning (ML/DL) have been proposed as an efficient way to support
the enhanced user demands in densely populated environments since ML/DL models can relax
the traffic load that is associated with RRM tasks. There is, however, in these solutions the need
for distributed execution of training tasks to accelerate the decision-making process in RRM tasks.
For this purpose, federated learning (FL) schemes are considered a promising field of research for
next-generation (NG) networks’ RRM. This paper proposes an FL approach to tackle the joint relay
node (RN) selection and resource allocation problem subject to power management constraints when
in B5G networks. The optimization objective of this approach is to jointly elevate energy (EE) and
spectral efficiency (SE) levels. The performance of the proposed approach is evaluated for various
relaying-assisted transmission topologies and through comparison with other state-of-the-art ones
(both ML and non-ML). In particular, the total system energy efficiency (EE) and spectral efficiency
(SE) can be improved by up to approximately 10–20% compared to a state-of-the-art centralized ML
scheme. Moreover, achieved accuracy can be improved by up to 10% compared to state-of-the-art
non-ML solutions, while training time is reduced by approximately 50%.

Keywords: relay-assisted transmission; machine learning; federated learning; deep learning; B5G
networks; system-level simulations

1. Introduction

The worldwide deployment of fifth-generation (5G) wireless networks is bringing in new
and improved features such as enhanced mobile broadband (eMBB), ultra-reliable low latency
communications (URLLC), and massive machine-type communications (mMTC) [1–3]. The
confluence of these three pillars—eMBB, URLLC [4], and mMTC [5]—reaffirms 5G as a
versatile and robust technology that extends beyond conventional mobile communication
networks catalyzing innovation across diverse industries, facilitating the realization of
novel applications and services that were hitherto unattainable with earlier generations of
wireless technology.
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However, the rapid evolution of networking technologies [6] (such as distributed
computation, cloud computing, network function virtualization, network slicing, and
software-defined networks (SDN)) and the need for reliable service provisioning for In-
ternet of Things (IoT), Industry 4.0, and augmented/virtual reality (AR/VR) applications
facilitated the need for next generations (NG) of wireless networks (such as beyond 5G
(B5G) and sixth generation (6G) networks). Another factor that highlighted the need for
B5G/6G networks and drove the start of the Third Generation Partnership Project (3GPP)
standardization process [7,8] is the surge in data generation coupled with the user/service
requirements for real-time network responses [9]. The overarching goal of B5G/6G net-
works is to evolve “connected intelligence” by deploying data-aided models across a wide
span of tasks, applications, and open systems interconnection (OSI) levels. This marks a
pivotal shift from mere connectivity to intelligent interactivity, shaping the trajectory of
wireless communication networks toward an era characterized by enhanced responsiveness
and interconnected intelligence [10–12].

From a physical layer perspective, the transition to NG wireless networks—which will
be established with the expected International Mobile Telecommunications-2030 (IMT-2030)
standard—involves the introduction of several novel technologies such as millimeter-
wave (mmWave) transmission [13], non-orthogonal multiple access (NOMA) [14], mas-
sive multiple-input multiple-output orientations (m-MIMO) [15], physical layer security
(PLS) [16], and reconfigurable intelligent surfaces (RIS) [17]. Moreover, network densifi-
cation emerges as a pivotal strategy for ensuring seamless connectivity to an increasing
number of simultaneously connected mobile devices. Within this framework, the con-
ventional single-link (one-hop communications) concept, where the base station (BS) is
directly linked to user equipment (UEs) is replaced by a network of potential connections
emanating from access points (APs) and relay nodes (RNs), thereby enhancing the overall
efficiency and coverage of the wireless communication infrastructure [15,18]. Such topolo-
gies also demonstrate significant performance gains in heterogeneous scenarios, such as
mobile/flying ad hoc networks (MANETs/FANETs).

In the advancing landscape of B5G/6G networks, the vital role of artificial intelligence
(AI) and machine learning (ML) as key tools for extracting valuable insights from vast
and diverse data generated by networks is acknowledged [19,20]. These technologies
are pivotal for supporting decision-making, automating diverse service requirements,
and managing radio resources effectively. To achieve this, the substantial amount of
data (big data) generated in the dynamically changing and densely populated B5G/6G
environments plays a central role in training various learning algorithms, including artificial
neural networks (ANNs) [21], support vector machines (SVMs) [22], reinforcement [23],
and deep reinforcement learning (RL/DRL) models [24]. However, meaningful insights
and the adjustment of important parameters require significant computational resources
for the successive training and execution of these AI/ML tasks. Thus, accelerating the
training phase of AI/ML models and minimizing response times emerge as crucial aspects,
indispensable for the practicality and effectiveness of ML tasks within the overarching
framework of NG networks [9,25].

