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Abstract: Sparse matrix–matrix multiplication (SpMM) is essential for deep learning models and
scientific computing. Recently, Tensor Cores (TCs) on GPUs, originally designed for dense matrix
multiplication with mixed precision, have gained prominence. However, utilizing TCs for SpMM is
challenging due to irregular memory access patterns and a varying number of non-zero elements
in a sparse matrix. To improve data locality, previous studies have proposed reordering sparse
matrices before multiplication, but this adds computational overhead. In this paper, we propose
Tensor Core-Adapted SpMM (TCA-SpMM), which leverages TCs without requiring matrix reordering
and uses the compressed sparse row (CSR) format. To optimize TC usage, the SpMM algorithm’s
dot product operation is transformed into a blocked matrix–matrix multiplication. Addressing load
imbalance and minimizing data movement are critical to optimizing the SpMM kernel. Our TCA-
SpMM dynamically allocates thread blocks to process multiple rows simultaneously and efficiently
uses shared memory to reduce data movement. Performance results on sparse matrices from the
Deep Learning Matrix Collection public dataset demonstrate that TCA-SpMM achieves up to 29.58×
speedup over state-of-the-art SpMM implementations optimized with TCs.

Keywords: sparse matrix multiplication; tensor cores; sparse deep neural networks; load balancing;
data movement

1. Introduction

Matrix–matrix multiplication is a key computation in the training of deep neural
networks (DNNs), including convolutional neural networks (CNNs), graph neural net-
works (GNNs), and transformers. In practice, matrix–matrix multiplication involving
weights and neuron values dominates over all computations in the training of DNNs [1,2].
Therefore, NVIDIA’s Tensor Cores (TCs) have recently emerged to accelerate General
Matrix–Matrix Multiplication (GEMM), also known as dense matrix–dense matrix mul-
tiplication, by increasing throughput and reducing memory footprint through the use of
lower-precision floating-point formats [3–5]. Moreover, with the increasing size of DNNs,
various pruning and sparsification techniques have been widely adopted to reduce the
number of parameters and computational operations in DNNs [6,7]. Therefore, sparse
matrix–dense matrix multiplication (SpMM) has become an essential computational ker-
nel, occupying a substantial portion of the operations in sparse DNNs [8]. Furthermore,
training GNNs typically requires performing numerous SpMM operations to multiply a
large sparse matrix, derived from the adjacency matrix, with the feature vectors of nodes to
aggregate neighbor information within the graph [9,10]. However, unlike GEMM, which
can straightforwardly use tiling or blocking techniques to achieve high performance, SpMM
is inherently performance-limited on GPUs. As the number of non-zero elements on the
left-hand-side (LHS) sparse matrix varies irregularly across rows, achieving good load
balance for SpMM on GPUs is challenging. Furthermore, as the non-zero elements are
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irregularly scattered, irregular memory access leads to poor performance due to reduced
cache hit rates on GPUs.

Therefore, several previous studies have sought to reorder the sparse matrix based
on its sparsity patterns to enhance data locality, which repeatedly accesses a specific set of
memory locations within a short period [11,12]. Data locality is associated with the amount
of data movement from/to memory, and improving data locality reduces data movement
costs and increases data reuse. In terms of both energy and execution time, as technology
trends have made the cost of data movement significantly higher than the cost of performing
arithmetic operations on GPUs, improving data locality is crucial for accelerating the
GPU kernel. The primary goal of sparse matrix reordering for SpMM is to rearrange
the matrix to facilitate the efficient extraction of high-density sub-matrices. By extracting
the high-density sub-matrices from the reordered sparse matrix, these sub-matrices can
then be used to perform blocked dense matrix–dense matrix multiplications with the
right-hand-side (RHS) dense matrix using TCs. However, reordering the sparse matrix is
very computationally demanding because the sparsity patterns of non-zero elements in
each row must be compared by measuring the similarity between rows. Furthermore, the
overhead of the reordering process increases as the size of the matrix grows. In general,
the preprocessing time required for reordering the sparse matrix can exceed the actual
execution time required for performing the SpMM operation [9]. Therefore, reordering the
sparse matrix incurs significant overhead for the entire SpMM operation. Moreover, for the
adjacency matrix of a directed graph, where the same row and column indices represent the
same node, reordering only the row indices of the adjacency matrix results in incorrect edge
information between nodes. To perform accelerated SpMM without a reordering process,
NVIDIA’s cuSPARSE Block-SpMM API [13] can be used for blocked dense matrix–dense
matrix multiplication utilizing TCs. However, cuSPARSE Block-SpMM requires storing
the elements of the sparse matrix in blocks using the Block-Ellpack format, which can be
considered additional overhead. Compared to the memory-efficient compressed sparse
row (CSR) format, which stores only the non-zero elements in a sparse matrix, the Block-
Ellpack format becomes increasingly inefficient in terms of memory usage as the sparsity
and irregularity of the matrix increase. This is because the Block-Ellpack format requires
storing all remaining zero elements in non-zero blocks, even if a block contains only one
non-zero element.

In this paper, we propose a novel Tensor Core-Adapted SpMM kernel (called TCA-
SpMM) that efficiently leverages TCs using the memory-efficient CSR format without
requiring the reordering of the sparse matrix. The main goal of this paper is to explore
the feasibility of using TCs for SpMM by fully exploiting their architectural characteristics,
particularly their high throughput of floating-point operations. As TCs use fragments (i.e.,
sub-matrices) as input for GEMM computation, the data structures that store non-zero ele-
ments in CSR format cannot be directly used with TCs. The basic idea behind our approach
is to utilize TCs for performing the dot product of two vectors within each innermost loop of
the original SpMM algorithm using the CSR format. Hence, we first transform the dot prod-
uct of two vectors into a smaller blocked matrix–matrix multiplication. After transforming
the two vectors into matrices, the transformed matrices are used to perform accelerated
matrix–matrix multiplication on TCs using the MMA (matrix multiply-and-accumulate)
operation. As a result, the diagonal elements of the resulting matrix are accumulated to
obtain the final output element for the dot product of the two vectors. In the context of
GPU computing, the irregular distribution of non-zero elements in the sparse matrix makes
parallel decomposition challenging, leading to load imbalance and a reduced degree of
parallelism. It is obvious that the number of operations required for each dot product of
a row vector in the LHS sparse matrix and a column vector in the RHS dense matrix is
inconsistent, as the number of operations for each dot product depends on the number
of non-zero entries in each row vector of the sparse matrix. Therefore, to achieve good
load balancing across CUDA thread blocks, we optimize our GPU kernel such that each
thread block either performs a partial dot product for a row with many non-zero entries
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or computes the full dot products for multiple rows with fewer non-zero entries. Another
challenge in optimizing SpMM using TCs is increasing the utilization of TCs by minimizing
data movement. Hence, in order to increase the arithmetic intensity of our parallelization
approach, we judiciously utilize shared memory resources and memory coalescing tech-
niques to ensure the optimal use of global memory bandwidth. Experimental results on a
large number of highly sparse matrices from the Deep Learning Matrix Collection (DLMC)
dataset show that our TCA-SpMM achieves up to 29.58× average speedup over various
state-of-the-art SpMM implementations optimized with TCs.

In this paper, we explore the use of TCs for SpMM. To the best of our knowledge, this
is the first work to optimize SpMM using TCs without requiring any preprocessing, such
as sparse matrix reordering or compression techniques. The key contributions of this work
are as follows:

• We present a novel Tensor Core-Adapted SpMM kernel that eliminates the need for
sparse matrix reordering and utilizes the most memory-efficient CSR format.

• We optimized our TCA-SpMM to improve load balancing and reduce data movement
costs for SpMM by increasing the utilization of TCs.

• We systemically analyzed the computational complexity to show the effectiveness of
our TCA-SpMM that fully utilizes the high throughput of TCs.

• We conducted a comparative evaluation using various sparse matrices from the DLMC
dataset to demonstrate that our TCA-SpMM outperforms existing state-of-the-art
SpMM implementations.

This paper is organized as follows. Section 2 provides background on sparse matrix
representation, SpMM, and TCs. Section 3 presents prior studies related to optimizing
SpMM with TCs. Section 4 provides an overview of our TCA-SpMM and details the
parallelization strategies. In Section 5, we compare our TCA-SpMM with existing state-of-
the-art SpMM implementations using TCs.

