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Abstract: Despite the achievements of deep neural-network-based object detection, detecting small
objects in low-resolution images remains a challenging task due to limited information. A possible
solution to alleviate the issue involves integrating super-resolution (SR) techniques into object
detectors, particularly enhancing feature maps for small-sized objects. This paper explores the impact
of high-resolution super-resolved feature maps generated by SR techniques, especially for a one-
stage detector that demonstrates a good compromise between detection accuracy and computational
efficiency. Firstly, this paper suggests the integration of an SR module named feature texture transfer
(FTT) into the one-stage detector, YOLOv4. Feature maps from the backbone and the neck of
vanilla YOLOv4 are combined to build a super-resolved feature map for small-sized object detection.
Secondly, it proposes a novel SR module with more impressive performance and slightly lower
computation demand than the FTT. The proposed SR module utilizes three input feature maps with
different resolutions to generate a super-resolved feature map for small-sized object detection. Lastly,
it introduces a simplified version of an SR module that maintains similar performance while using
only half the computation of the FTT. This attentively simplified module can be effectively used
for real-time embedded systems. Experimental results demonstrate that the proposed approach
substantially enhances the detection performance of small-sized objects on two benchmark datasets,
including a self-built surveillance dataset and the VisDrone2019 dataset. In addition, this paper
employs the proposed approach on an embedded system with a Qualcomm QCS610 and demonstrates
its feasibility for real-time operation on edge devices.

Keywords: one-stage detector; super-resolution; small object detection; embedded system; edge
device

1. Introduction

Object detection constitutes a foundational task within the realm of computer vision,
comprising two key steps: (1) identification of potential object locations, and (2) catego-
rization of identified objects into distinct classes. Prior to the emergence of deep learning
techniques, object detection relied on manually constructed methods for handcrafted
feature extraction, drawing inspiration from human-centric object recognition [1].

In recent times, this domain has been advanced due to the remarkable evolution of
deep learning algorithms. Because of those enhancements of deep-learning-based methods,
the performance of object detection algorithms has greatly improved with two dominant ap-
proaches: the two-stage approach [2–4] with superior detection accuracy, and the one-stage
approach [5–10] with an advantage of processing speed. Despite this, the precise detection
of small objects within practical low-resolution images remains a challenging problem due
to a low number of pixels, indistinguishable features, complicated background, limited
context information, and occurrences of occlusion and truncation [11–13]. Among many
techniques in previous surveys [11–13] to address these difficulties, super-resolution (SR)
is one of the most representative solutions. In particular, super-resolving an intermediate
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feature map gains more efficiency than super-resolving an image directly. However, this
approach has been applied to only two-stage detectors, which causes difficulties for use in
real-time embedded systems. Therefore, integrating the intermediate feature-map-based
SR technique into one-stage detectors becomes significant for small object detection in wide-
ranging real-time applications such as autonomous driving, visual surveillance, remote
sensing, etc.

Put simply, SR methods are designed to restore high-resolution features from cor-
responding low-resolution features, thereby augmenting the finer details of the original
scene and intermediate features. The refined features contain richer information, making
them well-suited for precisely detecting small objects. In initial practices, refs. [14–17]
integrated a preceding SR sub-network with a detection sub-network to directly super-
resolve the input image and put it into detectors. Subsequently, thanks to the development
of a generative adversarial network (GAN) [18–21], GAN variants have been utilized to
generate SR images, which yields improved performance in small object detection. The
authors of [22,23] provided more tailored strategies emerging in the form of a two-stage
approach. In those, GANs were employed selectively to super-resolve only regions poten-
tially containing small objects, enhancing their detectability. However, while input image
super-resolution techniques offer advantages and can be easy to apply in any manner, they
are also accompanied by drawbacks: (1) the need for two separate networks for different
tasks, incurring expensive computation costs; (2) slower processing speeds, limiting practi-
cal application; and (3) the utilization of a large-sized parameter-heavy model, restricting
the use of resource-constrained embedded systems.

