
Citation: Wang, Y.; Yin, L.; Wang, X.;

Zheng, G.; Deng, W. A Novel

Two-Channel Classification Approach

Using Graph Attention Network with

K-Nearest Neighbor. Electronics 2024,

13, 3985. https://doi.org/10.3390/

electronics13203985

Academic Editor: Stefanos Kollias

Received: 9 September 2024

Revised: 29 September 2024

Accepted: 7 October 2024

Published: 10 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Novel Two-Channel Classification Approach Using Graph
Attention Network with K-Nearest Neighbor
Yang Wang 1, Lifeng Yin 1,*, Xiaolong Wang 2, Guanghai Zheng 1 and Wu Deng 3,4

1 School of Rail Intelligent Engineering, Dalian Jiaotong University, Dalian 116028, China
2 Oneg Robot Yinchuan Co., Ltd., Yinchuan 750021, China
3 School of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China
4 State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, China
* Correspondence: yinlifeng1030@djtu.edu.cn or yinlifeng1030@163.com

Abstract: Graph neural networks (GNNs) typically exhibit superior performance in shallow archi-
tectures. However, as the network depth increases, issues such as overfitting and oversmoothing of
hidden vector representations arise, significantly diminishing model performance. To address these
challenges, this paper proposes a Two-Channel Classification Algorithm Based on Graph Attention
Network (TCC_GAT). Initially, nodes exhibiting similar interaction behaviors are identified through
cosine similarity, thereby enhancing the foundational graph structure. Subsequently, an attention
mechanism is employed to adaptively integrate neighborhood information within the enhanced
graph structure, with a multi-head attention mechanism applied to mitigate overfitting. Furthermore,
the K-nearest neighbors algorithm is adopted to reconstruct the basic graph structure, facilitating
the learning of structural information and neighborhood features that are challenging to capture
on interaction graphs. This approach addresses the difficulties associated with learning high-order
neighborhood information. Finally, the embedding representations of identical nodes across different
graph structures are fused to optimize model classification performance, significantly enhancing node
embedding representations and effectively alleviating the over-smoothing issue. Semi-supervised
experiments and ablation studies conducted on the Cora, Citeseer, and Pubmed datasets reveal an
accuracy improvement ranging from 1.4% to 4.5% compared to existing node classification algorithms.
The experimental outcomes demonstrate that the proposed TCC_GAT achieves superior classification
results in node classification tasks.

Keywords: graph neural network; graph attention network; node classification; overfitting; over-
smoothing; two-channel classification algorithm

1. Introduction

As the digital era progresses, the volume of data generated daily is growing exponen-
tially. Broadly, these data can be categorized into two types: Euclidean and non-Euclidean.
Euclidean data, with its regular structure, is easy to quantify and can be processed and
analyzed through conventional mathematical methods. This type of data typically includes
images [1,2], videos [3], audio [4], and text [5–7], which can be directly or indirectly mapped
onto two-dimensional or three-dimensional spaces. In contrast, non-Euclidean data, preva-
lent in citation networks [8], social networks [9], and recommendation systems [10–12],
requires more complex and specialized methods for processing and analysis due to its
intricate structure and network of relationships [13–17].

In the realm of Euclidean data, Convolutional Neural Networks (CNNs) [18] have
undoubtedly shown exceptional performance, particularly achieving great success in image
classification [19–24] and object detection [25–29]. However, CNNs face significant limi-
tations when applied to non-Euclidean data [30,31], with the primary hurdle being their
inability to adapt to the irregular structure of graph data. To address this, the introduction

Electronics 2024, 13, 3985. https://doi.org/10.3390/electronics13203985 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13203985
https://doi.org/10.3390/electronics13203985
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6524-6760
https://doi.org/10.3390/electronics13203985
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13203985?type=check_update&version=1

Electronics 2024, 13, 3985 2 of 23

of Graph Neural Network (GNN) architectures [32] has offered new perspectives and effec-
tive strategies for processing non-Euclidean data. GNNs have been widely applied in tasks
such as node classification [33–37], graph classification [38–41], and link prediction [42–46],
demonstrating formidable capabilities and broad applicability in managing complex struc-
tural data.

Graph Convolutional Networks (GCNs) [47] and their derivative models leverage
graph structural information for aggregation, integrating features and labels of target nodes
with those of their neighbors. This approach updates the embedding representations of
target nodes, facilitating integrated learning of both graph structures and node features.
This unique convolution operation has enabled GCNs to exhibit superior performance in
node classification tasks involving irregular data.