ML techniques that rely on central entities to produce the learning outcome may face
several difficulties when dealing with imbalanced, heterogeneous, or poor-quality data,
such as B5G/6G channel state information (CSI) or m-MIMO-related ones [26]. Thus,
both traditional ML (supervised, unsupervised learning) and centralized learning (CL)
categories may be insufficient in achieving efficient resource orchestration for the increased
number of interconnected devices, machines, and sensors in B5G/6G networks. The most
significant drawbacks of such approaches when integrated into the B5G/6G networks’
domain are non-instant responses, local data reliance, and potential security vulnerabilities
(e.g., single point of failure) [9,27]. For this purpose, decentralized and distributed ML
solutions are proposed as an effective way to handle these problems.

This manuscript’s motivation stems from the need to reduce computational overload
from B5G/6G major nodes (such as core network servers and BSs). These entities have to
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repetitively deal with multiple tasks that span across multiple OSI levels (from physical
to application layer). In addition to that, RRM problems, such as subcarrier allocation, BS
or RN selection, and placement are categorized as NP-hard ones, especially in dense and
high-interference environments. Thus, this manuscript considers distributed ML training
schemes to overcome both the data quality and the network overload problems.

On this framework, federated learning (FL), which was introduced in [28], and com-
bines the principles of both ML and mobile edge computing (MEC), has recently been
proposed as an efficient solution for efficient solutions in RRM problems. The key character-
istic of FL, which diversifies this technique from CL ones, is the existence of a global model
that is constituted by the—equal or not—local model contributions of several intercon-
nected edge entities (e.g., devices, servers). As depicted in Figure 1, local datasets are not
mitigating into a central entity, but only local-trained models are doing so to generate the
global model [29]. FL can also operate without transferring local model updates to a central
entity, when nearby devices form clusters to collaboratively exchange model parameters
promoting both privacy and efficiency [30].
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Recently, FL schemes have been proposed as a promising solution in different RRM
tasks in B5G/6G networks, such as user management and profiling [31], interference
mitigation [32], subcarrier allocation [33], and signal-to-interference-plus-noise (SINR)
maximization [34]. This paper focuses on the joint RN selection and subcarrier allocation
problem in two-hop relaying-assisted B5G/6G networks aiming to maximize both energy
(EE) and spectral efficiency (SE). This problem is categorized into the NP-hard ones, as
intense multipath propagation and non-linear channel representation phenomenon exist
both for the BS-RN (first hop) and the UE-RN link. Table 1 presents a comparison of CL
and FL schemes focusing on RRM in B5G/6G networks.

Table 1. CL and FL in B5G/6G networks comparison.

Aspect CL FL

Data Privacy

May raise privacy concerns as
centralized processing

involves accessing raw data
from multiple sources.

Raw data remain on local devices,
and only model updates are

exchanged, preserving data privacy.

Communication
Overhead

Lower communication
overhead as all data are in one

location.

Higher communication overhead
due to the need to send model
updates across decentralized
devices, impacting latency.
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Table 1. Cont.

Aspect CL FL

Scalability
May face scalability issues as
the central entities handle all

data.

Generally more scalable as
decentralized learning can be

distributed across a large number of
devices in B5G/6G networks.

Data Efficiency Efficient use of data since all
data are available in one place.

May require more data due to
decentralized training, potentially

posing challenges in scenarios with
limited data on individual devices.

Model Robustness
Centralized model may lack
robustness if not trained on

diverse data.

Encourages model robustness by
training on diverse local data,

potentially enhancing adaptability
to heterogeneous network

conditions.

Security
Vulnerable to security

breaches as all data are in one
location.

More secure in terms of data
privacy since raw data stay on local

devices, reducing the risk of a
centralized data breach in

5G/6G networks.

1.1. Related Works

Relaying-assisted wireless communications constitute an active area of research es-
pecially in B5G/6G cellular orientations, as multi-hop communications are proposed to
extend the overall network coverage area, improve capacity without new hardware in-
stallation, and reduce energy consumption through the BS-UE link decongestion. These
characteristics are vital for the new B5G/6G usage scenarios, such as industry automation,
vehicle-to-vehicle (V2V) communications, and AR/VR applications, where even moving
RNs are considered. Moreover, the RN-assisted communication gains can be extended even
more when jointly utilized with advanced physical layer techniques, such as m-MIMO,
NOMA, and RIS. In such scenarios, despite the NP-hard nature of the RRM optimization
problem [35], ML-based schemes can be efficient enough, without the need for extensive
search algorithms or numerous simulation rounds [18]. However, FL schemes have recently
been proposed in order not just to solve the RRM problem efficiently but also to reduce
training times and unstress both the BS-RN and the RN-UE links from overarching traffic
load [36].

This subsection analyzes the current research activity in the field of FL-based frame-
works for efficient RRM in relaying-assisted B5G/6G networks, focusing on performance
metrics maximization (e.g., EE and SE).