2. Background
2.1. Sparse Matrix Representation

In order to efficiently store the non-zero elements in a sparse matrix, various sparse
matrix formats can be used [14,15]. The compressed sparse row (CSR) is one the most
commonly used sparse matrix formats to store sparse matrices [16–18]. The CSR format
maintains three data structures, row_ptr, col_idx, and value, for storing the indices and values
of non-zero elements in a sparse matrix S of size M × K, as shown in Figure 1. For example,
row_ptr[i] consists of the index of the first non-zero element of the i-th row in sparse matrix
S. col_idx and value store the corresponding actual column indices and the actual values for
each non-zero element, row by row, respectively. The CSC format represents the sparse
matrix in a similar way to CSR, but stores the indices and values of the non-zero elements
in a column-wise fashion. Unlike CSR, the COO stores the corresponding actual row indices
of non-zero elements. The col_idx and value arrays remain the same as those in the CSR format.

0 1 2
3 4

5 6 7 8
9

10 11

Sparse matrix 𝑆

Dense matrix 𝐷𝑇

𝑂 = 𝑆𝐷

Output matrix 𝑂𝑆. 𝑟𝑜𝑤_𝑝𝑡𝑟

𝑆. 𝑐𝑜𝑙_𝑖𝑑𝑥

𝑆. 𝑣𝑎𝑙𝑢𝑒

0 3 5 9 10 12

1 3 7 2 5 0 1 4 7 2 3 6

0 1 2 3 4 5 6 7 8 9 10 11

Compressed Sparse Row (CSR) format
of sparse matrix 𝑆

Figure 1. Illustration of SpMM using the compressed sparse row (CSR) format. The sparse matrix S
is represented in CSR format, where the number of rows (M) is set to 5, and the number of columns
(K) is set to 8. The number of columns (N) on dense matrix D is set to 4; thus, the size of the resulting
output matrix O is M× N = 5 × 4.
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Alternatively, sparse matrices can also be represented with a block-based sparse format,
such as compressed sparse blocks (CSBs), Blocked-Ellpack (Blocked-ELL), and Variable
Block Rows (VBRs) [19–22]. Given a fixed block size of R × C, the CSB format partitions
a sparse matrix S into (M/R) × (K/C) blocks, where R and C must be factors of M and
K, respectively. The CSB format can be viewed as a blocked representation of the CSR
format. Similar to the CSR format, the CSB maintains blk_row_ptr, blk_col_idx, and blk_value
arrays to store the indices and values of the non-zero elements in a block-wise fashion. The
difference between CSR and CSB is that in CSR format, the non-zero elements in each row
are stored contiguously, whereas in CSB format, the non-zero blocks, containing non-zero
elements in each row panel (row block), are stored contiguously. Compared to the CSR
format, the CSB significantly reduces the overhead of metadata, except for blk_value. This is
because the CSB stores all values in each non-zero block, including both zero and non-zero
values. In other words, the size of the value array held in CSR format is determined by the
number of non-zero elements (nnz), whereas the size of blk_value in CSB format is dictated
by the number of non-zero blocks multiplied by R and C.

The Blocked-ELL format is a variation of the ELLPACK storage format that ex-
ploits block structures present in sparse matrices. It partitions the sparse matrix into
(M/B) × (K/B) blocks, with a fixed square block size B × B. In Blocked-ELL format, the
number of column blocks in the row panel (group of rows) is set to Q, where Q represents
the maximum number of non-zero column blocks across all row panels. The Blocked-ELL
format is composed of two data structures, ellColInd and ellValue. ellColInd stores the in-
dices of non-zero column blocks in each row-panel, and therefore, the size of ellColInd
is (M/B) × Q. Furthermore, the size of ellValue is M × Q × B, and ellValue holds all the
values of the elements, including both non-zero and zero elements in non-zero blocks.
The Blocked-ELL format is memory-inefficient when a particular row panel contains no
non-zero column blocks. In this case, the Blocked-ELL format still requires filling zero
values in the ellValue for an empty row panel. In contrast to the fixed block sizes used in
Blocked-ELL formats, the VBR format stores variable sizes of non-zero blocks to enable
flexibility in block size.

2.2. Sparse Matrix–Dense Matrix Multiplication (SpMM)

This work optimizes SpMM, which is shorthand for sparse matrix–dense matrix
multiplication. Given a sparse matrix S of size M × K and a dense matrix D of size K × N,
the SpMM is defined as the matrix product O = SD. Algorithm 1 shows the SpMM when
a sparse matrix S is represented in the CSR format using row_ptr, col_idx, and value data
structures. As described in Algorithm 1, the outermost loop in line 1 iterates over all rows
of S with i, and the algorithm then iterates over all columns of D or O to access every
columns via j in line 2. Finally, the non-zero elements in the i-th row of S are accessed
by the k loop in line 3. The non-zero elements of S are multiplied by the corresponding
elements in D (selected based on the column indices of the non-zero elements in S). The
results are then accumulated to produce the elements of the i-th row of output matrix O.

Algorithm 1: Sequential SpMM
Input: S.row_ptr, S.col_idx, S.value, D[K][N]
Output: O[M][N]

1 for i = 0 to M − 1 do
2 for j = 0 to N − 1 do
3 for k = S.row_ptr[i] to S.row_ptr[i + 1] − 1 do
4 O[i][j] += S.value[k] × D[S.col_idx[k]][j];

2.3. Tensor Cores on GPUs

Tensor Cores (TCs) are specialized computational units first introduced with NVIDIA’s
Volta GPU architecture [23]. These units perform arithmetic operations in the form
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D = A× B + C, where A, B, C, and D are matrices [3]. Whereas other units in NVIDIA
GPUs operate at the thread level, TCs function at the warp level—or at the warp group level
in the Hopper architecture [24]. In the early stage of TC adoption in the Volta architecture,
there were significant limitations on supported data types. Initially, matrices A and B,
which serve as the operands for matrix multiplication, could only be in FP16 format, while
matrices C and D, which act as accumulators, could be in either FP16 or FP32 formats.
However, these restrictions have been progressively relaxed with the evolution of GPU
architectures, including Turing, Ampere, and Hopper architectures. Table 1 represents the
data types available on the TCs of each architecture. Additionally, TCs impose restrictions
on matrix shapes for multiplication, although these constraints have also been gradually
relaxed across different architectures, similar to the data type limitations. Table 2 details
the matrix shapes supported by each PTX ISA version.

Table 1. Datatypes supported on Tensor Cores of each architecture; ✔: full-support; ●: support with
reduced performance; -: not supported [24].

Generation Architecture Product Name
Specification Precision Support

#SM 1 #CC (FP32) 2 #TC 3 FP64 TF32 FP16 FP64 FP32 INT8

1 Volta [3] V100S 80 5120 640 - ✔ ✔ - ● ✔

2 Turing [25] RTX 6000 72 4608 576 - ✔ ● - ● ✔

3 Ampere [4] A100 108 6912 432 ✔ ✔ ✔ ✔ ✔ ✔

4 Hopper [5] H100 132 16,896 528 ✔ ✔ ✔ ✔ ✔ ✔

5 Ada [26] L40S 142 18,176 568 - ✔ ● ● ✔ ✔

1 Number of streaming multiprocessors; 2 Number of shading units; 3 Number of Tensor Cores

There are two primary approaches to utilizing TCs. The first approach involves lever-
aging NVIDIA’s libraries, such as cuBLAS, cuSPARSE, and cuDNN, which automatically
apply TCs to optimize computational performance. The second approach entails directly
employing the CUDA WMMA (Warp Matrix Multiply and Accumulate) API [27], as shown
in Listing 1, which provides more granular control over TC utilization. Since Tensor Cores
require specific matrix configurations depending on data types such as FP16, FP32, and
FP64, it is necessary to partition matrices into corresponding fragments, as illustrated in
Table 2.

Table 2. Matrix shapes that could be allowed on each PTX ISA version [28] (†: preview feature).

Instruction Sparsity Multiplicand
Data Type Shape PTX ISA

Version

wmma Dense

.f16
.m16n16k16,

.m8n32k16, and
.m32n8k16

6.0

.bf16
.m16n16k16,

.m8n32k16, and
.m32n8k16

7.0

.tf32 .m16n16k8 7.0

.u8/.s8
.m16n16k16,

.m8n32k16, and
.m32n8k16

6.3

.u4/.s4 .m8n8k32 6.3 †

.b1 .m8n8k128 6.3 †
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Table 2. Cont.