However, GCNs face several limitations in practical applications. During the training
phase, the model requires the entire graph structure (the whole graph) as input. This
results in significant memory consumption when processing large graphs, consequently
leading to increased usage costs as the size of the graph grows. Further, issues such as poor
generalization have arisen. To overcome these challenges, Hamilton et al. [48] developed
the GraphSAGE model, leveraging local neighboring information for message passing and
thereby learning node embeddings. This method not only facilitates the processing of large-
scale graph data but also adapts to newly appearing nodes, enabling inductive learning.

While GraphSAGE offers a new pathway to process large-scale graph data, it en-
counters issues such as prolonged training periods in practical applications. Moreover, its
Laplacian aggregation operation cannot adaptively integrate neighborhood information,
limiting model performance. The study of AM GCN [49] underscores the vital role of
adaptively integrating neighborhood information in model performance, emphasizing
that GCN models struggle to adaptively discern the intricate correlations between graph
structures and node features, resulting in a performance that falls significantly short of
the ideal.

Addressing these issues, the introduction of attention mechanisms has become par-
ticularly important, allowing GNNs to better focus on task-relevant edges and nodes,
thereby improving training effectiveness and model accuracy. Hong et al. [50] utilized
graph networks to explore the complex interplay between linguistic instructions and visual
cues, introducing a two-level soft-attention mechanism. This approach conducted a meticu-
lous analysis of the specific context of navigation instructions and their interrelationships,
leading to significant advancements in semantic relationship modeling and algorithm
performance optimization. In contrast, Graph Attention Networks (GATs) [51] prioritize
enhancing the model’s generalizability. By embedding attention mechanisms into GCNs,
they achieve a dynamic amalgamation of neighboring node information, thereby elevating
algorithm effectiveness.

However, GAT models typically rely on shallow depths and primary neighborhood
information, failing to fully exploit higher-order features. When attempts are made to
deepen the model in order to capture higher-order neighborhood information, it becomes
susceptible to the over-smoothing phenomenon. This leads to increasingly ambiguous
distinctions between nodes as the number of network layers grows, making it difficult
to differentiate node embedding representations. This issue indicates that GNNs cannot
straightforwardly increase their network depth in the same way as CNNs due to the risk of
over-smoothing.

To address this challenge, Deep GCN [52] has constructed a high-depth graph neural
network featuring a GNN architecture with 64 layers, thereby expanding the potential
for increasing graph network depth and achieving significant performance improvements
across various application tasks. This study introduced a generic form of aggregation func-
tion and compared different designs of residual connections within the GNN framework,
aiming to elucidate the correlation between depth (higher-order neighborhood information)
and performance. However, as the model depth increases, the number of parameters
required for training also grows, leading to a substantial rise in GPU memory resource de-

Electronics 2024, 13, 3985 3 of 23

mands. Consequently, despite Deep GCN making strides in enhancing GNN performance,
efficiency remains a critical factor in evaluating algorithmic performance. In addition,
several other methods or models have also recently been proposed [53–58].

Synthesizing the analysis above, the capability of GNNs for node classification heavily
relies on the features of neighborhood nodes and the structural information of the graph.
Models utilize the support of the graph’s structure to aggregate the feature information of
neighborhood nodes, thus updating their own node embedding representations to enhance
node classification performance. However, the main constraints on their classification
performance at this stage are also determined by two factors:

1. Acquisition of higher-order neighborhood information. GNNs can learn higher-
order domain information by increasing network depth [59], thereby enhancing
the discriminability of node embedding representations and achieving improved
classification performance. However, the over-smoothing issue caused by deepening
the network layers still restricts the performance of the model.

2. Acquisition of graph structural information. During the process of aggregating neigh-
borhood information, GNNs also learn about the structural information of the graph.
Relying solely on the interactions between nodes often fails to uncover the intrin-
sic connections among them, impeding the full exploration of their interrelations.
Therefore, a profound understanding of graph structural information is crucial for
enhancing the effectiveness of node classification.

To address these issues, this paper proposes a Two-Channel Classification Algorithm
based on the Graph Attention Network (TCC_GAT) to improve the performance of GNN in
node classification tasks. In order to enhance the model’s ability to aggregate higher-order
neighborhood information, a graph reconstruction module based on cosine similarity and
the KNN algorithm is designed. This approach offers two types of graph structures for
aggregating information in GNN: (1) an enhanced basic graph structure that facilitates
and simplifies the capture of higher-order neighborhood information while mining node
interaction behaviors, and (2) a behavior-based graph constructed via KNN, which provides
a new perspective for mining structural information. Moreover, a parallel GAT network
structure is utilized to construct the overall classification framework, integrating deeper
node information to improve classification accuracy. Under the same dataset partition ratio,
the classification performance of the model has been significantly enhanced, proving the
effectiveness and correctness of the TCC_GAT.