In [37], the authors introduce the idea of FL-based relay-assisted communications.
They propose a relay network that serves as a cooperative platform for transferring and
trading model updates. In this setup, mobile devices create model updates from their
training data and send them to the model owner through a cooperative relay network.
The model owner, benefiting from the learning services provided by the mobile devices,
reciprocates by compensating them with specific prices. To navigate the interference among
mobile devices using the same relay node, rational mobile devices strategically choose relay
nodes and determine their transmission powers. A Stackelberg game model is employed
to analyze interactions among mobile devices and between mobile devices and the model
owner. Performance evaluation reveals that devices with low computation power can
benefit by strategically aligning with neighboring high-computation power, impacting
model transmission time and overall energy consumption.

The authors of [38] first proposed a distributed FL framework to ensure secure data
privacy in relaying-assisted 5G/6G air-BS networks. A distributed FL network architecture
where user devices form clusters, following the MEC architecture paradigm, to efficiently



Electronics 2024, 13, 390 5 of 18

relay ML training traffic between them. The aerial BS acts as the node that aggregates
the local model updates. The proposed framework is compared to CL-based 5G/6G
architectures, where the training phase of the AI/ML algorithms is coordinated by a central
entity. Performance evaluation indicated that the proposed FL-based scheme improves
classification accuracy by approximately 7% compared to state-of-the-art CL approaches. In
the same way, the authors of [39] and [40] also focus on EE maximization when considering
FL schemes for relay-assisted B5G/6G IoT networks. The optimization goal of the proposed
approach was to reduce IoT device energy consumption while jointly meeting wireless
transmission latency and model training calculation time constraints during the FL training
phase. The key novelty of [40] was the integration of a weighted communication rate of
all participating devices to maximize the convergence time for local model aggregation.
To do so, the authors formed a maximum-weight independent problem that was solved
approximately using graph theory techniques. In this way, a sub-optimal solution for the
original RRM problem (NP-hard) that increases EE levels is proposed.

In [41], a novel relay-assisted cooperative FL scheme is introduced to effectively
mitigate the straggler issue, which is caused in B5G/6G networks due to edge device
heterogeneity. The proposed approach involves the deployment of multiple RNs to assist
edge devices in uploading local model updates to the edge server. Due to the multi-
parameter nature of the RRM problem in RN-assisted wireless topologies, an alternating-
optimization algorithm is proposed, ensuring efficient optimization of transceiver and
relay operations with low complexity. Performance evaluation is performed considering a
two-hop orientation. Results indicate that the aggregation error in such a scenario decreases
by approximately 10–20%, while the test set accuracy increases by a similar level (10–20%)
compared to a state-of-the-art non-RN-based topology.

Considering, the joint EE and SE optimization in modern-era wireless communication
networks, the authors of [42] model the joint optimization problem as a Markov decision
process object to transmission power and QoS constraints. Integrating spatiotemporal CSI,
they proposed a DRL framework (based on transmission power and QoS requirements as
neural network inputs) to effectively solve the subsequent EE and SE optimization problem.
Simulations demonstrate that the proposed method outperforms other state-of-the-art ML
approaches as it demonstrates a five times increase in the joint EE-SE metric (Mbits/Joule).
A similar approach from the same authors is presented in [43] focusing on cloud radio
access network (CRAN) orientations. There, a double deep Q-network is proposed for joint
EE-SE optimization. Performance evaluation indicated the effectiveness of the proposed
approach compared to other DRL schemes.

Focusing on cloud-based architectures, the authors of [44] (which is an extended
work of [45]) studied the resource allocation challenge in cloud data centers as a model-
free DRL problem, considering dynamic system states and diverse user demands. An
asynchronous advantage actor-critic-based method for efficient job scheduling, targeting
improved QoS and energy efficiency, is proposed. Simulation experiments using real-
world data from Google Cloud data centers validate the effectiveness of our approach,
showcasing its superiority over traditional resource allocation methods (e.g., LJF, Tetris, SJF,
and others) in terms of QoS metrics and energy efficiency. Moreover, the proposed method
also outperforms recent alternatives under increased system load and demonstrates higher
training efficiency compared to two advanced DRL-based methods (PG and DQL). In the
same field, the authors of [46,47] proposed DRAW, a novel DRL-based RRM method with
workload-time windows. DRAW considers both current and future workloads, leveraging
a DQN prediction model trained on workload-time windows. This model accurately
predicts management operations under different system states. An iterative feedback-
control mechanism then constructs an objective resource allocation plan based on the
current system state. Simulations demonstrate DRAW’s high prediction accuracy of 90.69%
and its ability to achieve optimal/near-optimal performance, surpassing classic methods
by 3 to 13% under diverse scenarios.
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1.2. Contributions and Paper’s Structure

The goal of the study presented in this paper is to extend the work in [18]. In this
paper, we focus on solving the joint problem of RN selection and subcarrier allocation
by proposing a fully two-level fully ML-aided framework. The first level refers to a deep
learning (DL)-based RN selection scheme that jointly maximizes EE and SE levels. The
latter refers to a novel FL-based scheme for efficient ML algorithm training using MEC
servers installed in topologies BSs and RNs, which minimizes training time by enabling a
computation offloading mechanism between numerous edge devices. Our contributions
are the following:

• We first formulate the problem of optimal RN selection and subcarrier allocation for
each user served by the cooperative relaying-assisted system, which serves users that
cannot be served directly from BSs, either for path loss or power management purposes.