Instruction Sparsity
Multiplicand

Data Type Shape
PTX ISA
Version

mma Dense

.f64
.m8n8k4 7.0

.m16n8k4, .m16n8k8,
and .m8n8k16 7.8

.f16

.m8n8k4 6.4

.m16n8k8 6.5

.m16n8k16 7.0

.bf16 .m16n8k8 and
.m16n8k16 7.0

.tf32 .m16n8k4 and
.m16n8k8 7.0

.u8/.s8
.m8n8k16 6.5

.m8n8k16 and
.m16n8k32 7.0

.u4/.s4
.m8n8k32 6.5

.m16n8k32 and
.m16n8k64 7.0

.b1
.m16n8k128,

.m16n8k128, and
.m16n8k256

7.0

.e4m3/.e5m2 .m16n8k32 8.4

mma Sparse

.f16 .m16n8k16 and
.m16n8k32 7.1

.bf16 .m16n8k16 and
.m16n8k32 7.1

.tf32 .m16n8k8 and
.m16n8k16 7.1

.u8/.s8 .m16n8k32 and
.m16n8k64 7.1

.u4/.s4 .m16n8k64 and
.m16n8k128 7.1

.e4m3/.e5m2 .m16n8k64 8.5

mma
Sparse

with ordered
metadata

.f16 .m16n8k16 and
.m16n8k32 8.5

.bf16 .m16n8k16 and
.m16n8k32 8.5

.tf32 .m16n8k8 and
.m16n8k16 8.5

.u8/.s8 .m16n8k32 and
.m16n8k64 8.5

.u4/.s4 .m16n8k64 and
.m16n8k128 8.5

.e4m3/.e5m2 .m16n8k64 8.5
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Listing 1. CUDA WMMA API to leverage Tensor Cores.

template <typename Use , i n t m, i n t n , i n t k , typename T , typename Layout=void> c l a s s fragment ;
void load_matrix_sync ( fragment < . . . > &a , const T* mptr , unsigned ldm , l a y o u t _ t layout ) ;
void s tore_matr ix_sync ( T* mptr , const fragment < . . . > &a , unsigned ldm , l a y o u t _ t layout ) ;
void mma_sync ( fragment < . . . > &d , const fragment < . . . > &a , const fragment < . . . > &b , const

fragment < . . . > &c , bool s a t f = f a l s e ) ;

In Listing 1, the fragment is a crucial data structure used to store sub-matrices (tiles)
that are loaded into Tensor Cores for matrix operations. Once the input matrices are
loaded into WMMA-specific data structures using load_matrix_sync(), the mma_sync()
function performs the matrix multiply-and-accumulate (MMA) operation with TCs. After
computation, the result stored in the accumulator fragment must be written back to the
output matrix in global memory using store_matrix_sync(). However, the use of TCs
does not inherently guarantee improved overall performance. To achieve accelerated
operations through the direct utilization of TCs via the CUDA WMMA API, it is imperative
to optimize the implementation. This optimization can be achieved by employing strategies
such as shared memory utilization and pipelining, while taking into account the specific
characteristics of GPUs.

3. Related Work on SpMM Using Tensor Cores

Several sparse matrix reordering and compression techniques have been proposed to
maximize the utilization of TCs for SpMM by enhancing the data locality of sparse matrices.
Alternatively, several previous studies and NVIDIA’s libraries have optimized SpMM using
TCs without reordering the sparse matrix. Therefore, previous work on optimizing SpMM
using Tensor Cores can be categorized based on whether the reordering/compression
process is performed prior to the actual SpMM computation, or if only matrix blocking is
applied to the original sparse matrix to perform block matrix–matrix multiplication without
any reordering/compression process.

Using Tensor Cores for SpMM with Sparse Matrix Reordering/Compression

1-SA, proposed by Labini et al. [12], reorders the rows of a sparse matrix based on their
sparsity patterns, clustering similar rows to extract high-density blocks in the reordered
matrix. The columns of each row are partitioned into multiple column blocks, and a set
data structure is generated using binary values, where 1 indicates that the corresponding
column block contains at least one non-zero element, and 0 indicates that all elements in
the corresponding column block are zero. Using the sets representing the sparsity patterns
of rows based on non-zero column blocks, 1-SA reorders the rows according to the Jaccard
similarity between different rows by comparing their sparsity patterns. Subsequently,
because the number of rows grouped into different clusters can vary, 1-SA uses the VBR
format to store variable-sized blocks that include non-zero elements. These variable-sized
blocks are then multiplied with the dense RHS matrix using NVIDIA’s cublasGemmEx(),
leveraging TCs on GPUs. However, 1-SA exhibits several limitations. First, the row-
reordering process can be considered a significant preprocessing overhead. Second, 1-SA
utilizes TCs by sequentially executing NVIDIA’s cuBLAS library on all variable-sized
blocks to obtain the final results. This approach is not effective for maximizing Tensor Core
occupancy because it results in low parallelism when performing matrix multiplication
with small-sized blocks. Furthermore, 1-SA processes all non-zero blocks in the reordered
matrix, even if a block contains only a single non-zero element. Computing these sparse
blocks on TCs is inefficient because each block contains a high proportion of zero elements.

TC-GNN, proposed by Yuke et al. [29], utilizes TCs for SpMM, which constitutes the
largest portion of operations in the training of graph neural networks. They developed a
sparse graph translation technique that compresses the sparse matrix, enabling the efficient
extraction of dense tiles, which are then processed on TCs.

NVIDIA provides both software (e.g., cuSPARSELt APIs) and hardware (e.g., TCs)
support for leveraging TCs in sparse matrix multiplication [30]. For example, by assum-
ing a fine-grained 2:4 sparsity pattern, the original dense matrix is first converted into a
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structured sparse matrix by pruning half of the lower values in each row using the cus-
parseLtSpMMPrune() API. Thereafter, the structured sparse matrix is transformed into a
compressed dense matrix by removing all zero values using the cusparseLtSpMMCom-
press() API. Then, the compressed matrix is multiplied with the RHS dense matrix on TCs
using the cusparseLtMatmul() API, achieving double the peak performance compared
to a GEMM operation on the original uncompressed dense matrix. For accurate SpMM
computation, it is essential to use all non-zero elements in the sparse matrix. However,
since the cuSPARSELt API was originally developed to accelerate deep neural networks
by transitioning from dense to sparse training through the elimination of unnecessary
computations, its use for traditional SpMM operations is not appropriate when the number
of non-zero elements in any row exceeds half the number of columns in the input sparse
matrix. Furthermore, similar to sparse matrix reordering, compressing the sparse matrix
is a time-consuming task that must be completed before performing the actual matrix
multiplication.

Using Tensor Cores for SpMM without Sparse Matrix Reordering/Compression

The NVIDIA cuSPARSE API supports the use of TCs when the Blocked-ELL format
is provided to the cusparseSpMM() library [13]. With the Blocked-ELL format, the non-
zero blocks (sub-matrices) in the sparse matrix S are simultaneously used to perform
block matrix multiplication by leveraging TCs. However, compared to the CSR format,
representing a sparse matrix in the Blocked-ELL format is ineffective in terms of both
memory usage and preprocessing time. Since the zero values within each non-zero block
(zero fillings) must also be stored in the Blocked-ELL format, inefficiency increases as the
sparsity and irregularity of the matrix grow. Processing these zero fillings on TCs results in
wasteful computations. Therefore, determining an optimal fixed block size for each sparse
matrix is crucial for improving the utilization of TCs with the Blocked-ELL format.

4. GPU Implementation of TCA-SpMM

In this section, we present an in-depth exploration of the GPU-based implementation
of TCA-SpMM algorithm. We first outline the architectural considerations and optimization
strategies employed in adapting the algorithm to the GPU environment, especially Tensor
Cores. Then, we delve into the techniques utilized to maximize Tensor Core utilization and
achieve load balancing. Finally, we provide a comprehensive evaluation of the algorithm’s
computational and memory complexity on the GPU.

4.1. Design Overview of TCA-SpMM

In Algorithm 1, the innermost loop computes the dot product between the row vector
S[i, :] from the sparse matrix S and the column vector D[:, j] from the dense matrix D,
resulting in the value O[i, j] in the output matrix O. In using the non-zero element values,
S.value, and column indices, S.col_idx, from the CSR format, only the non-zero elements
in S are multiplied by the corresponding elements in D. However, since TCs operate on
sub-matrices (2D blocks) and perform GEMM operations, it is not possible to directly utilize
TCs with the original SpMM algorithm in the CSR format.

