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Abstract: To address the issue of low accuracy in the segmentation of dynamic objects using semantic
segmentation networks, a dual-branch dynamic object segmentation network has been proposed,
which is based on the fusion of spatiotemporal information. First, an appearance–motion feature
fusion module is designed, which characterizes the motion information of objects by introducing a
residual graph. This module combines a co-attention mechanism and a motion correction method
to enhance the extraction of appearance features for dynamic objects. Furthermore, to mitigate
boundary blurring and misclassification issues when 2D semantic information is projected back into
3D point clouds, a majority voting strategy based on time-series point cloud information has been
proposed. This approach aims to overcome the limitations of post-processing in single-frame point
clouds. By doing this, this method can significantly enhance the accuracy of segmenting moving
objects in practical scenarios. Test results from the semantic KITTI public dataset demonstrate that
our improved method outperforms mainstream dynamic object segmentation networks like LMNet
and MotionSeg3D. Specifically, it achieves an Intersection over Union (IoU) of 72.19%, representing an
improvement of 9.68% and 4.86% compared to LMNet and MotionSeg3D, respectively. The proposed
method, with its precise algorithm, has practical applications in autonomous driving perception.

Keywords: dynamic object segmentation; co-attention; feature fusion; post-processing

1. Introduction

In dynamic scenes, distinguishing between dynamic and static objects is key to improv-
ing semantic segmentation accuracy. Dynamic object segmentation can effectively enhance
point cloud map construction accuracy [1], scene flow estimation [2,3], and avoid dynamic
interference in planning tasks [4]. Current research mainly focuses on two approaches:
geometric-based methods and deep learning-based methods.

Geometric-based dynamic object segmentation algorithms primarily include view-
point visibility methods [5] and ray-casting methods [6]. For instance, Kim et al. [7]. used
a multi-resolution depth map visibility mechanism to match local keyframes with static
maps, achieving dynamic object removal. This method requires pre-constructed point
cloud maps and a recovery strategy to restore static points from incorrectly classified
dynamic points, which can be challenging for real-time applications. Schauer et al. [8],
using ray-casting principles, determine whether a grid cell has been passed through by
LIDAR to achieve dynamic filtering. However, this method struggles with updating the
probability values of grids in open scenes and requires traversing all grid cells, leading to
high computational demands.

With the development of deep learning, many excellent algorithms have emerged
in the field of semantic segmentation, such as PointNet++ [9], VoxelNet [10], and Sal-
saNeXt [11]. However, these algorithms can only segment objects with motion attributes
that are temporarily stationary (e.g., parked vehicles) as well as static objects. In complex
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dynamic scenes, the capability of dynamic object segmentation is especially important.
Dynamic object segmentation from input data can be categorized into point cloud-based
methods, voxel-based methods, and depth map-based methods [12]. Using raw point
cloud data as network input avoids preprocessing, effectively preserving the 3D informa-
tion of the point cloud. The 4DMOS network proposed by Mersch et al. [13] uses sparse
4D convolution to extract spatial and temporal features from the point cloud, enabling
online dynamic object prediction and then processes new predictions with a Bayesian
filter. Wang et al. [14] introduced InsMOS based on 4DMOS, which not only performs
point-by-point dynamic object prediction but also detects the instance information of major
traffic participants. Point-based prediction methods achieve good accuracy but increase
computational resource consumption. To effectively address the irregularity of point
clouds, Graham [15] and Yan et al. [16] adopted voxel-based representation methods, which
still introduce considerable memory overhead and computational cost. Depth maps, as
an intermediate representation method from 3D point clouds to 2D space, significantly
enhance network training and inference speed without sacrificing much accuracy. For
instance, Chen et al. [17] proposed the LMNet network, which transforms point clouds into
depth map representations. To capture inter-frame motion information, residual images
are added as additional channels to the network input, leveraging mainstream semantic
segmentation networks for dynamic object segmentation. This method simply concate-
nates depth maps and residual images, without fully utilizing temporal information, and
has noticeable boundary blur issues during the reprojection process. Kim et al. [18] also
used depth maps and residual information as network input and further improved dy-
namic object segmentation performance with data augmentation. Sun et al. [19] proposed
a dual-branch structure MotionSeg3D network, which separately processes spatial and
temporal information and introduces a motion-guided attention module for feature fusion
while adopting a coarse-to-fine approach for processing prediction results. This method
effectively improves dynamic object segmentation accuracy but has relatively high training
costs for the two-stage network.