In the other works, the concentration shifted to super-resolving intermediate feature
maps to mitigate the shortcomings of image-based SR. However, this has only been applied
to two-stage approaches. This approach aims at super-resolving the features of small objects
and generating refined features that conductively produce accurate predictions of small
objects. The authors of [24,25] initially generate proposals in the first stage. In the second
stage, the features of those regions potentially containing small objects are super-resolved
using GAN-based training strategies, ultimately producing final predictions. Diverging
from GAN-centric methods, ref. [26] introduced a novel SR module named Feature Texture
Transfer (FTT) that generates a super-resolved feature map tailored to the small-scale
detection head. While these methods exhibited the potential for high detection rates
and precise localization of small objects, they also inherited some of the disadvantages
associated with two-stage approaches: (1) sophisticated architecture with many stages;
(2) complex training and inference procedures; and (3) elevated computational demands as
the number of proposals increased. These limitations have restrained the applicability of
two-stage methods in real-world scenarios, particularly in embedded systems characterized
by limited computational resources and the need for instant response. On the contrary,
the one-stage approach demonstrates noticeable strides, characterized by simpler network
architectures, straightforward training processes, and rapid processing speeds. Leveraging
feature-based SR in conjunction with a one-stage detector holds significant promise for
deployment in resource-constrained real-time embedded systems and effectively tackles
the challenges of small object detection.

This paper proposes a novel method that efficiently leverages feature-based SR within
a one-stage detector. Firstly, it adopts the FTT module [26] originally designed for use in
the two-stage detector [10] in the framework of the one-stage detector. This SR module
functions as a fusion mechanism combining two feature maps: the main feature with rich
semantic insight and the reference feature with shallow contextual information. The fusion
results in a refined feature map that enhances the accuracy of detecting small objects and
lowers the computational burden associated with direct high-resolution input image usage.
Secondly, this paper proposes a novel SR module that extends the input into three feature
maps. Compared with the FTT module, the proposed one utilizes a shallower feature map
derived from the backbone with one more integration to synthesize the super-resolved
feature map. Via the dual integration of three inputs, it compresses more detailed contextual
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information of small objects, surpassing the efficiency while maintaining the approximate
computational burden of the FTT module. The proposed approach that uses the SR module
with the one-stage detector preserves the outstanding properties of the one-stage detector
to save more memory and facilitates end-to-end training. Lastly, this paper suggests a
simplified version of the proposed SR module to enhance the excellent aspects above for
real-world detection applications. The integration of this simplified module delivers similar
performance while efficiently halving computational cost compared to the FTT module. In
experiments, the proposed approach was evaluated by both public and self-built datasets
and improved object detection performance, especially for small-sized objects. In addition,
this approach was successfully embedded into an edge device equipped with Qualcomm’s
neural processing unit (NPU) to show its real-time operability.

The main contributions of this paper can be summarized as follows:

• It introduces the integration of the FTT, originally designed for use in two-stage
detectors, into a one-stage detector. This integration serves to improve the detection
performance of small objects.

• It proposes an SR module that leverages three distinct input feature maps and syn-
thesizes information twice, generating a super-resolved feature map tailored to the
small-sized specific detection head. This approach enhances performance while up-
holding computational efficiency compared to the FTT module.

• It suggests a simplified version of the SR module that achieves similar performance as
the FTT module while concurrently halving computing resources, making it similar to
the vanilla one-stage detector.

• It shows that the proposed approach can be efficiently embedded into an edge device
with an NPU for real-time processing.

2. Related Works

Deep learning techniques have emerged as powerful tools for general object detection,
driven by their remarkable performance. Two-stage methods [2–4] generate Regions
of Interest (RoIs) followed by classification and precise localization. Meanwhile, one-
stage methods [5–10] directly perform classification and localization simultaneously, often
employing pre-defined anchor boxes. Despite the development of deep-learning-based
object detectors, the detection of small objects remains a challenging task. Successful small
object detection has four key aspects: multi-scale representation, contextual information,
region proposal, and super-resolution [11].

In the case of multi-scale representation, repeating down-sampling operations and
pooling layers results in the loss of small object information and produces the final feature
map with a large receptive field and strong semantic information but in a low resolution.
This contributes to poor detection of small objects. To address this problem, ref. [27] used
deconvolution to fuse different-scale feature maps and generate a higher-resolution feature
map for detection heads. In [28], the Single-Shot Detector (SSD) extends up to seven heads
at different scales via a fusion block to detect more small objects. The authors of [29]
combined Faster RCNN [3] and Feature Pyramid Network (FPN) [10], and [4] combined
ResNet with FPN via lateral connection to produce multiple scale-specific feature maps
for detection. Inspired by FPN with a bottom-up path aggregation, ref. [30] proposed a
Path Aggregation Network (PANet), which additionally supplements a top-down path
aggregation to incorporate twice and generate pyramid scale-specific feature maps. These
works fuse multi-scale feature maps and produce high-resolution feature maps with more
detailed information, facilitating small object location and classification.