Figure 2 illustrates our fundamental concept of adapting the SpMM algorithm to
utilize TCs in the TCA-SpMM approach. This concept transforms the dot product problem,
with vector–vector operations (BLAS-1), into a matrix–matrix multiplication problem, with
matrix-matrix operations (BLAS-3). Initially, we convert the two vectors involved in the
innermost loop in Algorithm 1, S[i, :] and D[:, j], into matrices. Specifically, we reformulate
each dot product with two vectors as a smaller blocked matrix–matrix multiplication. Once
the vectors are transformed into matrices, these transformed matrices are passed to the TCs
to execute the accelerated GEMM operation. However, as shown in Figure 2a, the output
matrix has intermediate partial results so far. Thus, following the GEMM operation, the
diagonal elements of the output matrix must be accumulated to yield the final result O[i, j],
corresponding to the dot product of S[i, :] and D[:, j].
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Figure 2. The left side of this figure (a) illustrates fundamental concept of our approach, the trans-
formation of vector–vector dot product into matrix–matrix multiplication via matricization. The
right side of this figure (b) describes the transformation using the practical MMA instruction, the
16× 8× 8 MMA.

For example, let us assume that we have two vectors a⃗ = [a1, a2, . . . , a16] and
b⃗ = [b1, b2, . . . , b16]. Then, we convert them into two 4× 4 matrices D and S as follows:

D =


a1 a2 a3 a4
a5 a6 a7 a8
a9 a10 a11 a12
a13 a14 a15 a16

 S =


b1 b2 b3 b4
b5 b6 b7 b8
b9 b10 b11 b12
b13 b14 b15 b16

.

To compute the dot product, a⃗ · b⃗, using transformed matrices, D and S, we multiply D
by the transpose of S, yielding O = D× ST . The element-wise multiplication of correspond-
ing elements in D and S produces intermediate results, similar to performing element-wise
multiplication of the vectors. Each element O[i, j] of the resulting matrix O is composed
as O[i, j] = ∑4

k=1 D[i, k]× S[k, j]. In this case, however, since we are trying to capture the
dot product (which is a scalar), we are interested in summing the element-wise products
of D and S. This effectively translates to computing the sum of element-wise products of
corresponding elements in A and B, which can be written as a⃗ · b⃗ = ∑4

i=1 ∑4
j=1 D[i, j]× S[i, j].

These values represent the diagonal elements of O. The final sum yields the same result as
the original dot product of the vectors.

As shown in Figure 2a, b⃗ and a⃗ represent a sparse row vector from matrix S and a
dense column vector from matrix D, respectively. Since the element-wise product is zero
when either element is zero, the dot product of b⃗ and a⃗ is identical to the dot product of
the compressed vectors b⃗′ and a⃗′, where b⃗′ contains only non-zero elements from b⃗, and a⃗′

retains the corresponding elements from a⃗ with matching indices. With the compressed
vectors b⃗′ and a⃗′, a single dot product operation can be reformulated as a matrix–matrix
multiplication, with an additional step for aggregating the diagonal elements. While
converting the dot product into a matrix–matrix multiplication, we reshape the vectors into
operand matrices, with the LHS operand in a row-wise fashion, and the RHS operand in a
column-wise fashion. Hereafter, we refer to this transformation process as the matricization
of vectors. The transformed matrix–matrix multiplication is performed using the MMA
operation from TCs, while the aggregation of diagonal elements, also known as the trace
operation, is optimized through parallel reduction using warp shuffle. More specifically,
because the most fine-grained shape for the half-precision MMA instruction on the TCs in
the Ampere architecture is 16× 8× 8 [4], we leverage this by matricizing the sparse row
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vector into a column-wise RHS operand matrix and converting multiple dense column
vectors into the LHS operand matrix, as described in Figure 2b. This approach enables the
simultaneous computation of multiple output elements using the MMA instruction.

Figure 3 describes the overall design of our parallelized SpMM implementation. After
matricizing the vectors, as illustrated in Figure 2, each CUDA thread block performs the
computations required for either an entire row vector or a part of it, as described in Figure 3.
Since the number of non-zero elements varies across different rows, as illustrated in Figure 3,
we optimize our kernel so that each thread block processes multiple row vectors with fewer
non-zero elements, thereby mitigating the load imbalance problem. As all elements in a
single row vector of the output matrix are derived from the same sparse row vector, the
thread block can share this sparse row vector as an operand for the dot product operation.
Moreover, fetching the sparse row vector from global memory is straightforward when
using the CSR format. Therefore, we store the sparse row vector in shared memory,
allowing all warps within the thread block to access it with minimal memory transactions.
Furthermore, since the same non-zero pattern of a sparse row vector is used to compute the
corresponding elements across all column vectors in D, we compress the column vectors
from D by referencing the same indices in S.col_idx. The set of compressed column vectors
is managed in shared memory and referred to as the compressed RHS buffer. Once theses
compressed column vectors are stored in shared memory, all warps within the thread block
participate in computing different output elements. For example, when an 8× 8× 8 MMA
operation is available, two such operations are required to compute an output element
if the corresponding sparse row vector contains 128 non-zero elements. In this case, the
accumulator fragment of the MMA operation, acc, is used to accumulate the results of
two MMA operations, allowing the final output element to be obtained with a single trace
operation. Thus, the main challenges and considerations for achieving high performance in
SpMM using TCs are as follows.
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Figure 3. Overview of parallelization strategies for TCA-SpMM.

Challenge 1: Underutilization of Tensor Cores for SpMM

Since the total number of MMA operations required for SpMM in our approach is
deterministic, maximizing the utilization of TCs is crucial for achieving high performance.
Increasing arithmetic intensity is a key optimization strategy for improving TC utilization.
In other words, maximizing the ratio of MMA operations to data movement is essential.
However, minimizing data movement in SpMM poses significant challenges due to the
irregular distribution of non-zero elements in the LHS sparse matrix, which results in
irregular access patterns in the RHS dense matrix and complicates memory coalescing. To
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mitigate this issue, we leverage shared memory to optimize global memory access, thereby
enhancing the efficiency of TCs.

Challenge 2: Load Imbalance in SpMM with an Irregular Sparse Matrix

The sparsity pattern of the sparse matrix can lead to significant variation in the number
of non-zero elements across different rows, causing a load imbalance problem. For instance,
as shown in Figure 3, if the number of non-zero elements in the i− 1-th row and the i-th
row of the sparse matrix S are 0 and 128, respectively, the computation for the i− 1-th row
in the output matrix O can be skipped, while the i-th row must undergo multiplication. In
this scenario, parallelizing computations across rows, where each thread block performs
a vector–vector multiplication, can result in unused thread blocks for rows containing
only zero values. Launching such unused thread blocks leads to performance degradation,
as other active thread blocks may be delayed, waiting to be scheduled on Streaming
Multiprocessors (SMs). Additionally, if the number of non-zero elements in the k-th row is
64, the thread block assigned to process the k-th row performs fewer computations than
the thread block processing the i-th row. To address this load imbalance, we dynamically
allocate a variable number of thread blocks to different rows, enabling finer-grained control
and more efficient resource utilization.

4.2. Parallelization of TCA-SpMM

Algorithm 2 presents the pseudo-code for the global kernel in the TCA-SpMM, while
Algorithms 3 and 4 provide the pseudo-codes for the device kernels, which are used
for executing the MMA operations based on the number of non-zero elements, invoked
within Algorithm 2. To achieve a high degree of parallelism, TCA-SpMM parallelizes
SpMM computations across the rows of the sparse matrix S, taking into account both
the distribution of non-zero elements and the warp-level matrix multiplication (MMA)
structure of the Tensor Cores. TCA-SpMM is designed around the 16× 8× 8 MMA shape,
which requires a 16× 8 LHS operand matrix for the dense matrix D and an 8× 8 RHS
operand matrix for the sparse matrix S. Then, TCA-SpMM determines how many rows of
S process each thread block with 64 (i.e., 8× 8) non-zero elements, which can be mapped
onto the RHS operand matrix. If a row contains more than 64 non-zero elements, multiple
thread blocks will process the row as described in Algorithm 3. However, if a row contains
64 or fewer non-zero elements, a single thread block will process multiple rows or a single
row, as described in Algorithm 4.