The main contributions of this article are as follows:

1. A Two-Channel Classification Algorithm based on the Graph Attention Network is
proposed.

2. A method for effectively acquiring higher-order neighborhood information is de-
signed, enabling the acquisition of higher-order information at the same depth.

3. A graph reconstruction module is designed. Through K-nearest neighbors algorithms
and cosine similarity, the graph structure is improved based on the similarity of
interaction information, thereby diversifying the aggregation basis of graph neural
networks and capturing rich graph structures and deep correlations between nodes to
enhance algorithm performance.

The remainder of the paper is structured as follows: Section 2 briefly introduces related
work; Section 3 presents the proposed innovative methodology, detailing the overall model
framework, different functional modules, and specific model details; Section 4 explains the
proposed algorithm through pseudocode and analyzes its complexity; Section 5 provides a
comparative validation on multiple datasets, followed by a discussion of the results; the
final section provides a brief conclusion and future research directions.

Electronics 2024, 13, 3985 4 of 23

2. Related Work
2.1. Representation of Graph

This paper primarily focuses on undirected graphs, characterized by bidirectional
edges. To begin, the representation and related concepts [60] are elucidated.

• Graph (G): Consists of a finite, non-empty set of vertices and a set of edges between
these vertices, generally denoted as G = (V, E), where G represents a graph, V is
the set of vertices in graph G, and E is the set of edges in graph G. The vertex set
V = {v1, v2, v3, · · · , vn} and the edge set E = {e1, e2, e3, · · · , em}, n and m represent
the number of vertices and edges, respectively. If the edge between vertices vi and vj
is undirected, it is represented as

(
vi, vj

)
or

(
vj, vi

)
• Adjacency Matrix (A): Constructs the adjacency matrix A to represent the neighboring

relationships between vertices in the graph. For undirected graphs, the adjacency
matrix is symmetric. If there is a link between vertices vi and vj, then aij and aji are 1;
otherwise, they are 0.

• Adjacency Matrix with Self-loops (
∼
A): Refers to the adjacency matrix A to which an

identity matrix I is added, denoted as
∼
A = A + I. Herein, a self-loop implies that the

starting and ending points are the same vertex. Within the adjacency matrix of an
undirected graph, such self-loops are located at diagonal positions, generally indicated
as

∼
aii = 1.

• Degree Matrix (D): The degree of a vertex is defined by the sum of the elements in its
corresponding row within the adjacency matrix. Specifically, the degree of vertex vi
represents the number of edges connected to that vertex, which also equals the number
of neighbors of vi. In the degree matrix D, the element on the diagonal dii = ∑j aij
represents the degree of vertex vi, while all other elements in the matrix are set to 0.

• Similarity Matrix (S): The similarity matrix S quantifies the similarity between different
vertices based on their features. The similarity value sij between vertices vi and vj
is calculated using the cosine similarity Formula (1), where n is the dimension of
vertex features.

sij =
vi · vj

∥vi∥
∥∥vj

∥∥ =
∑n

k=1

(
vik × vjk

)
√

∑n
k=1(vik)

2 ×
√

∑n
k=1

(
vjk

)2
(1)

• Adjacency Matrix of Similar Behavior (As): Constructed utilizing the K-nearest neigh-
bors algorithm based on cosine similarity. This graph structure captures the similarity
in interaction behaviors between vertices and their neighbors. The calculation process
is illustrated in Figure 1, is represented through the row vectors of the adjacency matrix

with self-loops (
∼
A), where

∼
ai denotes the i-th row of matrix

∼
A, indicating the feature

attributes of the node vi. Following Equation (1), the similarity matrix S is computed
by traversing all nodes, and subsequently, the adjacency matrix of similar behavior
As is constructed using the K-nearest neighbors algorithm based on the similarity
matrix S.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 24

Figure 1. Process of constructing adjacency matrix of similar behavior.