• For the aforementioned problem, a DL-based algorithm is proposed. The primary goal
is to maximize EE and SE levels both for each cell and for the whole coverage area.

• In order to relax the network’s computation load, the training of this DL scheme is
performed using an FL-based computation offloading framework, where different
edge devices (either UEs with certain computation capabilities and/or MEC servers
installed in the BSs) are assigned with the execution of a portion the training phase.
Afterward, the local updates are aggregated to form a global model—hosted at the
central BS of the topology—that concerns the total system’s EE and SE maximization.
Local models (before aggregation) utilize data from the cells that are hosted and utilize
a local mechanism for local EE and SE maximization.

• The performance of the proposed framework is evaluated by extensive system and
link-level simulations in different usage scenarios utilizing a B5G system and link-level
simulator extending the work performed in [48]. Results indicate that the proposed
FL-based RN selection and resource allocation scheme can overperform state-of-the-
art approaches (both non-ML and CL ones) in improving various key performance
indicators (KPIs) of interest (EE and SE). Furthermore, the proposed decentralized ML
training scheme achieves the required training time minimization, which is a crucial
aspect in B5G/6G network orientations.

• To sum up, the utilization of the proposed FL scheme for efficient RN selection and
RRM in each cell of the multicellular topology, which provides a fully data-driven
automated decision-making mechanism for high-interference dense B5G/6G environ-
ments and optimizes both network and ML performance metrics (focusing on EE, SE,
and ML algorithms’ training time), is the key novelty of this paper.

The rest of this paper is organized as follows. In Section 2, the B5G multicellular
orientation is described. In Section 3, the proposed FL framework for efficient RRM based
on the optimization of EE and SE levels is analyzed. In Section 4, the overall simulation
setup is presented along with simulation results. Finally, concluding remarks are outlined
in Section 5.

2. B5G Multicellular Orientation

In this section, the system model of the B5G/6G multicellular topology under investi-
gation is presented. Section 2.1 refers to the two-hop multicellular-topology architecture,
where both BS-RN and RN-UE links are explained. Moreover, Section 2.2 refers to the FL
architecture, where the edge devices, their capabilities, and the computation offloading
optimization problem are analyzed.

2.1. System Model for RN Selection in B5G/6G Cooperative Networks

The downlink of a cooperative RN-assisted wireless B5G/6G multicellular topology is
examined, as depicted in Figure 2. The system under consideration comprises two distinct
node entities and their corresponding links. The Macro-BSs constitute the primary system,
where UEs can directly connect and request service. In this scenario, only the BS-UE link
is present. The secondary system is composed of cooperative amplify and forward (A&F)
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RNs, aiding the primary system in serving additional users and potentially enhancing
coverage area. This is particularly beneficial for UEs initially rejected from the primary
system, either due to high path loss or lack of radio resources, as they can be accommodated
by the secondary system. In this case, both the BS-RN and RN-UE links are established.
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As depicted in Figure 2, the cooperative system consists of the following sets:

• SBS = {BS1, BS2, . . . , BSM}, where M denotes the total number of Macro-BSs in
the topology.

• SRN = {RN1, RN2, . . . , RNR}, where R denotes the total number of A&F RNs in
the topology.

• SUE = {UE1, UE2, . . . , UEN}, where N denotes the total number of UEs that sequen-
tially reach the topology.

The three different types of potential links that exist in the system are the following:

• Lb,u, where b ∈ SBS and u ∈ SUE, which denotes a BS-UE link.
• Lb,r, where b ∈ SBS and r ∈ SRN , which denotes a BS-RN link.
• Lr,u, where b ∈ SRN and u ∈ SUE, which denotes a RN-UE link.

In the examined topology a constant number of RNs (denoted as RBS) is deployed
inside each macro-BS’s coverage area, to assist the primary system by processing the
incoming signal and support service delivery. However, it should be mentioned that a
UE can only be connected to one BS or RN and that channel orthogonality is assured for
co-channel interference mitigation.