We assume that each CUDA thread block contains eight warps. In order to distribute
SpMM computations appropriately, TCA-SpMM uses three preprocessed information sources
for different warps, as shown in Algorithm 2: row_id_for_each_warp, num_warps_per_row, and
warpid_within_row. First of all, the array row_id_for_each_warp specifies the row indices
of the output matrix O that each warp contributes to computing. For example, as shown
in Figure 3, since the i-th row of the sparse input matrix contains 128 non-zero elements,
two thread blocks are launched for the i-th row to distribute the workload evenly across
the blocks, thereby mitigating load imbalance. All warps in Thread Block 0 and Thread
Block 1, as illustrated in Figure 3, maintain the same row index i for the variable target_row,
as defined in line 5 of Algorithm 2. Secondly, the array num_warps_per_row specifies the
number of warps assigned to compute each row. For example, as shown in Figure 3,
there are 16 warps (16 warps = 8 warps × 2 thread blocks) for the i-th row because both
Thread Block 0 and 1 handle the same row (line 6 in Algorithm 2). Finally, the array
warpid_within_row provides identifiers (IDs) for each warp to manage the output elements
that it is responsible for computing (line 7 in Algorithm 2). For example, using the array
warpid_within_row, the 16 distinct warps in both Thread Block 0 and Thread Block 1 can
be identified by unique ID values ranging from 0 to 15. Based on the unique warp ID
values, we divide the workload of computing the output values in the i-th row of matrix O
between Thread Block 0 and Thread Block 1 by distributing the output elements assigned
to each thread block (lines 8–14 in Algorithm 2).
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Algorithm 2: Parallel implementation of TCA-SpMM on GPUs
Input: S.row_ptr, S.col_idx, S.value, D[K][N], tilewidth,
row_id_for_each_warp : Array indicating the row index of O that each warp participates in
computing,
num_warps_per_row : Array indicating the number of warps participating for computing the
same row to each warp,
warpid_within_row : Array indicating the ID of each warp within the set of warps that
performs computation for the specific row
Output: O[M][N]

1 extern __shared__ shm;
2 block_num_warps← blockDim.x / warpSize;
3 local_warpid← threadIdx.x / warpSize;
4 global_warpid← block_num_warps × blockIdx.x + local_warpid;
5 target_row← row_id_for_each_warp[global_warpid];
6 num_warps_current_row← num_warps_per_row[target_row];
7 warpid_current_row← warpid_within_row[global_warpid];
8 blockIdx_current_row← warpid_current_row / block_num_warps;
9 num_threadblock_current_row← num_warps_current_row / block_num_warps;

10 stride← ⌈N / num_threadblock_current_row ⌉;
11 output_col_start← stride × blockIdx_current_row;
12 output_col_end← stride × (blockIdx_current_row + 1)
13 if blockIdx_current_row == num_threadblock_current_row − 1 then
14 output_col_end← N;
15 head_warpid← local_warpid − warpid_current_row + block_num_warps ×

blockIdx_current_row;
16 output_buffer← &shm[head_warpid × tilewidth];
17 LHSval_scratch← &shm[block_num_warps × 8];
18 RHS_buffer← &shm[block_num_warps × 8 + block_num_warps × tilewidth];
19 LHSval_scratch← &LHSval_scratch[head_warpid × 8];
20 RHS_buffer← &RHS_buffer[ head_warpid × 8 × tilewidth];
21 if S.row_ptr[target_row + 1] − S.row_ptr[target_row] > 64 then
22 multiblock_per_row(S.row_ptr, S.col_idx, S.value, D, tilewidth, target_row,

warpid_current_row, num_warps_current_row, block_num_warps, local_warpid,
output_buffer, LHSval_scratch, RHS_buffer);

23 else
24 multirow_per_block(S.row_ptr, S.col_idx, S.value, D, tilewidth, target_row,

warpid_current_row, num_warps_current_row, block_num_warps, local_warpid,
output_col_start, output_col_end, output_buffer, LHSval_scratch, RHS_buffer);

As shown in the top right of Figure 3, TCA-SpMM exploits shared memory to reuse and
share data within a thread block. After allocating the shared memory resources for the three
components—the (1) sparse row scratch pad, (2) compressed RHS buffer, and (3) output
buffer (lines 16–18 in Algorithm 2)—the shared memory is not further divided among
different warps because head_warpid is always 0 in this case (lines 16 and 19–20), as shown
in Figure 3. Thereafter, Thread Block 0 and Thread Block 1 are directed to the __device__
function multiblock_per_row() to perform accelerated matrix multiplication for the i-th
row, which requires multiple thread blocks to handle the large workload (Algorithm 3).

After distributing the workloads required to obtain the output elements in O[target_row, :]
across multiple thread blocks, Algorithm 3 details how the output results of O[target_row,
output_col_start : output_col_end− 1] are computed using multiple thread blocks. Since
the total number of operand elements processed at once by each MMA operation is set to
16 × 8 × 8, our implementation pads the remaining portions of the row vectors of S and
the collections of compressed column vectors of D with zero values in the MMA operand
when the number of non-zero elements in these vectors is not divisible by a fragment size
of 64.
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Algorithm 3: multiblock_per_row() device kernel on GPUs
Input: S.row_ptr, S.col_idx, S.value, D[K][N], tilewidth, target_row, warpid_current_row,

num_warps_current_row, block_num_warps, local_warpid, output_col_start,
output_col_end, output_buffer, LHSval_scratch, RHS_buffer

Output: O[target_row][output_col_start : output_col_end − 1]
1 row_nnz← S.row_ptr[target_row + 1] − S.row_ptr[target_row];
2 num_ f ragments← tilewidth / (block_num_warps× 2);
3 bu f f er_o f f set← 0;
4 output_o f f set← output_col_start;
5 for tile← output_col_start to output_col_end − 1 by tilewidth do
6 f ragments_c[0 : num_ f ragments − 1]← 0;
7 for nonzero_o f f set← 0 to row_nnz − 1 by 64 do
8 o f f set← S.row_ptr[target_row] + nonzero_o f f set;
9 LHSval_scratch[0 : 63]← S.value[o f f set : o f f set + 63];

10 col_indices[0 : 63]← S.col_idx[o f f set : o f f set + 63];
11 RHS_buffer[0 : tilewidth − 1][0 : 63]← D[col_indices][tile : tile + tilewidth − 1]T ;
12 __syncthreads();
13 f ragment_b← LHSval_scratch.reshape_k8n8T ;
14 for f rag← 0 to num_ f ragments − 1 do
15 idx← f rag × num_ f ragments × 2 + local_warpid × 2;
16 f ragment_a← RHS_buffer[idx : idx + 1][0:63].reshape_m16k8;
17 f ragments_c[ f rag]←mma.sync.m16n8k8( f ragment_a, f ragment_b)
18 for f rag← 0 to num_ f ragments − 1 do
19 output_buffer[bu f f er_o f f set + 2 × local_warpid]←

trace( f ragments_c[ f rag][0:7][0:7]);
20 output_buffer[bu f f er_o f f set + 2 × local_warpid + 1]←

trace( f ragments_c[ f rag][8:15][0:7]);
21 __syncthreads();
22 bu f f er_o f f set← bu f f er_o f f set + tilewidth;
23 if bu f f er_o f f set == tilewidth × block_num_warps then
24 O[target_row][output_o f f set : output_o f f set + bu f f er_o f f set − 1]←

output_buffer[];
25 output_buffer[]← 0;
26 output_o f f set← output_o f f set + bu f f er_o f f set;
27 bu f f er_o f f set← 0;

From lines 5 to 27 in Algorithm 3, each thread block performs tiled matrix multiplica-
tion to compute output in parallel. The tilewidth specifies how many operands are computed
in the outermost tiled loop (line 5). To minimize the number of aggregations required for
the trace operation, we declare multiple output fragments, denoted as f ragments_c, which
serve as different accumulators for the MMA operations. Through distributing the output
tiles across warps, the number of output fragments in f ragments_c is determined (line 2).
Using multiple output fragments, lines 6 to 17 describe how our parallel implementation
efficiently utilizes MMA operations for the reformulated computation. Specifically, we first
initialize all output fragments to null (line 6) and then apply the sequential computation,
dividing the number of non-zero elements in the sparse row vector into fragment size of 64
(lines 7–8). In order to fill the RHS_buffer of the shared memory with the corresponding
compressed column vectors of D, we use S.col_idx to identify the set of column vectors
corresponding to the current output tile (lines 10–12).

Moreover, the transpose is applied to the set of compressed column vectors to store
their elements in a row-wise fashion (line 11). After successfully fetching the elements for
the reformulated computation, we matricize the sparse row vector in a column-wise fashion
(line 13), and the subset of compressed column vectors in RHS_buffer in a row-wise fashion
(line 16), storing these matrices in the fragments f ragment_b and f ragment_a, respectively.
Then, we perform the MMA operation (line 17), with all compressed column vectors used
as operands during the iteration (lines 14–17). Lastly, we perform two trace operations on



Electronics 2024, 13, 3981 14 of 24

each output fragment using warp shuffle, since it is possible to obtain two different output
values from each 16 × 8 × 8 MMA operation (lines 18–20).