To address the boundary blur issue in semantic segmentation networks based on
depth map representation [20], most works [21,22] employ post-processing methods
such as Conditional Random Fields (CRF) or K-Nearest Neighbor (KNN) to smooth
the predicted label results. For instance, Squeezeseg [21] utilizes CRF to refine predic-
tions based on neighboring results after three iterations but fails to effectively handle
occluded points. RangeNet++ [22] applies a KNN approach to search for K-nearest neigh-
bor points within a certain region to infer the semantic information of ambiguous points.
This method often leads to either insufficient or excessive smoothing and performs poorly
on severely occluded points. MotionSeg3D introduces a refinement module to replace tra-
ditional post-processing methods, achieving some improvement in accuracy but increasing
training costs.

To address these issues, this paper proposes a dual-branch dynamic object segmenta-
tion network based on spatiotemporal information fusion, built upon the MotionSeg3D
network, to enhance the segmentation accuracy of dynamic objects in semantic segmenta-
tion tasks. The semantic segmentation model proposed in this paper makes the following
main contributions:

• Inspired by video object segmentation tasks [23], an appearance–motion fusion (AMF)
module is designed, which consists of a shared attention mechanism and motion
correction method, to enhance the extraction capability of appearance features with
motion information;

• A majority voting strategy (MVS) post-processing method is proposed, which inte-
grates temporal point cloud semantic information to update the current predictions,
addressing the boundary blur and semantic label misclassification issues caused
by re-projection;
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• In the test set, the IoU of this proposed method reaches 72.19%, exceeding top dy-
namic object segmentation networks such as LMNet and MotionSeg3D by 9.68% and
4.86%, respectively.

2. Method
2.1. Overall Network Structure

The Dual-Branch Dynamic Object Semantic Segmentation Network employs an encoder–
decoder structure to separately extract appearance and motion features from spatial and
temporal dimensions. It utilizes the feature fusion module (AMF) to aggregate these
features, thereby enhancing the segmentation capability for dynamic objects. In the post-
processing stage, a majority voting strategy is proposed to reduce boundary blurring and
label misclassification issues.

The overall network framework is shown in Figure 1. A spherical projection is used
to convert 3D point clouds into depth maps [24], serving as input data for the appearance
feature extraction branch. This avoids the disorder associated with directly processing raw
point cloud data [25] and improves data processing efficiency. To aggregate contextual
information from different regions, residual dilated convolutions are introduced, stacking
dilated convolutions with a receptive field of 5 after standard convolutions to capture richer
spatial information from different receptive fields. The Meta-Kernel [26] module is used
to dynamically learn weights from the relative Cartesian coordinate system, enabling the
network to extract more spatial geometric information from the depth maps. To capture
motion information, residual representations are obtained by computing depth maps
generated from consecutive frames of point clouds and are input into the motion branch for
feature extraction. The first layer uses residual dilated convolutions to capture contextual
information. To avoid a significant increase in the number of parameters due to larger
receptive fields, subsequent layers use combinations of dilated convolutions with receptive
fields of 3, 5, and 7 and convolutional residual connections at the output positions to gather
more information from different features. For each residual dilated convolution in this
branch, dropout layers and Adaptive Exponential Weighted Pooling (AdaPool) [27] are
used for downsampling. Features extracted by the two branches interact through the
appearance–motion fusion module, dynamically assigning feature weights, and are fused
to output enhanced appearance features. The feature results from each fusion module
are concatenated with the aforementioned residual dilated convolutions, while residual
structures connect to the upsampling modules in the decoder. The network’s predicted
results are post-processed using a majority voting strategy to reduce boundary blur and
misclassification issues.
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2.2. Motion Feature Representation

The range image representation maps the point cloud in three-dimensional space to
two-dimensional space, avoiding the complexity of processing unordered point cloud data.
For three-dimensional point clouds in Cartesian coordinates, they are projected onto the
image coordinate system through spherical projection to obtain the corresponding range
image, and a two-dimensional convolutional neural network is used to extract appearance
features from it. However, relying solely on a single semantic segmentation network
cannot effectively identify moving objects in the scene. To enhance the network’s ability
to recognize dynamic objects, this paper adopts the residual image calculation method
used in LMNet [17] and introduces temporal information of dynamic objects during the
training process.