In the case of contextual information, small objects only occupy a relatively small
portion of the image, constraining the extraction of meaningful information. Adaptive
convolution [31] and dilated convolution [32] are leveraged to capture interactions between
objects and their surroundings, boosting detection capabilities, particularly for small objects.
In the case of the region proposal, large anchor sizes in Faster R-CNN [3] and R-FCN [33]
reduce the detection performance of small objects. To mitigate the issue, [34] generated an
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additional higher-resolution feature map for small objects with smaller anchor sizes, then
reduced the number of RoIs by adopting a scale-specific objectness attention mechanism.
The authors of [35] applied an area proposal network to crop the regions that contain at
least one object and enlarge those regions to make small objects easier to detect.

In the case of super-resolution, the methods aim to recover high-resolution features
from corresponding low-resolution features, offering better conditions to detect small ob-
jects. Our proposed method is categorized into this domain; therefore, we have conducted
a deeper literature review of this approach.

Super-resolution techniques for small object detection can be categorized into two
primary branches: image-based super-resolution and feature-based super-resolution. The
former involves super-resolving an image into a higher-resolution version, which enlarges
the object scale for better small object detection. In early practices, high-resolution images
in [36] are obtained by applying bilinear interpolation to enlarge and detect small human
faces. Then, ref. [14] shared the same idea with JCS-Net [15], which incorporated an SR-
subnet for direct input super-resolution with a primary task subnet for classification or
detection in a unified framework. Moreover, ref. [17] adopted the same methodology and
added an additional feature-based loss derived from knowledge distillation technology.
In another way, ref. [16] used an SR-module FTT [26] instead of a dedicated SR-subnet
to directly super-resolve input and extract RoIs of small faces from that in the first stage.
However, the recovered features tend to be blurred and not photorealistic when applying
those methods. With the advent of Generative Adversarial Networks (GANs) [18], they
have become a representative method for generating super-resolution images. For vehicle
detection in remote sensing images, ref. [19] designed a joint network of a sub-network sim-
ilar to MsGAN (multi-scale GAN) for generating super-resolution images, and the YOLOv3
detector for object detection. In particular, super-resolution GAN (SRGAN) [37] introduced
GAN into the super-resolution image generation task, only relying on a perceptual loss.
Then, ref. [21] utilized SRGAN to upscale images with more distinguishable features be-
tween background and pedestrians, before applying Faster R-CNN [3] to improve small
pedestrian detection. More generally, ref. [20] changed MsGAN into super-resolution
Wasserstein GAN (SR-WGAN) designed for SR tasks to detect small objects in remote
sensing images. Nevertheless, image-based super-resolution encounters the critical issue
of redundant information generation because it super-resolves both the foreground and
useless background in the image. For the two-stage approach, ref. [23] used a GAN-based
network to super-resolve RoIs of small faces from the RPN and classify them as face or
non-face patches. Following the same idea for common small objects, ref. [22] proposed a
multi-task GAN (SOD-MTGAN), where the discriminator served as a multi-task network
for real/fake authentication of RoIs, classification, and regression from RoIs. Still, there
are associated drawbacks, such as heavy and complicated architecture, the need for paired
images, and the burden of computation and memory when the number of RoIs increases.

For feature-based super-resolution, intermediate feature maps are super-resolved to
enrich small object features and improve detection performance, but this approach has
only been applied to two-stage detectors. One of the pioneering techniques is Perceptual
GAN [24], which generates super-resolved features of proposals related to small traffic signs
to attenuate the differences from large ones. Additionally, ref. [25] adopted the supervision
technique into a similar GAN-based strategy to enhance the process. Differently, ref. [26]
introduces the FTT module to generate the entire new feature map of a specific small-
scaled detection head in the two-stage FPN detector [10]. This method improves geometric
details and context information via super-resolution and distillation techniques. Despite
the improvements in small object detection, they inherit the disadvantages associated with
two-stage detectors, including slower response times and higher memory consumption.
Therefore, combining one-stage detectors and feature-based super-resolution techniques
emerges as a solution. It is a prospective domain as one-stage detectors are known for
their advantages in terms of speed, computational efficiency, and memory usage, while the
feature-based super-resolution excels at direct feature reconstruction for small objects.
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The previous and proposed methods can be summarized by the hierarchical diagram
shown in Figure 1. As aforementioned, small object detection methods are mainly catego-
rized into four approaches: multi-scale representation-based, contextual information-based,
region proposal-based, and super-resolution (SR)-based techniques. The SR-based ap-
proach consists of image-based SR methods and feature-based SR methods. While the
feature-based SR methods have been implemented based on the two-stage detectors, this
paper proposes a combination of the one-stage detector and the feature-based SR. Inherited
from the advantages of the one-stage detector, this combination is advantageous for use in
real-time embedded systems.
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3. Proposed Method