Algorithm 4: multirow_per_block() device kernel on GPUs
Input: S.row_ptr, S.col_idx, S.value, D[K][N], tilewidth, target_row, warpid_current_row,

num_warps_current_row, block_num_warps, local_warpid, output_buffer,
LHSval_scratch, RHS_buffer

Output: O[target_row]
1 row_start← S.row_ptr[target_row];
2 row_nnz← S.row_ptr[target_row + 1] − row_start;
3 bu f f er_o f f set← 0;
4 output_o f f set← 0;
5 LHSval_scratch[0 : row_nnz − 1]← S.value[row_start : row_start + row_nnz − 1];
6 col_indices[0 : row_nnz − 1]← S.col_idx[row_start : row_start + row_nnz − 1];
7 LHSval_scratch[row_nnz : 8 × num_warps_current_row − 1]← 0;
8 col_indices[row_nnz : 8 × num_warps_current_row − 1]← None;
9 __syncthreads();

10 f ragment_b← LHSval_scratch[0 : 8 × num_warps_current_row − 1].reshape_k8n8T ;
11 output_elem_per_mma← 128 / 2⌊log2 row_nnz⌋;
12 for tile← 0 to N − 1 by tilewidth do
13 f ragment_c← 0;
14 RHS_buffer[0 : tilewidth − 1][0 : 8 × num_warps_current_row − 1]← D[col_indices][tile

: tile + tilewidth − 1]T ;
15 __syncthreads();
16 f ragment_a← RHS_buffer[output_elem_per_mma × warpid_current_row :

output_elem_per_mma × ( warpid_current_row + 1 ) − 1][0 : 8 ×
num_warps_current_row − 1].reshape_m16n8

17 f ragment_c←mma.sync.m16n8k8( f ragment_a, f ragment_b)
18 do in parallel
19 for elem← 0 to output_elem_per_mma − 1 do
20 output_buffer[bu f f er_o f f set + warpid_current_row × output_elem_per_mma

+ elem]← trace( f ragment_c[elem × num_warps_current_row : ( elem + 1 ) ×
num_warps_current_row][0 : num_warps_current_row − 1]);

21 bu f f er_o f f set← bu f f er_o f f set + output_elem_per_mma × num_warps_current_row;
22 __syncthreads();
23 if bu f f er_o f f set == tilewidth × num_warps_current_row then
24 O[target_row][output_o f f set : output_o f f set + bu f f er_o f f set − 1]←

output_buffer[];
25 output_buffer[]← 0;
26 output_o f f set← output_o f f set + bu f f er_o f f set;
27 bu f f er_o f f set← 0;

4.2.1. Maximizing Tensor Core Utilization

One of the most significant factors affecting the performance of our TCA-SpMM im-
plementation is the method used for fetching compressed column vectors of D, particularly
due to strided memory access patterns. Fetching a compressed column vector directly from
global memory using a warp results in uncoalesced memory access, leading to an increased
number of memory transactions. It is evident that the efficiency of TCs is closely tied to the
cost of data movement. Therefore, to maximize TC utilization, we employ the RHS_buffer
located in shared memory, corresponding to the compressed RHS buffer depicted in Figure 3.
This approach enables cooperative memory fetches of compressed column vectors using
the warps within a thread block (line 11 in Algorithm 3).

Since the compressed column vectors pass through shared memory, a warp is able
to access global memory contiguously by fetching certain parts of different compressed
column vectors, while other warps access the remaining parts. Furthermore, since the
multiple threads within a warp can only obtain a few output values, directly storing the
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output results in global memory limits write instruction efficiency. Hence, we use the
output_buffer residing in shared memory to temporarily collect multiple output tiles and
then flush them into global memory to achieve a higher global memory write efficiency
(lines 19–27 in Algorithm 3). Moreover, to increase the number of elements accessed by
load/store memory instruction, we explicitly align the address of every memory access by
controlling output_col_start and tilewidth using PTX instruction such as ld.global.b128 [28].

4.2.2. Achieving Load Balancing

In SpMM computation, workload imbalance occurs due to the uneven distribution
of non-zero elements across rows. To address this, the TCA-SpMM method parallelizes
the computation across rows to improve load balancing. Specifically, the number of rows
assigned to each thread block is determined by the number of non-zero values in those rows.

Figure 4 presents implementation details for TCA-SpMM. The top section of Figure 4
shows how to distribute six rows to two thread blocks. Let us assume that Thread Block
0 handles five rows from row 0 to row 4 and Thread Block 1 handles one row— row 5.
As shown in Figure 4, row 5 has 64 non-zero elements (64 = 124− 60 = row_ptr[6] −
row_ptr[5]) based on the values in row_ptr. In this case, the load imbalance problem does
not occur when executing Algorithm 3, because it is enough to generate two different
output values from a single output fragment, as described in the rightmost MMA fragment
layout in Figure 4, by employing the 16 × 8 × 8 MMA operation from Thread Block 1.
However, since there are eight non-zero elements in row index 0, obtaining only two output
values from a single output fragment is inefficient. In our approach, as the 16 compressed
column vectors can be maintained in a single fragment, one MMA operation is able to
compute 16 output elements for row 0 in parallel, as illustrated in the bottom-left MMA
fragment layout in Figure 4. In addition, for row 4, which has 32 non-zero elements, it
is possible to obtain four different output values from the MMA operation by applying
the trace operation to the finer-grained sub-matrices of the output fragment. Likewise,
eight output values can be computed from the MMA operation for row 1. The number of
non-zero elements is not necessarily divisible by 8, 16, 32, or 64, as padding zero values to
the remaining part is possible, as shown in the cases of row 1 and row 2.
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Figure 4. Implementation details for TCA-SpMM. The number of warps, proportional to the number
of non-zero elements, is assigned to perform the computation of multiple row vectors within a single
CUDA thread block by distributing its shared memory.

However, applying different optimization schemes for different rows using the same
number of warps may cause an additional workload imbalance problem. For example, as
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described in Figure 4, we can yield sixteen different output values from a single output
fragment in row 0, while we can yield only four different output values from a single output
fragment in row 4. Therefore, the total number of MMA operations required to complete
the computations for every output values in row 0 is different from that of row 4. Assuming
that we assign only one warp for each output row’s computation, the warp assigned for row
0 requires ⌈N/16⌉ iterative MMA operations, while the warp assigned for row 4 requires
⌈N/4⌉, where N stands for the number of column vectors of the output matrix, which
is equivalent to the number of output values in a single row. Our fundamental solution
to address this situation is to enable a thread block to compute multiple output rows by
assigning a number of warps proportional to the number of non-zero elements. After
balancing the workloads, we change the configuration of fragments to perform the dot
product by placing additional compressed column vectors of D to maximize the number
of output element values produced. Our TCA-SpMM assigns a single warp to process
rows with 8 or fewer non-zero elements, doubles the number of warps for rows with 9
to 16 non-zero elements, and doubles it again for rows with 17 to 32 non-zero elements.
Finally, eight warps are needed for rows with 33 to 64 non-zero elements. To assign a
variable number of warps to different rows, we distribute shared memory resources to
regularize the behavior of each warp, as shown in the middle of Figure 4. Since we set
the number of warps based on the number of non-zero elements in the rows, the scratch
pad (sparse row) is distributed in proportion to the number of warps. For example, the
memory space required to store all non-zero elements in row index 4 is four times larger
than that of row 0; therefore, we assign four times as many warps to row 4 compared to row
0. Similarly, the memory space required to store all elements from the compressed column
vectors corresponding to the tile is proportional to the number of assigned warps. This
warp assignment scheme also applies to the output buffer, which is designed for efficient
writing to global memory.

Algorithm 4 shows the pseudo-code for the device kernel that processes rows with
fewer than 64 non-zero elements, where a single thread block performs computations for
multiple rows to achieve better load balancing. In Algorithm 4, only the non-zero elements
are stored in shared memory (line 5), while zero values are used to fill the positions beyond
the range of the non-zero elements in the given sparse row (line 7). For col_indices, we
store None instead of 0 to minimize data movement when fetching the set of compressed
column vectors from D. Since the number of non-zero elements does not always exceed
8×num_warps_current_row, we use f ragment_b as the invariant MMA operand to hold the
non-zero elements in the sparse row (line 10) and maintain col_indices for the corresponding
column indices. After computing the number of output values for a single MMA operation
(line 11), the tiled multiplication for the output row is performed in a manner similar to
Algorithm 3. The major change in Algorithm 4 is that the matricization performed in line
16 of Algorithm 3 is now carried out in line 16 of Algorithm 4, allowing f ragment_a to
contain the total number of output_elem_per_row and different compressed column vectors
from D. As the number of output values is identical to output_elem_per_row, the same
number of trace operations is performed for the corresponding sub-matrices represented
in f ragment_c. However, it is possible to perform these trace operations simultaneously
using shared warp shuffle instructions, provided that the communication offsets in warp
shuffle are judiciously controlled (line 20). Finally, output_buffer is used to temporarily
store the resulting output values and then flush them into global memory to reduce the
number of global memory write operations.