Using the coordinate system of the current frame point cloud as the reference, his-
torical n frame point clouds are transformed to the current coordinate system using a
transformation matrix, resulting in the generation of a range image. In the range image,
each pixel represents the distance value r of the corresponding pixel coordinate point (u, v).
The normalized absolute difference between the current frame and historical frames is
calculated according to Formula (1) to obtain the residual dc

k,i, resulting in the generation of
the residual map as shown in Figure 2.

dc
k,i =

∣∣∣ri − rk→c
i

∣∣∣
ri

(1)

where rk→c
i is the distance value obtained by transforming the point cloud c of the historical

frame k.
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2.3. Meta-Kernel Convolution

Reducing 3D point clouds to 2D space results in 2D convolutions being unable to
fully utilize the 3D geometric information of the point clouds. As shown in Figure 3, this
paper introduces a meta-kernel convolution module, which selects the relative Cartesian
coordinates of the 3 × 3 neighborhood at the center of the feature map and inputs them
into a multi-layer perceptron (MLP) with two fully connected layers, generating a total
of 9 weight vectors wi, i = (1, 2, . . . , 9) that adapt to the local 3D structure. These weight
vectors are then element-wise multiplied with the corresponding 9 feature vectors fi.
Finally, the resulting 9 neighborhood feature vectors are concatenated and passed through
a 1 × 1 convolution. This aggregates information from different channels and different
sampling positions to update the central feature vector.
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2.4. Appearance–Motion Feature Fusion Module

The unidirectional attention guidance module in MotionSeg3D depends solely on the
primary moving objects in the scene, neglecting the inherent noise in the range image. This
paper proposes an appearance–motion fusion (AMF) module composed of co-attention
and motion-guided attention mechanisms. By adaptively allocating feature weights and
cross-modal feature fusion, the AMF module enhances the representation capability of
appearance features for dynamic objects. Its structure is shown in Figure 4.
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First, using cross-channel concatenation and convolution operations in the ith layer,
the appearance features Fa

i and motion features Fm
i are aligned to capture the relative

relationships between multimodal features. The aligned and fused features H ∈ Rh×w×2

are divided into two sub-branches, and for each channel, a Sigmoid function and global
average pooling are performed to obtain a pair of co-attention scores, ga

i and gm
i . Higher

scores indicate that the corresponding modality features contain more accurate and effective
segmentation information. In contrast, lower scores suggest that the modality features
may contain noise that affects performance. The co-attention gating function composed of
appearance features and motion features can be expressed as

gi = Avg(Sigmoid(Conv(Cat(Fa
i , Fm

i )))) (2)

where gi represents a pair of co-attention scores, including ga
i and gm

i . Avg(·) denotes
the global average pooling operation. Sigmoid(·) denotes the activation function with a
range of (0, 1). Conv(·) denotes a convolutional layer with an output channel of 2. Cat(·)
represents concatenation operation across each channel.
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The scores generated by the co-attention gating module are applied to the corre-
sponding features to obtain the updated gated appearance features, Ga

i and Gm
i , which are

defined as
Ga

i = Fa
i ⊗ ga

i , Gm
i = Fm

i ⊗ gm
i (3)

In the motion-guided attention module, firstly, the spatial attention mechanism is
utilized on the motion features Gm

i to augment the spatial positional information of the
appearance features Ga

i , yielding more salient appearance features Ga′
i . Subsequently, a

channel attention mechanism is applied to enhance critical attributes, resulting in fused
Ga′′

i spatiotemporal features with dimensions C × h × w, where

Ga′
i = Ga

i ⊗ Sigmoid(Conv1×1(Gm
i )) (4)

Ga′′
i = Ga′

i ⊗ [Softmax
(

Conv1×1(Avg(Ga′
i ))) · C] + Ga

i (5)