The proposed method is built along with a careful analysis of the impact of low-level
high-resolution feature maps in small object detection. As shown in [38], shallow low-
level features responsible for detecting small objects tend to be less discriminative due
to excessive background noise. Conversely, high-resolution feature maps, as highlighted
in [39], play a crucial role in increasing the localization accuracy of small objects. Our
investigation revolves around understanding how a shallow high-resolution feature map
can compensate for the information loss of small objects. More specifically, this paper
focuses on enhancing the feature map responsible for detecting small objects by combining
a one-stage detector with SR modules, which generate super-resolved feature maps. In
Section 4.1, we suggest how the FTT module can be inserted into the one-stage detector as an
SR module. In Sections 4.2 and 4.3, we propose a novel SR module and its simplified version,
respectively. As a base one-stage detector, this paper utilizes YOLOv4 [8]. This detector was
chosen because it has been proven useful in various applications for a considerable time by
demonstrating a compromise between detection accuracy and computational efficiency in
diverse frameworks [40,41]. In addition, it has been successfully embedded into an NPU
and shown to perform in real-time [42].

3.1. FTT Module in One-Stage Detector

Prior to the use of the FTT module, this paper first builds a high-resolution (HR)
variant of the vanilla YOLOv4 (YOLOv4-HR) by adding one more upper layer of the
feature map in the neck and relocating the detection heads. This can be considered as the
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simplest way to enhance the small object detection performance. In vanilla YOLOv4 (left
in Figure 2), the detection heads (D3, D4, and D5) are connected to M3, N4, and N5, but
in YOLOv4-HR (right in Figure 2), the detection heads (D2, D3, and D4) are connected
to M2, N3, and N4 whose resolutions are twice that of M3, N4, and N5, respectively. In
YOLOv4-HR, M2 and D2 are the feature map and the detection head responsible for small
objects, respectively. To enhance the small object detection performance, we suggest a way
to super-resolve the feature map responsible for detecting small objects by adopting the
FTT module, which was originally developed for a two-stage object detector. It serves
a dual purpose: simultaneously super-resolving low-resolution features and extracting
regional textures from high-resolution features. This combination of operations enhances
the feature map, making it better suited for detecting small objects.
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Figure 3 shows a combination of YOLOv4-HR and the FTT module. In the left side
of this figure, the FTT module super-resolves the feature map M3 from the neck based
on the feature map P2 from the backbone, which contains critical texture information
of small objects. The right side of Figure 3 shows the FTT module in detail. In this
figure, residual blocks are employed to M3 to capture strong semantic information and
manipulate the number of channels as needed. The sub-pixel convolution with the pixel
shuffling technique inside is operated on the generated feature map to upscale the spatial
resolution considering its efficiency. The pixel shuffle operator rearranges pixels on the
dimension of channel into the dimension of width and height, which super-resolves a
low-resolution feature map FϵRH×W×4C into a high-resolution feature map F′ϵR2H×2W×C.
The concatenation of the pixel shufflement and P2 is fed into residual blocks again to pick
up credible texture information of small objects and discard disturbing noises. Under the
element-wise addition, the FTT output synthesizes both information of the semantics and
textures of small objects for better detection.
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3.2. Proposed SR Module (SRm)

The backbone CSPDarknet53 of YOLOv4 still has a higher-resolution feature map
P1, which is not utilized to enhance performance. This feature map contains shallow
information with a lot of noise but critical detailed information about small objects which is
intensively filtered out during convolutions to high-level feature maps. With the help of the
feature map P1, we can detect small objects in low-resolution images even better. Drawing
inspiration from the FTT module as well as the super-resolution network SRGAN [37],
which upscales the image twice and super-resolves the resolution four times larger, we
propose an SR module that even makes use of feature map P1. This module is superior
to the FTT module and powerfully enhances the feature map to obtain the capability of
detecting small and tiny objects. The proposed SR module is illustrated in Figure 4.
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At the top of this figure, the proposed SR module super-resolves the feature map
M3 based on the feature maps P2 and P1 from the backbone, where P2 contains texture
information with noise and P1 holds critical detailed information about small objects
with more noise. The bottom of Figure 4 shows the proposed SR module in detail. For
the first upgrade, M3 is fed into residual blocks to extract semantic information together
with channel manipulation, followed by the pixel shuffle operation. An element-wise
addition operation is performed after applying residual blocks to the concatenation of
the super-resolved M3 and P2. For the second upgrade, the resulting feature map of the
first upgrade is super-resolved again based on P1. The second upgrade uses the same
strategy as the first upgrade. Because the resolution of the final super-resolved feature map
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is double that which is needed and still contains noise, we apply a convolution with stride
2 (CBL in Figure 4) to decrease its resolution and filter out noises one more time to obtain
the final best output feature map M3-SR. CBL indicates a combination of convolution,
batch-normalization, and leaky ReLU. In summary, the output feature map aggregates
three different input feature maps iteratively which contain rich semantic information,
abundant contextual information, and credible detailed information simultaneously under
the support of an adaptation layer to match the output feature map to the corresponding
specific small-sized head.