4.3. Detailed Complexity Analysis of TCA-SpMM

A single MMA instruction executes multiple 4× 4× 4 matrix multiplications to lever-
age the high degree of parallelism and throughput of TCs. In this subsection, an MMA
instruction is defined as a single instruction, denoted as µ, where Mmma, Nmma, and Kmma
denote the size of the row in the left fragment, the size of the column in the right fragment,
and the size of the column/row in the left/right fragment, respectively. For an incremental
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analysis, we first assume that every sparse row vector contains more than (Kmma × Nmma)
non-zero elements. The value Kmma×Nmma represents the size of the right fragment used in
a single MMA instruction, which corresponds to the number of non-zero elements from the
sparse row vector that are processed simultaneously via MMA instruction in our approach.
As the number of MMA instructions required for our TCA-SpMM is associated with the
number of non-zero elements in the sparse matrix, the total number of MMA instructions
required for our TCA-SpMM with TCs is

M−1

∑
i=0

⌈
nnzi

Kmma × Nmma
× µ

⌉
×

⌈
N × Nmma

Mmma

⌉
≈ NNZ

Kmma × Nmma
× N × Nmma

Mmma
× µ

= M× K× (1− α)× N × 1
Mmma × Kmma

× µ = (1− α)× MNK
Mmma × Kmma

× µ

(1)

where M, N, and K denote the number of rows of the LHS matrix, the number of columns of
the RHS matrix and the number of columns/rows of the LHS/RHS matrix, respectively. In
addition, nnzi, NNZ, and α denote the number of non-zero elements in the i-th row, the total
number of non-zero elements in a matrix (i.e., NNZ = ∑M−1

i=0 nnzi), and the sparsity of the
matrix, respectively. As the non-zero elements in a specific row are divided into the blocks
of Kmma × Nmma and then the blocks applied to MMA instructions (µ) in our approach,
⌈nnzi/(Kmma × Nmma)⌉MMA instructions are required to complete the computation for a
single output value at the i-th row, which is maintained in a single output fragment. On
the other hand, if the number of rows in the output fragment, Mmma, is divisible by the
number of columns, Nmma, more than one output value can be obtained using a single
output fragment by maintaining multiple column vectors of the dense input matrix in the
left fragment. For example, in assuming that Mmma = 16 and Nmma = 8, two output values
are obtainable from a single output fragment by maintaining the specific column vector
input in the top-half of the left fragment, while maintaining another column vector in the
bottom-half of the left fragment. This implies that the number of output values that we
can obtain from a single output fragment is Mmma/Nmma. Thus, to compute all the output
values in a specific row, ⌈N × (Nmma/Mmma)⌉ output fragments are need to be maintained.
In multiplying the number of MMA instructions required to complete the computation
for a single output fragment by the number of output fragments needed to maintain all
output values in a specific row, the total number of MMA instructions required to compute
all output values in a specific row can be derived. Finally, the total number of MMA
instructions required to compute every entry of output matrix can be found by summing
the number of MMA instructions needed to compute all output values in each row, as
organized in Equation (1). Since α represents the sparsity of the LHS matrix, the matrix
density, defined as the ratio of the non-zero elements to the total number of elements, can be
expressed as (1− α). Therefore, with the total number of elements in the LHS matrix being
M× K, we can utilize the relationship between M, K, and α as M× K× (1− α) = NNZ in
Equation (1). Equation (1) demonstrates that our TCA-SpMM can effectively reduce the
total number of operations required for the computation as the sparsity grows. For example,
when the sparsity value α changes from 0.5 to 0.9, the total number of 4 × 4 × 4 matrix
multiplications is reduced by a factor of 5, because (1− 0.5) = 5× (1− 0.9).

To achieve load balancing across rows, when the Mmma = 16, Nmma = Kmma = 8, and
nnzi < 64, the number of MMA instructions (the number of µ) required to compute the i-th
row in the resulting output matrix O, as a function of the number of non-zero elements in
the i-th row ( f (nnzi)), is as follows:

f (nnzi) =


⌈N/16⌉µ, if 0 < nnzi ≤ 8,
⌈N/8⌉µ, if 8 < nnzi ≤ 16,
⌈N/4⌉µ, if 16 < nnzi ≤ 32,
⌈N/2⌉µ, if 32 < nnzi ≤ 64.

(2)
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Since the number of non-zero elements varies across different rows, the number
of output values produced by a single MMA instruction can differ in our TCA-SpMM.
Therefore, the number of MMA instructions required to compute each output row varies
depending on the number non-zero elements in the corresponding row of the input sparse
matrix S. By assigning a number of warps proportional to the number of non-zero elements,
our TCA-SpMM is able to evenly distribute the workload required for computing multiple
rows across the warps in a thread block.

5. Experimental Evaluation
5.1. Experimental Setup

Datasets

For the experimental evaluations, since the key contribution of our TCA-SpMM
is leveraging TCs for highly sparse matrices in deep neural networks, we used sparse
matrices from the publicly available Deep Learning Matrix Collection (DLMC) [8], which
were collected from both the training and inference phases of deep neural networks to
benchmark sparse computational kernels. More specifically, the DLMC dataset contains
sparse matrices collected from deep neural networks that employ various sparsification
and pruning techniques, such as variational dropout, magnitude-based weight pruning,
random weight pruning, and l0 regularization, applied to transformer models [31]. Several
of the aforementioned SpMM implementations using TCs that first reorder the sparse
matrix and then perform SpMM on the reordered matrix can benefit from improved data
locality with the reordered sparse matrix. Therefore, comparing our TCA-SpMM with
approaches that use reordered matrices is not a fair comparison, as our TCA-SpMM does
not perform any reordering and operates on the original sparse matrix, even if the data
locality is very low. To fairly compare the performance of our TCA-SpMM implementation
with well-optimized CUDA kernels from other SpMM implementations that use reordered
matrices, we select highly sparse matrices from the DLMC dataset. In practice, since the
pruned and sparsified weight matrices used in sparse deep neural networks exhibit an
average sparsity of 95% [29,32], we selected 698 sparse matrices with sparsity ranging
from 90% to 98% from the DLMC dataset. This choice ensures a fair evaluation because
the irregularity of sparse matrices generally increases with their sparsity, making it more
challenging to capture sparsity patterns and improve data locality when reordering matrices
with higher sparsity.

Benchmarking Machines

We evaluated the all experiments on an NVIDIA RTX 3080 GPU. Table 3 shows the
details of the benchmarking machines.

Table 3. Machine configuration.

Machine Details

CPU
12th Gen Intel(R) Core(TM) i7-12700
(12 CPU cores, 20 threads per core)

GCC version 9.4.0

GPU
NVIDIA RTX 3080

(10 GB Global Memory, 68 Ampere SMs, 5 MB L2 Cache 760 GB/second Bandwidth)
CUDA version 12.1

SpMM Implementations Compared

We compared the performance of our TCA-SpMM with those of state-of-the-art parallel
SpMM implementations that reorder the sparse matrix to improve data locality and then
perform matrix–matrix multiplication using the reordered matrix, efficiently utilizing TCs.
Our implementation and the two state-of-the-art SpMM implementations using TCs that
we evaluated in our experiments were the following:
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• 1-SA (https://github.com/HicrestLaboratory/SPARTA (accessed on 12 September
2024)): 1-SA reorders the rows of the original sparse matrix based on its sparsity
pattern and performs SpMM by processing the non-zero blocks of the reordered
matrix on TCs [12];

• TC-GNN (https://github.com/YukeWang96/TC-GNN_ATC23 (accessed on 12 Septem-
ber 2024)): TC-GNN compresses the original sparse matrix and performs SpMM by
processing the dense tiles in each row panel of the compressed matrix on TCs [29];

• TCA-SpMM (https://github.com/mlsys-lab-sogang/TCA-SpMM (accessed on
12 September 2024)): Our TCA-SpMM uses the original sparse matrix without reorder-
ing or compression, performing SpMM by processing only the non-zero elements in
the sparse matrix on TCs.