2.5. Majority Voting Strategy

Although the moving object segmentation network achieved through the AMF module
efficiently segments dynamic objects, there remains an issue during the range image re-
projection back into 3D space. Distant points occluded by closer ones inherit the predictive
attributes of the latter. Figure 5 illustrates boundary ambiguity, with Figure 5a showing
an image with blurred boundaries and Figure 5b showing the ground truth (GT). Among
them, red points represent dynamic attribute semantic labels, and black points represent
static attribute semantic labels. As shown in Figure 5, background objects with static
attributes are misclassified as dynamic semantic labels due to occlusion by dynamic objects,
particularly at their edges.
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To address this issue, traditional semantic segmentation networks typically employ
k-Nearest Neighbor (k-NN) post-processing, where the semantic information of a point is
determined by searching its K-nearest neighbors. While this method alleviates the problem
of boundary blur to some extent, it is sensitive to the choice of k value and distance, and its
performance remains suboptimal when a large area of the neighborhood is misclassified.
This paper proposes a post-processing method based on a majority voting strategy, utilizing
different perspectives of adjacent keyframes in various temporal sequences to refine the
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classification of predicted results. This approach circumvents the limitations of single-scan
frames, as illustrated in the overall process depicted in Figure 6.
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Increasing the number of keyframes can provide richer contextual information, thereby en-
hancing segmentation accuracy. The historical n frames of LiDAR point clouds (pt−n, . . . , pt−1)
are aligned to the current frame point cloud pt coordinate system using a transformation
matrix. The transformation matrix Tt

t−i between point clouds pt and pt−1 can be obtained
from odometry estimation approaches such as LIO-SAM [28], where Tt

t−i represents the
homogeneous transformation matrix

(
Ti

i−1 ∈ R4×4, i ∈ n
)
. The point cloud sequence is

aligned to the current coordinate system, and a voxel grid with resolution σ is generated
based on the coordinate range of the current frame point cloud. The semantic labels of
each point in the current and historical frames are sequentially mapped into the voxel grid,
discarding points that fall outside the range. For each voxel cell, the most frequent semantic
label is selected, and redundant labels are filtered out. Finally, the semantic labels in the
voxel grid are re-mapped to the corresponding point cloud channel. In Figure 6, red points
represent dynamic attribute semantic labels, and black points represent static attribute
semantic labels. To achieve efficient post-processing, a sliding window of length is used to
update the points falling within the grid. When a new LiDAR scan frame is received, it is
added to the sliding window, and old scan frames are removed.

3. Experiments
3.1. Experiment Setups

The SemanticKITTI-MOS [18] dataset is utilized for training and testing. SemanticKITTI-
MOS [29] is a popular benchmark for LiDAR-based moving object segmentation in driving
scenes. It consists of 22 sequences, with sequences 00–07 and 09–10 used for the training
set, sequence 08 used for the validation set, and sequences 11–21 used for the test set.

To quantify the performance of the dynamic object segmentation network, standard
metrics including Intersection-over-Union (IoU) and accuracy are employed. RIoU repre-
sents the ratio of the intersection to the union between predicted and ground truth cate-
gories, while Dacc indicates the proportion of correctly predicted dynamic points among
the true dynamic points.

RIoU =
NTP

NTP + NFP + NFN
(6)

Dacc =
NTP

NTP_truth
(7)

where NTP, NFP, and NFN represent the number of true positives, false positives, and false
negative predictions for the moving class, respectively. NTP_truth represents the number of
true dynamic object points.
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To reflect the spatial complexity of the network, the number of parameters is used in
this section. The specific formula is as follows:

Ptotal = ∑L
l=1(Wl + Bl) (8)

where Ptotal , L, Wl , and Bl represent the total parameter number, the number of layers of
the network model, the number of weights for layer l, and the number of offsets in layer
l, respectively.

3.2. Implementation Details

PyTorch is used to implement the proposed method, which is trained on an NVIDIA
RTX 4090 GPU with a batch size of 5. The network input data are represented by range
images with a size of 64 × 2048. As for hyperparameters, the proposed method uses
stochastic gradient descent with a momentum of 0.9 and weight decay of 0.0001 to minimize
the loss function. The maximum number of training epochs is set to 150, and inference is
performed on the validation set at the end of each epoch.