3.3. Simplification of SR Module (SSRm)

To implement the proposed object detector into real-time embedded systems, we
developed a simplified version of the SR module that benefits from computation cost and
memory assumption with acceptable detection performance. The simplified SR module is
the same as its original version, except that the residual blocks are replaced by a convolution
before the super-resolving feature map by the pixel shuffle operator, shown in Figure 5.
In addition, a convolution compression technique is leveraged within the residual blocks,
which uses 3 × 3 convolution to reduce the number of channels and 1 × 1 convolution to
restore again iteratively. Thanks to those techniques, the simplified module only consumes
half of the computation costs compared to the FTT module while maintaining a similar
detection performance, as later explained in the experimental section. Since the simplified
SR module aggregates the information from three different feature maps with a slight
cost increase, it can be used as a practical SR module for resource-constrained real-time
embedded systems.
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4. Experiments
4.1. Datasets

The proposed small object detection method has two main target applications: drones
and visual surveillance, both requiring edge computing. Thus, experiments were con-
ducted with two datasets related to these applications: VisDrone2019 [43] and a self-built
surveillance camera dataset. Table 1 shows the summary of the two datasets. In this table,
instances are categorized as very tiny, tiny, and small following the AI-TOD dataset [44]
criteria. The category of instances is defined by the number of pixels they occupy (very tiny:
2 × 2 to 8 × 8 pixels, tiny: 8 × 8 to 16 × 16 pixels, small: 16 × 16 to 32 × 32 pixels). Figure 6
shows example images and Table 1 summarizes the information of the two datasets.
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Table 1. Summary of self-built and VisDrone2019 datasets.

Dataset Self-Built VisDrone2019

Number of images Training set 21,494 6471

Test set 3229 1610

Test set

Inference resolution
(pixels) 224 × 128 480 × 288

Total objects 15,794 75,102

Very tiny objects 9086 (57.53%) 36,161 (48.15%)

Tiny objects 4054 (25.67%) 20,321 (27.06%)

Small objects 2209 (13.99%) 9386 (12.50%)
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The self-built dataset includes surveillance camera images with three object classes:
vehicle, pedestrian, and cyclist. It contains over 24,000 surveillance images with over
120,000 instances at various sizes. At the inference resolution of the test set, over 97% of
instances cover an area of less than 32 × 32 pixels. The dominant majority of small objects
makes it an appropriate benchmark for small object detection.

The VisDrone2019 dataset [43] is a widely used large-scale benchmark for small object
detection. It consists of 8629 diverse-resolution images captured by drone platforms in
different places at different heights. More than 540,000 instances are annotated with ten
object classes: pedestrian, people, bicycle, car, van, truck, tricycle, awning-tricycle, bus,
and motor. Over 87% of objects in the dataset occupy less than 32 × 32 pixels at the
inference resolution of the test set. The pedestrian and person classes pose the most difficult
challenges since the instances are tiny and appear in crowds. These properties result in a
proper benchmark for small object detection.

4.2. Evaluation Metrics

For comprehensive evaluation, this paper utilizes the mean Average Precision (AP)
metric to measure detection performance, which is popularly used in object detection.
The metric takes into account two distinct tasks in object detection: classification and
localization. Average precision is calculated over all conference thresholds with class-based
independence to remove the relevance to confidence. The mean of the average precisions
of different classes, when IoU goes from 50% to 95% in 5% increments, is calculated and
considered AP. This metric is based on both IoU and predicted classification scores, so
it is fundamentally primary to measure general object detection performance. However,
the IoU of a small object is unstable because a small change in IoU can result in a large
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difference of AP. Thus, we also focus on AP at IoU = 0.50 (AP50) as a fundamental metric
where it maintains primary evaluation while minimizing the effect of IoU.