In the above two-hop B5G/6G communication orientation, the total available system
bandwidth (W) is divided into Nsc subcarriers to be allocated to accepted—either by the
primary or the secondary system—UEs. We are focusing on the latter, which is the UEs
that are influenced by the presence of the RNs and by the utilization of the RN-UE and
BS-RN links. In this case, RNs have a twofold role, as they are acting as UEs in the BS-RN
link, and as BSs in the RN-UE one. Furthermore, BSs/RNs are equipped with Mt antennas,
while UEs with Mr ones. In an RN-assisted scenario, the SINR for the nth UE (1 ≤ n ≤ N)
associated with the lth subcarrier (1 ≤ l ≤ Nsc) assuming independent BS-RN and RN-UE
links, as well as a specific channel realization, is given by [18]:

SINRn,l = SINRn,l(BS) + SINRn,l(RN) (1)
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where,

SINRn,l(BS) =
Gn,n,l

rH
n,lrn,l I0 + ∑m ̸=n,lϵSm Gn,m,l

(2)

where Gn,m,l = pn,ltm,l
HHn,sec (n),l

HrH
n,lrn,lHn,sec(n),ltm,l , Hn,sec (n),l represents the Mr × Mt

channel matrix (flat Rayleigh fading) for the lth subcarrier of the nth UE relevant to its serv-
ing sector sec(n), tn,l is the Mt × 1 transmission vector in diversity combining transmission
mode, rn,l is the maximal ratio combining (MRC) multiplying vector [28], and pn,l denotes
the transmission power allocated to the lth subcarrier of the nth UE. Moreover, the set Sn
indicates the subcarriers allocated to the nth UE and I0 is the thermal noise level. Finally,
AH is the conjugate transpose of matrix A.

Moreover,

SINRn,l(RN) =
Gn,n,l(RN−UE)

rH
n,lrn,l I0 + IBSn,l + IRNn,l

(3)

where IBSn,l = ∑NBS
b=1 ∑mϵUEb ,lεSm Gn,m,l and IRNn,l = ∑NRN

r=1 ∑jϵUEr ,lεSj
Gn,j,l are the cumula-

tive interference levels of the lth subcarrier of the nth UE served by the bth BS or the rth RN.
Moreover, NBS, NRN are the total number of BSs and RNs deployed in the topology, respec-
tively, UEr denotes the set of UEs served by the rth RN, while the notation x-y indicates all
possible link connections. Moreover, NBS = k·RBS, where k ∈ N.

Concerning the above, the total system throughput is given by [18,49]:

R = ∑N
n=1 ∑s∈Sn rn,s = W{∑NBS

b=1 ∑n∈UEb ∑sϵSb
log2

(
1 + SNIRn,s(BS)

)
+

∑NRN
r=1 ∑n∈UEr ∑sϵSm log2

(
1 + SNIRm,s(RN)

)} (4)

where |Sn| indicates the length of the set Sn, rn,s is the corresponding throughput for the sth

subcarrier and BSC is the bandwidth per subcarrier. Using (1)–(4), the overall system’s EE
and SE levels are defined as:

EE =
R

∑N
n=1 ∑sϵSn pn,s

(5)

SE =
R
W

(6)

2.2. Federated Learning Architecture

The topology depicted in Figure 2 is illustrated from a FL architecture perspective in
Figure 3. The R RNs in the topology (equipped with Mt antennas) act collaboratively in
order to train a global/shared ML model by using only their local-available data. For this
purpose, the global dataset is divided R local datasets where Dr = {(ir,i, or,i) : 1 ≤ i ≤ Dr}
is the local dataset at RN r, where ir,i is the input training sample at this RN and or,i is the
relevant output.

The goal of the ML learning process is to find a model that minimizes the total
empirical loss function for all the samples in the global dataset, i.e.,

min
w∈R

F(w) =
1
D ∑R

r=1 ∑Dk
i=1 f (w; ir,i, or,i ) (7)

where D = ∑R
r=1 Dk is the total number of training samples coming from all R devices and

f (w; ir,i, or,i) is the loss function from the specific training sample (i r,i, or,i

)
.
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However, due to the nature of the B5G/6G communications domain, where intense
multipath and high-interference environments exist, the close approximation of the afore-
mentioned loss function is significantly difficult. Thus, in each algorithm’s iteration, a
gradient-based optimization method is utilized for each device using the corresponding
local dataset, based on:

wt+1 = wt − λt∇F(wt) (8)

where λt denotes the learning rate and ∇F(wt) denotes the full gradient.
To sum up, the overall RRM policy will be applied to the system targets to (a) jointly

maximize EE and SE levels, (b) maximize training set accuracy, and (c) minimize training
time by the minimization of (8), subject to the following system and power constraints:

• (C1): ∑sϵSn pn,s ≤ pm, where pm is the maximum power limit per UE.
• (C2): ∑nϵUEb ∑l∈Sn pn,l ≤ Pm, where Pm is the maximum power limit per BS and the

set UEb consists of UE that are served by the bth BS.
• (C3): SNIRn,l ≥ SNIRthr, where SNIRthr sets the minimum SNIR threshold for

acceptable QoS and has different values based on the modulation level of each UE.
• (C4): ∑n∈UEb

|Sn| ≤ Nsc, in order for all the BSs to have equal access to the available
subcarriers.