3.3. Analysis of Experimental Results

Based on the SemanticKITTI dataset, this paper compares state-of-the-art dynamic
object segmentation networks such as LMNet, MotionSeg3D-v1 (where v1 denotes the use
of KNN post-processing), MotionSeg3D-v2 (where v2 indicates the use of a refinement
module), RVMOS, and SalsaNext; point-based methods like InsMOS; and BEV-based
methods like LiMoSeg. The accuracy and comparative performance on the validation
set (Seq08) are shown in Table 1. The proposed method achieves an IoU of 72.19% in
dynamic object segmentation, improving by 9.68% over the baseline network LMNet and
4.86% over MotionSeg3D-v1, and outperforming MotionSeg3D-v2 which uses a refinement
module. In the RVMOS network, which consumes fewer computational resources, a similar
segmentation accuracy is achieved compared to our method, though this network uses
moving object labels and semantic labels during training. Similarly, the InsMOS network,
which utilizes instance label information and additional training data, achieves an IoU
improvement of 1.01% over our method but has an inference time of 2.6 times longer. In
terms of dynamic point cloud prediction accuracy, our method shows a 4.26% improvement
over the pre-improvement MotionSeg3D network and achieves an accuracy of 81.76%,
similar to the InsMOS network. Therefore, when balancing inference time and segmentation
accuracy, our method demonstrates superior dynamic object segmentation performance
using only single-moving object labels.

Table 1. Comparison of Intersection over Union, accuracy, parameters, and inference time.

Methods RIoU Dacc Params [M] Inference Time [ms]

LMNet 62.51 74.48 6.71 35
SalsaNext 46.6 52.69 6.73 41.67
LiMoSeg 52.6 - - 8

MotionSeg3D-v1 67.33 77.50 10.41 42.53
MotionSeg3D-v2 71.42 79.58 21.77 112

RVMOS 71.2 - 2.63 29
InsMOS 73.2 82.12 25.35 127

Ours 72.19 81.76 12.18 48.23

The segmentation results are visualized in Figure 7, where dynamic objects are marked
in red, blue circles indicate dynamic objects misclassified as static, and green rectangles
denote static objects misclassified as dynamic. In scene 1 of Figure 7, a vehicle in the rear,
which was obscured by a vehicle in front in the previous frame, appears in the current scan.
Both LMNet and MotionSeg3D algorithms incorrectly classify the rear-moving vehicle as
static. Thanks to the AMF appearance–motion feature fusion module proposed in this
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paper, the semantic segmentation network does not rely solely on single-motion features but
integrates a joint attention mechanism and motion guidance module to dynamically adjust
the feature weight distribution between appearance and motion features. This enables the
correct classification of moving object attributes, even when dynamic targets are occluded in
the previous frame, by learning their continuous motion states and adaptively distributing
feature weights. The InsMOS network, which incorporates instance label information, also
correctly predicts the dynamic attributes of the rear vehicle. In the remaining two scenes,
the proposed network and InsMOS network show better visualization results than LMNet
and MotionSeg3D. Moreover, the post-processing recovery strategy implemented in this
paper reduces the occurrence of false positives and false negatives in the scene compared
to the InsMOS network.
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To address the issue of boundary blur resulting from semantic segmentation, this
chapter designs a majority voting strategy for post-processing and compares it with main-
stream CRF and KNN post-processing methods, as shown in Figure 8. Among them,
red points represent dynamic attribute semantic labels, and black points represent static
attribute semantic labels. It can be observed that CRF and KNN algorithms do not handle
the boundary blur problem in depth maps effectively, leading to some boundary points
being misclassified as dynamic attributes (indicated by the rectangular frames). The MVS
majority voting strategy post-processing method designed in this chapter, by integrating
semantic prediction information from historical frame point clouds, determines the seman-
tic category of the current state based on consistent attributes of static objects observed
in adjacent frames. The results indicate that the MVS majority voting strategy effectively
reduces boundary blur. Additionally, the motion features of moving objects extracted from
temporal information partly address the issue of dynamic point misclassification due to
occlusion (shown in the ellipses).

In deep learning, parameters (Params) and floating point operations (FLOPs) represent
the model’s computational space complexity and time complexity, respectively. To achieve
more accurate moving object segmentation, the AMF module proposed in this chapter
increases both the parameter count and computational load, but the sliding window and
parallel processing in the post-processing stage result in overall algorithm processing time
being close to that of the baseline model (as shown in Table 2).
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Table 2. Comparison of operation efficiency.