Additionally, this paper collects information about the number of parameters in each
model and the computation cost to illustrate the heaviness of the model. They are important,
especially for embedded systems, to demonstrate the capability of the model in practical
applications where resources are constrained. Last but not least, processing time and frames
per second (FPS) are also utilized to evaluate the running speed of the algorithm on specific
computation platforms.

4.3. Implementation Details

The input images are resized to 224 × 128 pixels and 480 × 288 pixels for the self-
built and VisDrone2019 datasets, respectively. The backbone networks of all models are
CSPDarknet53 initialized by the pre-trained weights on the MS COCO dataset. The anchors
are generated using a K-means clustering algorithm from the training set. Three methods
were used for data augmentation: random crop, random horizontal flip, and random
translation. The losses are the same as those of the vanilla YOLOv4.

The networks were trained for 100 epochs with two warm-up epochs. The batch size
is set to 16 for the self-built dataset and 6 for the VisDrone2019 dataset. Networks are
optimized by the Adam optimizer, the β1, β2, and ϵ of which are set to 0.9, 0.999, and 10−7,
respectively. The learning rate initializes at 0, increases to 10−4 in warm-up epochs, and
follows the cosine annealing scheduler to diminish continuously to 10−6 until the end of
training. All the experiments are conducted using the TensorFlow framework. The training
was performed on the desktop-based platform with Intel i7-12700K CPU and RTX 2080Ti
GPU (Intel, Santa Clara, CA, USA).

In addition, the proposed method was deployed into an embedded system with
Qualcomm QCS610 Systems-on-Chip (SoC), a high-performance SoC delivering premium
features for building advanced smart cameras and Internet-of-Thing use cases encompass-
ing machine learning as well as edge computing. This SoC integrates the CPU, GPU, and
DSP for accelerated AI performance. In this paper, the models were implemented on the
DSP of the QCS610 SoC. The process of embedding contains three main steps: (1) freeze
the pre-trained model and convert it into a deep learning container (DLC) file with the data
type as the floating-point32 (FP32); (2) quantize the model in the DLC file into fixed-point8
based on a post-training quantization approach; and (3) deploy into DSP chipset and run
the model. This process is conducted by the Snapdragon Neural Processing Engine (SNPE)
Software Development Kit (SDK) version 2.12. Figure 7 shows an AI camera that includes
an embedded board with a Qualcomm QCS610 SoC. Because this camera can detect objects
by itself without needing any other processing units, it can be effectively used as an edge
device.
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4.4. Results and Comparisons

This paper compares the performance of seven object detection networks as shown in
Tables 2 and 3. In these tables, YOLOv8-L is the large version of YOLOv8 [45], one of the
state-of-the-art detectors, which is developed and published for open usage by Ultralytics.
SRGAN + YOLOv4 is a combination of the SRGAN and YOLOv4, where the SRGAN
first super-resolves input images to double their sizes, and the vanilla YOLOv4 is applied
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to these super-resolved input images. Because SRGAN + YOLOv4 uses two separate
networks, its computation cost is much higher than the others. YOLOv4-HR is shown on
the right side of Figure 2 and uses one more upper layer of the feature map for small object
detection. YOLOv4-FTT is YOLOv4 with the FTT module in Figure 3. YOLOv4-SRm and
YOLOv4-SSRm are YOLOv4 with the proposed SR module and its simplified version, as
shown in Figures 4 and 5, respectively.

Table 2. Detection performance of seven networks on self-built dataset.

Model
Metrics

AP50 AP AP50VT APVT AP50T APT AP50S APS

Vanilla YOLOv4 67.71 38.62 48.18 19.36 88.59 52.78 94.41 70.05

YOLOv8-L 67.34 41.84 45.98 19.71 88.75 54.16 96.88 76.16

SRGAN + YOLOv4 79.17 48.05 69.20 33.14 93.35 61.71 96.56 75.53

YOLOv4-HR 72.66 41.52 60.25 25.76 89.08 55.16 92.96 68.26

YOLOv4-FTT 77.31 44.15 66.51 28.43 92.37 57.28 93.78 71.37

YOLOv4-SRm 79.09 47.42 69.75 32.60 92.14 60.20 95.46 72.06

YOLOv4-SSRm 77.20 44.03 65.86 28.76 91.84 56.43 96.60 71.69

Table 3. Detection performance of seven networks on VisDrone2019 dataset.