3. Proposed Federated Learning Framework
3.1. Dataset Construction

Dataset construction is a fundamental step in the development of the training and
validation phases of ML-based models. In pursuit of this goal, datasets utilized for learning
objectives should be precise, current, and consistently subject to assessment.

In this paper, a MATLAB B5G/6G link and system-level network simulator are used
to construct our global dataset. Dataset construction is achieved through multiple Monte
Carlo (MC) simulation rounds in different A&F RN implementation scenarios, including
both Inband and Outband orientations and considering both indoor and outdoor UEs. The
simulator was developed in [18,48] and takes into consideration small- and large-scale
fading, interference management, and cluster definition for each user of interest, as well as
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other physical layer aspects. The major improvements that have been performed in this
simulator for the context of this paper are:

• UEs are not uniformly distrusted in the B5G/6G network’s coverage area.
• Algorithm 1 of [48] has been updated so that the best RN (out of the deployed ones

in each cell) is selected based on the DRL scheme presented in [18]. Hence, the col-
laboration of m-MIMO and orthogonal frequency division multiple access (OFDMA)
principles in RN-assisted multi-hop B5G cellular setups is integrated with contempo-
rary ML techniques to optimize the overall system’s EE and SE levels.

Dataset formulation concerns only UEs that are served from the secondary system
(not directly by the BSs) and contains 50.000 UE instances to adequately train ML models.
As is also visible in Table 2, both location/localization parameters (x, y, and z-axis position),
serving BS, path loss, total losses, and MIMO parameters (channel coefficient matrix), are
included in the global dataset that is generated by extensive MC simulations using the
aforementioned simulators.

Table 2. Dataset parameters (per UE).

Features Description

UEx x-axis position of the UE

UEy y-axis position of the UE

UEz z-axis position of the UE

BSserve ID of the server BS

BSsec Serving sector of the UE

PLmat Rx1 path loss matrix between the UE and all available RNs

TLmat Rx1 total losses matrix between the UE and all available RNs

Hmatrix MrxMt channel coefficient matrix

RNserve ID of the RN that serves the UE

The whole dataset’s feature number (based on Table 2) is denoted as Dsize and calcu-
lated by the decomposition of Hmatrix feature into MrxMt different features.

A DNN model is proposed to predict the best-performing RN for each UE entering
the multicellular topology. The structure of this model is the following:

• A feature input later with z-score normalization of the input, where Dsize features
are inserted.

• A fully connected layer with 50 × 1 output size, where the input is multiplied (feature
input layer) by the corresponding weight matrix; also, the bias vector is added.

• A batch normalization layer, to normalize data across all observations for each channel
independently, making training of the NN faster through re-centering and re-scaling.

• A rectified linear unit (ReLU) layer, using a rectified activation function to force the
input directly to the output if it is positive, otherwise, to zero output.

Moreover, it should be mentioned that the exhaustive grid search algorithm is used
for hyperparameter tuning [50] based on the training accuracy maximization for each
local model.

3.2. FL for Training Optimization

In B5G/6G wireless communication network channel representations, interference
models and multipath propagation are difficult to predict, especially in dense network
orientations. Thus, for the sake of simplicity, we consider that the BSs and RNs know
the CSI information and transmission power for each link. In this way, QoS levels can be
estimated both for the BS-RN and the RN-UE link.

The problem of RN selection and resource allocation is categorized as an NP-hard one
based on [35]. Thus, we propose an FL-based gradient aggregation algorithm to train.
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The global model in distributed edge devices (placed at each RN) based on federated
averaging (FedAvg) [28] is presented in Algorithm 1.

Algorithm 1: FL-based RN selection and RRM algorithm for EE, SE maximization
1 Input: learning rate λt, number of BSs M, number of UEs N and of RNs per BS RBS
2 Initialization: t = 0, wr

0 = 0
3 for t = 0 to t = T do

BS Algorithm steps (∀m ∈ M )
4 Step 1—Model dissemina-

tion: the BS broadcast the updated global model wt and the corresponding learning rate λt
to all edge devices located to RNs

5 Step 2—Model
aggregation: BS receives the corresponding wr

t+1 from each edge device r located in the
relevant RN

6 The BS computes wt+1 based on (8) and the contributions of each RN r
7 The BS estimates the actual gradient of RN (edge device) r
8 Step 3—Performance Evaluation: BS computes the overall EE, SE levels
9 if EEt+1 > EEt && EEt+1 > EEt then
10 continue;
11 else
12 reinitialize wr

0 and go to line (3)
RN Algorithm steps (∀r ∈ R )—Edge device

1 Step 1—Model distribu-
tion: the RN receives updated global model wt and the corresponding learning rate λt
from the BS