Params [M] FLOPs [G] Inference Time [ms]

Baseline Model
10.41 523.28

40.78
Baseline Model + CRF 51.05

Baseline Model + k-NN 42.53

Baseline Model + MVS 12.18 553.54 48.23

3.4. Ablation Study

To verify the effectiveness of semantic segmentation performance on dynamic objects,
ablation experiments were conducted on the appearance–motion feature fusion module
and the MVS majority voting strategy post-processing method using the MotionSeg3D
network as the baseline model. The experimental results are shown in Table 3.

Table 3. Ablation experiment results.

Baseline Models AMF MVS RIoU ∆
√

61.93 Baseline√ √
65.69 +3.76√ √
68.43 +6.5√ √ √
72.19 +10.26

Table 3 shows that both our proposed AMF module and the MVS post-processing
method effectively improve the accuracy of dynamic object segmentation. The AMF module
with shared attention effectively balances the multimodal features of dynamic objects,
resulting in a 3.76% improvement compared to the baseline model. The post-processing
method based on the MVS majority voting strategy fully utilizes temporal information,
leading to a 6.5% improvement over the baseline model. By combining these two proposed
methods, the network model achieves an IoU accuracy of 72.19%, representing a 10.26%
improvement over the baseline network model. Table 4 compares the results with existing
post-processing methods, all based on the network improved with AMF. The results indicate
that the CRF method reduces accuracy in dynamic object segmentation tasks and fails
to address boundary ambiguity issues, while the k-NN method partially alleviates this
problem, resulting in a 1.97% improvement compared to no post-processing. The MVS
method proposed in this paper outperforms the above two mainstream post-processing
methods, achieving a 6.5% improvement.
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Table 4. Comparison of post-processing.

Post-Processing RIoU ∆

No Post-Processing 65.69 Baseline
CRF 64.53 −1.16

k-NN 67.66 +1.97
MVS 72.19 +6.5

The MVS is based on point cloud voxelization, wherein a fixed grid size voxel grid
is set up to store and filter semantic labels. Smaller grids can better capture objects with
fine boundaries, while larger grids are beneficial for handling larger dynamic objects.
The impact of grid size settings on segmentation accuracy is shown in Figure 9. The
results indicate that the setting with a fixed resolution of 20 cm achieves optimal accuracy.
Although a voxel size of 20 cm performs well on the KITTI dataset, different datasets may
have varying requirements for voxel size. In future work, the adaptability of different voxel
sizes across various datasets will be planned for exploration, and these findings will be
incorporated into further discussions and analyses.
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4. Conclusions

In this paper, a dual-branch dynamic object segmentation network based on the fusion
of spatio-temporal information is proposed. The proposed method designs an appearance–
motion fusion module with shared attention, which dynamically adjusts feature weights to
achieve cross-modal feature fusion. To enhance the segmentation accuracy of the network
model and reduce boundary ambiguity, a post-processing method based on a majority
voting strategy has been further proposed, which utilizes temporal information between
keyframes to recover misclassified semantic labels. The experimental results on the Se-
manticKITTI semantic segmentation dataset show that the method proposed in this paper
outperforms state-of-the-art dynamic object segmentation networks such as LMNet and
MotionSeg3D, achieving an IoU of 72.19%. This represents an improvement of 9.68% and
4.86% over LMNet and MotionSeg3D, respectively. These findings support the effective-
ness of the appearance–motion feature fusion module and the majority voting strategy in
dynamic object segmentation.

Although this method has demonstrated excellent performance on the KITTI dataset,
different datasets may impose varying requirements on the model. Future work will explore
the adaptability of the model to multiple datasets and incorporate these explorations into
further discussions and analyses. Additionally, the current method has not yet been
deployed on mobile edge computing devices or validated through real-vehicle testing, so
future research will focus on further optimizing and validating the algorithm’s performance.