2.2. Graph Attention Network

The introduction of the Self-Attention mechanism within the Transformer framework

[61], via its Encoder–Decoder architecture, has led to marked improvements in

performance, significantly contributing to the widespread adoption and importance of

attention mechanisms across diverse domains. Deeply exploring the Transformer

architecture, Phan et al. [62] proposed a Structural Attention mechanism specifically for

medical images. This mechanism allows for a more precise capture of the correlations

among features, thereby significantly enhancing the overall performance of the model. In

parallel, Chongjian Ge et al. [63] introduced a novel Neural Attention Learning Method

(NEAL), which has significantly boosted the performance of models in the realm of object

detection, further affirming the effectiveness of attention mechanisms.

These models are primarily oriented towards data in Euclidean spaces (such as

images), relying on fixed positional relationships between data elements to calculate

correlations or attention distributions, thus achieving high efficiency in processing image

or textual data. However, the core characteristic of graph-structured data lies in the

dynamic and non-Euclidean nature of its elements (nodes) and connections (edges),

implying that the relationships between nodes possess significant flexibility and diversity.

Therefore, applying traditional attention mechanisms to graph data encounters numerous

challenges.

To address these challenges within graph data, the Graph Attention Network (GAT)

integrates attention mechanisms with GCN, utilizing the attention mechanism to

aggregate information from neighborhoods. This approach allows the model to

adaptively allocate weights based on the significance of neighborhood information for a

specific task, thereby optimizing parameters and ultimately obtaining embedded

representations of the nodes.

In the GAT model, the collection of node features, ℎ = {ℎ1, ℎ2, ℎ3, ⋯ , ℎ𝑁} (with each

ℎ𝑖 ∈ ℝ𝐹 representing the features of an individual node, 𝑁 denoting the number of nodes,

and 𝐹 indicating the dimensionality of the node features), serves as the input

information. After processing through the graph attention layer, the model produces a

new set of feature vectors, ℎ′ = {ℎ1
′ , ℎ2

′ , ℎ3
′ , ⋯ , ℎ𝑁

′ } , where each ℎ𝑖
′ ∈ ℝ𝐹′

 (potentially

altering to a different feature quantity 𝐹′), which then acts as input for subsequent

modules.

The primary task of the graph attention layer is to utilize the weight matrix 𝑊 ∈

ℝ𝐹×𝐹′
 to perform linear transformations on the features of both the central node and its

neighboring nodes, implementing element-wise feature processing [64]. GAT employs a

shared attention mechanism that concatenates the linearly transformed features of the

central node and its neighbors and multiplies them with the attention vector 𝑎 ∈ ℝ2𝐹′
.

This mechanism evaluates the significance of neighboring nodes relative to the central

node, generating an attention score 𝑒𝑖𝑗 among the nodes. The computation of these

attention scores is illustrated in Equation (2) as:

𝑒𝑖𝑗 = LeakyReLU(𝑎𝑇[𝑊ℎ𝑖||𝑊ℎ𝑗]) 𝑗 ∈ 𝑁𝑖 (2)

Herein, the ‘ || ’ symbol stands for the operation of vector concatenation. The

LeakyReLU function, acting as the activation function, provides a nonzero slope for all

negative inputs, enhancing the modeling of nonlinear relationships.

Figure 1. Process of constructing adjacency matrix of similar behavior.

2.2. Graph Attention Network

The introduction of the Self-Attention mechanism within the Transformer frame-
work [61], via its Encoder–Decoder architecture, has led to marked improvements in

Electronics 2024, 13, 3985 5 of 23

performance, significantly contributing to the widespread adoption and importance of
attention mechanisms across diverse domains. Deeply exploring the Transformer architec-
ture, Phan et al. [62] proposed a Structural Attention mechanism specifically for medical
images. This mechanism allows for a more precise capture of the correlations among
features, thereby significantly enhancing the overall performance of the model. In parallel,
Chongjian Ge et al. [63] introduced a novel Neural Attention Learning Method (NEAL),
which has significantly boosted the performance of models in the realm of object detection,
further affirming the effectiveness of attention mechanisms.

These models are primarily oriented towards data in Euclidean spaces (such as images),
relying on fixed positional relationships between data elements to calculate correlations
or attention distributions, thus achieving high efficiency in processing image or textual
data. However, the core characteristic of graph-structured data lies in the dynamic and
non-Euclidean nature of its elements (nodes) and connections (edges), implying that the re-
lationships between nodes possess significant flexibility and diversity. Therefore, applying
traditional attention mechanisms to graph data encounters numerous challenges.