2 Step 2—Local model update: the RN receives each set
(
ir,i, or,i

)
from the connected UEs

3 The RN computes wr
t+1

4 Step 3—Local model distribution: the RN broadcasts wr
t+1 to the corresponding BS and

UEs
UE Algorithm steps (∀n ∈ N )

1 Step 1—Sample
selection: the UE randomly selects samples of the global dataset to form (ir,n, or,n)

2 Step 2—Local gradient computation
3 Step 3—Local update: the RN receives the updated wr

t+1 from the corresponding RN

As depicted in Algorithm 1, the procedures in BSs, RNs, and UEs are parallelly
executed for each timestep t, where 1 ≤ t ≤ T and T are the total number of timesteps
executed. The main processes that are performed by the three types of enrolled entities are
the following:

• BSs: They broadcast the updated global model wt and the corresponding learning rate
λt to all edge devices located to RNs (Step 1—Model dissemination). Afterwards,
they receive the corresponding wr

t+1 from each edge device r located in the relevant
RN, compute wt+1 based on (8) and the contributions of each RN r, and estimate the
actual gradient of each RN (Step 2—Model aggregation). Finally, KPI evaluation is
performed by the calculation of the overall EE and SE levels.

• RNs: They receive the updated global model w_t and the corresponding learning
rate λ_t from the linked BS (Step 1—Model distribution). Afterward, they receive
each set (ir,i, or,i) from the connected UEs and compute wr

t+1 (Step 2—Local model
update). Finally, the RN broadcasts wr

t+1 to the linked BS and UEs (Step 3—Local
model distribution).

• UEs: They randomly select samples of the global dataset to form (ir,i, or,i)
(Step 1—Sample selection). Afterward, the compute the local gradient (Step 2—Local
gradient computation) and, finally, receive the updated wr

t+1 from the corresponding
RN (Step 3—Local update).
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4. Simulation Setup and Results

This section presents the performance of the proposed FL-based RN selection and
resource allocation algorithm. The proposed approach is evaluated concerning a two-tier
B5G/6G orientation, while the employed simulation parameters are depicted in Table 3
(similar to [18] and based on [51,52]).

Table 3. Simulation parameters.

Features Description

Tier/number of cells 2/19

Carrier frequency 28 GHz

Number of antennas per BS/RN/UE 4/2/1

Cell radius 500
√

3 m

BS/RN/UE antenna height 25/5/1.5 m

UE indoor-to-outdoor ratio 0.8/0.2

LOS Probability for BS-UE/BS-RN/RN-UE links 15%/11%/10% [52]

Maximum allowed path loss BS/RN 120/320 dB

Antenna gains BS/RN/UE 18/9/4

Requested subcarriers per UE 6/8/11

Number of subcarriers per BS 132

Subcarrier spacing 60 kHz

On each occasion, the performance of the proposed algorithms is assessed against a
state-of-the-art non-ML method outlined in [48], along with a relay-assisted DRL system
introduced in [18].

Both Inband and Outband A&F RN scenarios are considered. Inband RNs use the
same spectrum resources as their donner BS, while Outband RNs have been assigned
a priori additional spectrum resources exclusively for RN usage [53]. In fact, Outband
RN scenarios utilize an extra bandwidth of approximately 55 MHz to cater to initially
rejected—from the primary system—UEs, aiming to mitigate interference levels, increase
capacity gains over Inband ones [53], and extend the overall system’s coverage area.

The performed simulations have been implemented using MATLAB (R2023b re-
lease [54]) and the corresponding toolboxes (e.g., Communications Toolbox, Statistics
and Machine Learning Toolbox, and Deep Learning Toolbox).

In this framework, this paper’s simulations consider the following RN deployment
scenarios (in addition to the reference basis of no RN implementation): (1) No-RN: No RNs
are deployed; (2) MLP-I: ML/DL-based Inband RN placement and DQL RN selection based
on [18]; (3) MLP-O: ML/DL-based Outband RN placement and DQL RN selection based
on [18]; (4) FL-I: FL-based Inband RN selection and RRM (see Section 3); (5) FL-0: FL-based
Inband RN selection and RRM (see Section 3).

4.1. Network Metrics Evaluation

The overall system’s EE levels are depicted in Figure 4, while the corresponding SE
levels are depicted in Figure 5 considering all the aforementioned simulation scenarios,
along with the reference of no RN deployment.
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As evident in Figure 4, the utilization of the FL-enabled RN selection and resource
allocation scheme can significantly improve key B5G/6G network metrics, such as EE and
spectral efficiency SE, in comparison to:

• The baseline scenario with no RN deployment: When six subcarriers are assigned per
UE, EE can achieve up to 139.79/152.63 Mbps/W for FL-I/FL-O scenarios, respectively,
while the No-RN scenario is limited to 23.45 Mbps/W. These figures indicate a nearly
six times improvement in total EE through FL-based RN selection. For 11 subcarriers per
UE, the corresponding values are 52.38/252.45/272.03 Mbps/W for No-RN/FL-I/FL-O
scenarios, leading to a ~4–5 times EE enhancement. Similar enhancements are observed
for SE, as shown in Figure 5, resulting in a ~4–5 times improvement.