Electronics 2024, 13, 3975 12 of 13

Author Contributions: Conceptualization, F.H. and Z.W.; methodology, Y.Z.; software, Q.W.; val-
idation, Q.W. and B.H.; formal analysis, B.H.; investigation, B.H. and Q.W.; resources, Y.X.; data
curation, B.H.; writing—original draft preparation, Q.W.; writing—review and editing, B.H. and Y.X.;
visualization, Y.Z.; supervision, F.H. and Z.W.; project administration, Y.X.; funding acquisition, Y.X.
and B.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Science and Technology Innovation Key R&D Program of
Chongqing, grant number CSTB2022TIAD-STX0003, and the Research and Innovation Program for
Graduate Students in Chongqing Jiaotong University (YYK202405).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: Authors Fei Huang, Zhiwen Wang and Yu Zheng were employed by the
company China Road & Bridge Corporation. The remaining authors declare that the research was
conducted in the absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

References
1. Chen, X.; Milioto, A.; Palazzolo, E.; Giguere, P.; Behley, J.; Stachniss, C. Suma++: Efficient lidar-based semantic slam. In

Proceedings of the2019 IEEE/2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China,
3–8 November 2019; IEEE: New York, NY, USA, 2019; pp. 4530–4537.

2. Baur, S.A.; Emmerichs, D.J.; Moosmann, F.; Pinggera, P.; Ommer, B.; Geiger, A. Slim: Self-supervised lidar scene flow and motion
segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17
October 2021; IEEE: New York, NY, USA, 2021; pp. 13126–13136.

3. Tishchenko, I.; Lombardi, S.; Oswald, M.R.; Pollefeys, M. Self-supervised learning of non-rigid residual flow and ego-motion. In
Proceedings of the 2020 International Conference on 3D Vision (3DV), Fukuoka, Japan, 25–28 November 2020; IEEE: New York,
NY, USA, 2020; pp. 150–159.

4. Chen, P.; Pei, J.; Lu, W.; Li, M. A deep reinforcement learning based method for real-time path planning and dynamic obstacle
avoidance. Neurocomputing 2022, 497, 64–75. [CrossRef]

5. Pomerleau, F.; Krüsi, P.; Colas, F.; Furgale, P.; Siegwart, R. Long-term 3D map maintenance in dynamic environments. In
Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June
2014; IEEE: New York, NY, USA, 2014; pp. 3712–3719.

6. Underwood, J.P.; Gillsjö, D.; Bailey, T.; Vlaskine, V. Explicit 3D change detection using ray-tracing in spherical coordinates. In
Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; IEEE:
New York, NY, USA, 2013; pp. 4735–4741.

7. Kim, G.; Kim, A. Remove, then revert: Static point cloud map construction using multiresolution range images. In Proceedings of
the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24
January 2021; IEEE: New York, NY, USA, 2020; pp. 10758–10765.

8. Schauer, J.; Nüchter, A. The peopleremover-removing dynamic objects from 3-d point cloud data by traversing a voxel occupancy
grid. IEEE Robot. Autom. Lett. 2018, 3, 1679–1686. [CrossRef]

9. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inf.
Process. Syst. 2017, 30, 5105–5114.

10. Zhou, Y.; Tuzel, O. Voxelnet: End-to-end learning for point cloud based 3D object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lak City, UT, USA, 18–23 June 2018; IEEE: New York, NY, USA,
2018; pp. 4490–4499.

11. Cortinhal, T.; Tzelepis, G.; Erdal Aksoy, E. Salsanext: Fast, uncertainty-aware semantic segmentation of lidar point clouds. In
Proceedings of the Advances in Visual Computing: 15th International Symposium, San Diego, CA, USA, 5–7 October 2020;
Springer: Berlin, Germany, 2020; pp. 207–222.

12. Wang, D.F.; Shang, H.; Cao, J.; Wang, T.; Xia, X.; Han, Y. Semantic segmentation of point clouds in autonomous driving scenes
based on self-attention mechanism. Automot. Eng. 2022, 44, 1656–1664.

13. Mersch, B.; Chen, X.; Vizzo, I.; Nunes, L.; Behley, J.; Stachniss, C. Receding moving object segmentation in 3d lidar data using
sparse 4d convolutions. IEEE Robot. Autom. Lett. 2022, 7, 7503–7510. [CrossRef]

14. Wang, N.; Shi, C.; Guo, R.; Lu, H.; Zheng, Z.; Chen, X. InsMOS: Instance-Aware Moving Object Segmentation in LiDAR Data. In
Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5
October 2023; IEEE: New York, NY, USA, 2023; pp. 7598–7605.