Model
Metrics

AP50 AP AP50VT APVT AP50T APT AP50S APS

Vanilla YOLOv4 15.98 7.23 3.14 0.95 17.77 6.56 34.46 15.15

YOLOv8-L 19.08 9.59 4.36 1.28 22.22 10.01 42.11 20.51

SRGAN + YOLOv4 26.79 13.28 8.97 3.04 32.88 14.68 48.48 25.56

YOLOv4-HR 21.02 9.66 5.86 1.77 25.20 9.80 40.52 19.38

YOLOv4-FTT 22.78 11.02 7.19 2.42 29.19 12.15 43.06 21.64

YOLOv4-SRm 24.86 12.28 8.87 3.04 30.65 13.46 43.53 23.15

YOLOv4-SSRm 22.27 10.98 7.60 2.48 27.31 11.57 39.66 21.13

Table 2 summarizes the detection performance on the self-built test set. It can be easily
noticed that the three proposed networks (YOLOv4-FTT, YOLOv4-SRm, and YOLOv4-
SSRm) outperform both vanilla YOLOv4 and YOLOv8-L by about 10~12% in terms of AP50.
In the case of very tiny objects, the performance gaps even increase. In terms of AP50VT
for very tiny objects, the performance gaps are about 17~21%. In terms of AP50T for tiny
objects, the performance gaps are about 3~4%. Although YOLOv8-L shows better detection
performance than vanilla YOLOv4, the three proposed networks still outperform it. Among
the three proposed networks, YOLOv4-SRm shows the best performance, and YOLOv4-FTT
and YOLOv4-SSRm show similar performance. Even though SRGAN + YOLOv4 performs
slightly better than the three proposed networks, its computational cost is much higher
than the others by about 5~10 times. Details of the computational cost will be discussed
later in this paper. Compared to YOLOv4 with the FTT module (YOLOv4-FTT), YOLOv4
with the proposed SR module (YOLOv4-SRm) provides a higher AP50VT for very tiny
objects by about 3%. This reveals that using one more high-resolution feature map in the
case of the proposed SR module can help detect very tiny objects compared to the FTT
module.

Table 3 shows the detection performance on the VisDrone2019 test set. The same
performance tendency as in Table 2 can also be found in this table, even though the
performance of all methods are lower than those of Table 2 because the VisDrone2019
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dataset is much more challenging than the self-built dataset. The results in Tables 2 and 3
clearly show the SR modules play vital roles in one-stage detectors for finding small
objects because they can generate high-resolution feature maps that focus more on gaining
information about small objects. Figures 8 and 9 illustrate the example detection results of
the proposed networks (YOLOv4-FTT, YOLOv4-SRm, and YOLOv4-SSRm) on the self-built
and VisDrone2019 datasets, respectively. In these figures, it can be noticed that the proposed
methods precisely detect small objects as well as objects of other sizes. In particular, they
could correctly predict and distinguish between similar instances (pedestrian and cyclist in
the self-built dataset and people and pedestrian in the VisDrone2019 dataset).

Electronics 2024, 13, 409 12 of 16 
 

 

YOLOv4-HR 72.66 41.52 60.25 25.76 89.08 55.16 92.96 68.26 
YOLOv4-FTT 77.31 44.15 66.51 28.43 92.37 57.28 93.78 71.37 
YOLOv4-SRm 79.09 47.42 69.75 32.60 92.14 60.20 95.46 72.06 

YOLOv4-SSRm 77.20 44.03 65.86 28.76 91.84 56.43 96.60 71.69 

Table 3 shows the detection performance on the VisDrone2019 test set. The same per-
formance tendency as in Table 2 can also be found in this table, even though the perfor-
mance of all methods are lower than those of Table 2 because the VisDrone2019 dataset is 
much more challenging than the self-built dataset. The results in Tables 2 and 3 clearly 
show the SR modules play vital roles in one-stage detectors for finding small objects be-
cause they can generate high-resolution feature maps that focus more on gaining infor-
mation about small objects. Figures 8 and 9 illustrate the example detection results of the 
proposed networks (YOLOv4-FTT, YOLOv4-SRm, and YOLOv4-SSRm) on the self-built 
and VisDrone2019 datasets, respectively. In these figures, it can be noticed that the pro-
posed methods precisely detect small objects as well as objects of other sizes. In particular, 
they could correctly predict and distinguish between similar instances (pedestrian and 
cyclist in the self-built dataset and people and pedestrian in the VisDrone2019 dataset). 

Table 3. Detection performance of seven networks on VisDrone2019 dataset. 