• State-of-the-art CL-based ML approaches [18]: The EE values for scenarios in [18]
are 76.95/139.79 Mbps/W for MLP-I/MLP-O scenarios, respectively. Thus, the over-
all EE is enhanced by ~1.5 times compared to the DRL scheme in [18]. Similarly, for
11 subcarriers per UE, the EE values for MLP-I/MLP-O scenarios are
110.34/252.45 Mbps/W, leading to a ~1–2 times EE improvement. Comparable im-
provements are observed for SE, as depicted in Figure 5, resulting in a ~1–2 times
SE enhancement.
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4.2. Impact on Training Accuracy and Time

A key aspect when designing FL-based schemes not only in the B5G/6G wireless
communications domain but, in general, is the achieved accuracy compared to CL-based
methods, as well as the achieved training time, decrease. The achieved training accuracy of
the proposed FL model is depicted in Figure 6. Moreover, Table 4 depicts the achieved total
training and inference times for the aforementioned RN implementation scenarios.
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Table 4. Achieved training and inference time comparison.

Evaluation Metrics CL-Based Training [9,18] FL-Based Training of This Paper

Training time 5 min 15 s 1 min 20 s
Inference time 50 ms 28 ms

It is visible from both Figure 6 and Table 4 that the proposed FL-based approach can
significantly improve both the achieved accuracy of the RN selection model, but also can
minimize the training time needed for the model’s training phase compared to state-of-the-
art CL-base ML techniques. To be more precise, the overall model’s accuracy is improved
by ~10%, while the training time needed is reduced by ~50%.

5. Conclusions

The performance of an FL-based RN selection and resource allocation scheme for
B5G/6G multicellular orientations has been evaluated via extensive system-level simula-
tions. To this end, the goal was to reduce the training time of the corresponding ML models
via the MEC nature of the FL approach. In particular, a DNN model trained in different
edge devices (located at the RNs of the cellular topology) was considered in order to predict
the best-performing RN for each user initially dropped by the primary system. The key
novelty of the presented approach is that both EE, SE—as network metrics—and training
time and accuracy were considered during DNN training and model aggregation. Accord-
ing to the presented results, both EE and SE levels can be significantly improved as RN
edge devices execute a portion of the ML training task compared to CL-based approaches.
Moreover, training accuracy is slightly improved by the FL method, while training time is
much less.

As far as future work is concerned, a potential technique that may influence the
proposed scheme even more is the implementation of DRL methods for RN selection. These
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methods promise more accuracy gains as they interoperate with the cellular environment
and, thus, training accuracy can be further improved. In this framework, future work
concerns among others the utilization of the deep Q-Learning scheme proposed in [18]
in the FL framework presented in this paper. Moreover, on-device ML task execution is
also of high interest as different mobile devices with different capabilities can be evaluated.
Finally, B5G/6G non-terrestrial (NTN) scenarios are planned to be added to our wireless
network simulators.
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Acronyms

3GPP Third Generation Partnership Project
5G Fifth Generation
6G Sixth Generation
A&F Amplify and Forward
AI Artificial Intelligence
ANN Artificial Neural Networks
AP Access Point
AR Augmented Reality
B5G Beyond Fifth Generation
BS Base Station
CL Centralized Learning
CSI Channel State Information
DL Deep Learning
DRL Deep Reinforcement Learning
EE Energy Efficiency
eMBB Enhanced Mobile Broadband
FANET Flying Ad Hoc Networks
FL Federated Learning
IMT International Mobile Telecommunications
IoT Internet of Things
KPI Key Performance Indicator
MANET Mobile Ad Hoc Networks
MC Monte Carlo
MEC Mobile Edge Computing
ML Machine Learning
ML Machine Learning
m-MIMO Multiple Input Multiple Output
mMTC Massive Machine-Type Communications
mmWave Millimeter Wave
NG Next Generation
NOMA Non-Orthogonal Multiple Access
NTN Non-Terrestrial Networks
OFDMA Orthogonal Frequency Division Multiple Access
OSI Open Systems Interconnection
PLS Physical Layer Security
PSP Partial Synchronization Parallel
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ReLU Rectified Linear Unit
RIS Reconfigurable Intelligent Surfaces
RL Reinforcement Learning
RN Relay Node
RRM Radio Resource Management
SDN Software-Defined Network
SE Spectral Efficiency
SINR Signal-To-Interference-Plus-Noise
SVM Support Vector Machine
UE User Equipment
URLLC Ultra-Reliable Low-Latency Communications
V2V Vehicle to Vehicle
VR Virtual Reality
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