15. Graham, B.; Engelcke, M.; Van Der Maaten, L. 3D Semantic segmentation with submanifold sparse convolutional networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
IEEE: New York, NY, USA, 2018; pp. 9224–9232.

https://doi.org/10.1016/j.neucom.2022.05.006
https://doi.org/10.1109/LRA.2018.2801797
https://doi.org/10.1109/LRA.2022.3183245


Electronics 2024, 13, 3975 13 of 13

16. Yan, X.; Gao, J.; Li, J.; Zhang, R.; Li, Z.; Huang, R.; Cui, S. Sparse single sweep lidar point cloud segmentation via learning
contextual shape priors from scene completion. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9
February 2021; AAAI: Menlo Park, CA, USA, 2021; Volume 35, pp. 3101–3109.

17. Chen, X.; Li, S.; Mersch, B.; Wiesmann, L.; Gall, J.; Behley, J.; Stachniss, C. Moving object segmentation in 3D LiDAR data: A
learning-based approach exploiting sequential data. IEEE Robot. Autom. Lett. 2021, 6, 6529–6536. [CrossRef]

18. Kim, J.; Woo, J.; Im, S. Rvmos: Range-view moving object segmentation leveraged by semantic and motion features. IEEE Robot.
Autom. Lett. 2022, 7, 8044–8051. [CrossRef]

19. Sun, J.; Dai, Y.; Zhang, X.; Xu, J.; Ai, R.; Gu, W.; Chen, X. Efficient spatial-temporal information fusion for lidar-based 3d moving
object segmentation. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Kyoto, Japan, 23–27 October 2022; IEEE: New York, NY, USA, 2022; pp. 11456–11463.

20. Wang, N.; Hou, Z.Q.; Zhao, M.Q.; Yu, W.; Ma, S. Semantic segmentation algorithm combined with edge detection. Comput. Eng.
2021, 47, 257–265.

21. Wu, B.; Wan, A.; Yue, X.; Keutzer, K. Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object
segmentation from 3d lidar point cloud. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, QLD, Australia, 21–25 May 2018; IEEE: New York, NY, USA, 2018; pp. 1887–1893.

22. Milioto, A.; Vizzo, I.; Behley, J.; Stachniss, C. Rangenet++: Fast and accurate lidar semantic segmentation. In Proceedings of the
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; IEEE:
New York, NY, USA, 2019; pp. 4213–4220.

23. Yang, S.; Zhang, L.; Qi, J.; Lu, H.; Wang, S.; Zhang, X. Learning motion-appearance co-attention for zero-shot video object
segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17
October 2021; IEEE: New York, NY, USA, 2021; pp. 1564–1573.

24. Wang, T.; Wang, W.J.; Cai, Y. Research on semantic segmentation methods for 3D point clouds based on deep learning. Comput.
Eng. Appl. 2021, 57, 18–26.

25. Xia, X.T.; Wang, D.F.; Cao, J.; Zhang, G.; Zhang, J. Semantic segmentation of vehicle-mounted LiDAR point clouds based on
sparse convolutional neural networks. Automot. Eng. 2022, 44, 26–35.

26. Fan, L.; Xiong, X.; Wang, F.; Wang, N.; Zhang, Z. Rangedet: In defense of range view for lidar-based 3d object detection. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; IEEE:
New York, NY, USA, 2021; pp. 2918–2927.

27. Stergiou, A.; Poppe, R. Adapool: Exponential adaptive pooling for information-retaining downsampling. IEEE Trans. Image
Process. 2022, 32, 251–266. [CrossRef] [PubMed]

28. Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and
mapping. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas,
NV, USA, 25–29 October 2020.

29. Behley, J.; Garbade, M.; Milioto, A.; Quenzel, J.; Behnke, S.; Stachniss, C.; Gall, J. Semantickitti: A dataset for semantic scene
understanding of lidar sequences. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic
of Korea, 27 October–2 November 2019; IEEE: New York, NY, US, 2019; pp. 9297–9307.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/LRA.2021.3093567
https://doi.org/10.1109/LRA.2022.3186080
https://doi.org/10.1109/TIP.2022.3227503
https://www.ncbi.nlm.nih.gov/pubmed/37015362

	Introduction 
	Method 
	Overall Network Structure 
	Motion Feature Representation 
	Meta-Kernel Convolution 
	Appearance–Motion Feature Fusion Module 
	Majority Voting Strategy 

	Experiments 
	Experiment Setups 
	Implementation Details 
	Analysis of Experimental Results 
	Ablation Study 

	Conclusions 
	References