Model 
Metrics 

AP50 AP AP50VT APVT AP50T APT AP50S APS 
Vanilla YOLOv4 15.98 7.23 3.14 0.95 17.77 6.56 34.46 15.15 

YOLOv8-L 19.08 9.59 4.36 1.28 22.22 10.01 42.11 20.51 
SRGAN + YOLOv4 26.79 13.28 8.97 3.04 32.88 14.68 48.48 25.56 

YOLOv4-HR 21.02 9.66 5.86 1.77 25.20 9.80 40.52 19.38 
YOLOv4-FTT 22.78 11.02 7.19 2.42 29.19 12.15 43.06 21.64 
YOLOv4-SRm 24.86 12.28 8.87 3.04 30.65 13.46 43.53 23.15 

YOLOv4-SSRm 22.27 10.98 7.60 2.48 27.31 11.57 39.66 21.13 

 
Figure 8. Detection results of the proposed methods on self-built dataset images. Figure 8. Detection results of the proposed methods on self-built dataset images.

Along with performance enhancement, the proposed networks achieve real-time pro-
cessing capacities in both desktop and embedded environments. Table 4 shows model
sizes, computational costs, and inference times of seven networks in the desktop envi-
ronment. Regarding the giga floating point operations per second (GFLOPs), SRGAN +
YOLOv4 requires about five times more operations than YOLOv4-FTT and YOLOv4-SRm.
YOLOv4-SSRm and YOLOv8-L only need approximately half the operations compared to
YOLOv4-FTT and YOLOv4-SRm. This means that compared to the vanilla YOLOv4 and
YOLOv8-L, YOLOv4-SSRm requires almost the same computational cost but provides 10%
higher AP50 and 17~20% higher AP50VT on the self-built dataset. Thus, YOLOv4-SSRm can
be a good compromise between detection performance and computational cost from the
viewpoint of real-time embedded systems. Despite the differences in GFLOPs, inference
times of all methods except SRGAN + YOLOv4 are similar to each other in Table 4. This
is because of the parallel processing ability of the high-end GPU attached to the desktop.
However, the differences in GFLOPs clearly affected the inference times in the embedded
environment, where the computational resources are restricted. Table 5 shows the infer-
ence times in the embedded system with the Qualcomm QCS610 SoC in Figure 7. In this
table, SRGAN + YOLOv4 is excluded because the SRGAN cannot be implemented in this
environment due to unsupported operations it uses, and there is no need to do so because
it cannot operate in real time. Unlike the desktop environment, differences in the inference
times can be clearly seen in Table 5. It shows that YOLOv4 with the proposed simplified
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SR module (YOLOv4-SSRm) can handle more than 30 images per second, which definitely
satisfies the condition of real-time processing.
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Table 4. Comparison of seven networks in terms of model size, computational cost, and inference
time in the desktop environment.

Model Params Weight
Self-Built Dataset VisDrone2019 Dataset

FLOPs IT FPS FLOPs IT FPS

Vanilla YOLOv4 64.4 244 9.99 8.80 114 48.16 10.38 96

YOLOv8-L 43.6 165 11.56 9.43 106 55.78 10.05 99

SRGAN + YOLOv4 65.8 249 118.76 12.61 79 572.60 17.03 59

YOLOv4-HR 48.3 183 10.75 8.95 112 51.82 10.83 92

YOLOv4-FTT 55.0 208 20.29 9.16 109 97.83 11.14 90

YOLOv4-SRm 49.3 187 19.47 9.10 110 93.88 10.97 91

YOLOv4-SSRm 45.1 171 10.22 8.66 115 49.25 10.60 94

Params (M), Weight (MB), FLOPs (G), IT (inference time in ms).
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Table 5. Comparison of six methods in terms of inference time in the embedded environment using
the self-built dataset.

Model Inference Time (ms) FPS

Vanilla YOLOv4 31.17 32

YOLOv8-L 29.90 33

YOLOv4-HR 29.40 34

YOLOv4-FTT 40.02 25

YOLOv4-SRm 40.79 25

YOLOv4-SSRm 27.51 36

5. Conclusions

This paper proposes a novel combination of the SR technique and one-stage detector
to address the limitations of predicting small objects in low-resolution images. We first
suggest a way to use the FTT module as a part of the one-stage detector, and then propose
a novel SR module and its simplified version. The proposed modules are adopted to the
neck of the network to super-resolve feature maps and efficiently capture credible regional
details of small objects using the pixel shuffling technique. Experiments with two datasets
demonstrated the superiority of the proposed methods, especially in small object detection.
In addition, this paper showed that the proposed methods can be implemented in practical
real-time embedded systems with high frame rates. For future research, we will explore
combining our modules with other state-of-the-art one-stage detectors and simplify the
network based on channel pruning to increase the input image size for higher detection
performance. We will also conduct more experiments on additional datasets to check
whether the proposed method is effective in other applications.
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