5.2. Performance Evaluation
5.2.1. Speedup

Figure 5 shows a performance comparison of various SpMM parallel implementations
optimized with TCs. The top and bottom graphs in Figure 5 show the execution time
and achieved peak performance (GFLOPs) of the SpMM implementations, respectively.
Note that for a fair evaluation, only the actual execution time of sparse matrix–matrix
multiplication was measured for both 1-SA and TC-GNN, excluding the time required for
reordering and compression. All experimental results presented in this section are the aver-
age of 10 distinct executions. Furthermore, the GFLOPs for each compared implementation
were measured using total floating points

execution time (s) × 10−9 = 2×δ×N
average execution time (s) × 10−9, where δ is

the average number of non-zero elements in the sparse matrices with the same sparsity. The
black solid line within each box at the top of Figure 5 represents the median runtime, while
the ⋆ symbols indicate the average runtime of different implementations across matrices
with varying sparsity. The 698 sparse matrices we used in our evaluation are categorized
based on four different pruning techniques applied to the transformer model. In our
TCA-SpMM implementation, each thread block is configured with 256 threads, resulting in
8 warps per thread block. Compared to 1-SA and TC-GNN, our TCA-SpMM achieved an
average speedup of 29.58× and 6.58×, respectively, across all sparse matrices with sparsity
ranging from 90% to 98%. For example, for the sparse matrices pruned with the variational
dropout technique, TCA-SpMM achieved a 25.43× and 8.11× average speedup compared
to that of 1-SA and TC-GNN, respectively. Furthermore, as the sparsity of the matrices
increases, our TCA-SpMM achieved higher speedup over 1-SA and TC-GNN. For instance,
with sparsity ranging from 90% to 98%, TCA-SpMM is 13.75×, 19.46×, and 40.81× faster
than 1-SA, and 4.07×, 5.47×, and 7.85× faster than TC-GNN on sparse matrices pruned
using the magnitude technique. This result implies that the computational complexity
of TCA-SpMM is associated with the number of non-zero elements and the operations
required for SpMM. It can be observed that our TCA-SpMM shows a greater degree of
performance improvement compared to other implementations as the sparsity of the ma-
trices increases. As the sparsity increases, it is evident that the number of floating-point
operations decreases. Consequently, the GFLOPs of all compared implementations de-
crease as the number of non-zero elements decreases across all experiments. However, the
GFLOPs of our TCA-SpMM consistently outperformed those of other implementations as
shown at the bottom of Figure 5. As 1-SA operates TCs on non-zero blocks in the reordered
matrix and TC-GNN operates TCs on dense blocks after the compressing the matrix, both
approaches are unable to completely ignore the zero elements within the non-zero blocks.
Moreover, as the 1-SA implementation executes cuBLAS serially for both dense and sparse
tiles in the reordered matrix, this approach hinders achieving a high degree of parallelism
on TCs. However, since our TCA-SpMM processes only non-zero elements using TCs,
the number of operations greatly decreases with highly sparse matrices. As a result, the
performance of our TCA-SpMM improves more significantly with increasing sparsity than
other SpMM implementations.

https://github.com/HicrestLaboratory/SPARTA
https://github.com/YukeWang96/TC-GNN_ATC23
https://github.com/mlsys-lab-sogang/TCA-SpMM
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Figure 5. Comparison of the SpMM performance on sparse matrices with a different sparsity on
the DLMC dataset. The dimensions of the sparse matrices (M and K) in the DLMC dataset vary
for each matrix, whereas we set a fixed size of N = 256 for all experiments. If we assume that the
sparse matrices from the DLMC are pruned weight matrices, the value of N can be interpreted as the
mini-batch size, i.e., the number of data points in each mini-batch.

5.2.2. Effectiveness of Load Balancing Scheme in TCA-SpMM

To demonstrate the effectiveness of our load balancing scheme, we compare the
number of MMA operations executed across different CUDA thread blocks, with and
without load balancing in our TCA-SpMM implementation. Figure 6 shows the distribution



Electronics 2024, 13, 3981 21 of 24

of MMA operations across different thread blocks for two versions of the TCA-SpMM
implementation: one that considers load balancing (bottom) and another that does not (top).
The x-axis indicates the indices of different CUDA thread blocks, and the y-axis indicates
the number of MMA operations computed in each thread block. Note that we assigned
a single thread block to compute each output row in order to evaluate the performance
of our TCA-SpMM implementation without applying the load balancing scheme. Since
we used sparse matrices of size 512 × 512 for this experiment, a sparse matrix with 90%
sparsity can be assumed to contain an average of 512 × 0.1 = 51.2 non-zero elements
per row. However, depending on the matrix’s sparsity pattern, the number of non-zero
elements in a row may either exceed or be less than 64, which is the number of elements
required for a single MMA operation. Therefore, a matrix with 90% sparsity can lead to a
workload imbalance across thread blocks, as each thread block processes a different row
of the matrix. As an example, the results from the upper-left graph with 90% sparsity
show several outliers in certain thread blocks that process a significantly larger number
of MMA operations compared to others. These outliers occur when certain rows have
noticeably more non-zero elements compared to others, leading to a significantly higher
peak number of MMA operations compared to the majority of thread blocks. Since GPU
kernels require all thread blocks to complete before proceeding to the next, the overall
performance of the GPUs depends on the completion time of the thread block with the
highest workload. As described in Section 4.2.2, we addressed the load imbalance issue
caused by exceptionally high workloads by launching additional CUDA thread blocks for
rows with a larger number of non-zero elements.
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Figure 6. Distribution of MMA operations across different thread blocks in our TCA-SpMM, with
and without load balancing. For this experiment, we used DLMC sparse matrices of size 512 × 512
with sparsity ranging from 90% to 98%.

As shown at the bottom of Figure 6, our load balancing scheme effectively balances
the distribution of executed MMA operations by distributing the high workloads across
multiple CUDA thread blocks. In launching additional thread blocks to handle high
workloads, the total number of launched thread blocks increased compared to the case
without considering load balancing, as clearly shown in the two leftmost graphs of Figure 6.
Although the number of thread blocks used has increased, the total number of MMA
operations required for computation is uniformly distributed across the thread blocks. In
contrast to the 90% sparsity case, the distribution patterns for sparse matrices with 95%
and 98% sparsity, as shown in the middle and the right bar graphs of Figure 6, differ from
those of the 90% sparsity matrix. Since the average number of non-zero elements per row
in the 95% and 98% sparsity matrices is less than in the 90% sparsity matrix and fewer than
64, our load balancing scheme efficiently reduces both the total number of thread blocks
and the total number of MMA operations by assigning a single thread block to compute
multiple highly sparse rows. Furthermore, our TCA-SpMM reformulates the matrix layout
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for thread blocks assigned to computations across multiple rows, enabling each MMA
operation to be performed more efficiently. As a result, it is clear that with high sparsity
and irregularity in the sparse matrix, our TCA-SpMM implementation, in considering load
balancing, dramatically reduces the total number of thread blocks while achieving effective
load balancing across thread blocks.

6. Conclusions

In this paper, we present a new parallelization approach for efficiently utilizing Tensor
Cores in the SpMM kernel. Since Tensor Cores were originally developed to acceler-
ate GEMM computations using matrix fragments, performing SpMM with the memory-
efficient CSR sparse matrix format on Tensor Cores is infeasible. Therefore, to exploit
Tensor Cores for SpMM using the CSR format, the vector–vector dot product operation
is transformed into blocked matrix–matrix multiplication. Our TCA-SpMM reduces data
movement overhead by strategically enhancing data reuse through the efficient mapping
of data into shared memory. Furthermore, to address the load imbalance caused by the
irregularity of sparse matrices, TCA-SpMM dynamically allocates thread blocks based on
the sparsity pattern of rows, enabling finer-grained control and more efficient resource
utilization. We systemically analyzed the computational complexity for TCA-SpMM to
demonstrate the efficiency of our approach. Experimental results show that, compared to
state-of-the-art SpMM parallel implementations, our TCA-SpMM achieves up to a 29.58×
average speedup with highly sparse matrices from the DLMC dataset.

Our Tensor Core-adapted optimization method presented in this paper is primarily
developed to accelerate the SpMM kernel for highly sparse matrices. Therefore, we plan to
further optimize TCA-SpMM for sparse matrices with lower levels of sparsity, aiming to
apply our optimization technique to a broader range of scientific computations involving
SpMM kernels, extending beyond deep learning models. In addition, we plan to extend
this work by applying our optimization technique to the SDDMM (Sampled Dense–Dense
Matrix Multiplication) kernel, which constitutes a large fraction of the multi-head attention
operation in sparse transformer models.
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