To address these challenges within graph data, the Graph Attention Network (GAT)
integrates attention mechanisms with GCN, utilizing the attention mechanism to aggregate
information from neighborhoods. This approach allows the model to adaptively allocate
weights based on the significance of neighborhood information for a specific task, thereby
optimizing parameters and ultimately obtaining embedded representations of the nodes.

In the GAT model, the collection of node features, h = {h1, h2, h3, · · · , hN} (with each
hi ∈ RF representing the features of an individual node, N denoting the number of nodes,
and F indicating the dimensionality of the node features), serves as the input information.
After processing through the graph attention layer, the model produces a new set of feature
vectors, h′ =

{
h′1, h′2, h′3, · · · , h′N

}
, where each h′i ∈ RF′

(potentially altering to a different
feature quantity F′), which then acts as input for subsequent modules.

The primary task of the graph attention layer is to utilize the weight matrix W ∈
RF×F′

to perform linear transformations on the features of both the central node and its
neighboring nodes, implementing element-wise feature processing [64]. GAT employs
a shared attention mechanism that concatenates the linearly transformed features of the
central node and its neighbors and multiplies them with the attention vector a ∈ R2F′

. This
mechanism evaluates the significance of neighboring nodes relative to the central node,
generating an attention score eij among the nodes. The computation of these attention
scores is illustrated in Equation (2) as:

eij = LeakyReLU
(

aT[Whi
∣∣∣∣Whj

])
j ∈ Ni (2)

Herein, the ‘||’ symbol stands for the operation of vector concatenation. The LeakyReLU
function, acting as the activation function, provides a nonzero slope for all negative inputs,
enhancing the modeling of nonlinear relationships.

Normalization of eij is conducted using the Softmax function, thus computing the
attention weights αij that each node assigns to its neighbors. This ensures that the sum
of attention a central node directs towards all its neighboring nodes equates to 1. This is
expressed in Equation (3):

αij = Softmaxj(eij) =
exp

(
eij
)

∑k∈Ni
exp(eik)

(3)

The comprehensive calculation of attention weight is presented in Equation (4):

αij =
exp

(
LeakyReLU

(
aT[Whi

∣∣∣∣Whj
]))

∑k∈Ni
exp(LeakyReLU(aT [Whi||Whk]))

(4)

Electronics 2024, 13, 3985 6 of 23

By this method, the model computes the weight coefficients αij, which are then uti-
lized to update each node’s embedding representation through a weighted sum operation.
Utilizing the ELU(Exponential Linear Unit) activation function, the final embedding repre-
sentation for each node is acquired:

h′i = ELU
(
∑ j∈Ni

αijWhj

)
(5)

Equation (5) elucidates the calculation method for single-head attention. To boost the
model’s generalizability and ensure learning stability, this study incorporates a multi-head
attention mechanism, as illustrated in Equation (6). This mechanism, by concurrently exe-
cuting K independent single-head attentions and concatenating their outcomes, augments
the model’s processing capability and robustness:

h′i = ||Kk=1ELU
(
∑j∈Ni

αk
ijW

khj

)
(6)

In Equation (6), K stands for the count of attention heads, with this study employing
8 heads. The αk

ij represents the attention weight coefficient on the kth head, and Wk is
the linear transformation matrix corresponding to the kth head. Following multi-head
attention processing, this study opts for concatenation to generate h′i as the final node
feature representation, thus the ultimate node output h′i embodies KF′ node features.

These processes are illustrated in Figure 2, where h2 to h5 serve as neighbor nodes to
h1. The diagram utilizes distinct arrow shapes to represent the distinct attention computa-
tion processes.

Electronics 2024, 13, x FOR PEER REVIEW 6 of 24

Normalization of 𝑒𝑖𝑗 is conducted using the Softmax function, thus computing the

attention weights 𝛼𝑖𝑗 that each node assigns to its neighbors. This ensures that the sum

of attention a central node directs towards all its neighboring nodes equates to 1. This is

expressed in Equation (3):

𝛼𝑖𝑗 = Softmax𝑗(𝑒𝑖𝑗) =
exp (𝑒𝑖𝑗)

∑ exp (𝑒𝑖𝑘)𝑘∈𝑁𝑖

 (3)

The comprehensive calculation of attention weight is presented in Equation (4):

𝛼𝑖𝑗 =
exp (LeakyReLU(𝑎𝑇[𝑊ℎ𝑖||𝑊ℎ𝑗]))

∑ exp (LeakyReLU(𝑎𝑇[𝑊ℎ𝑖||𝑊ℎ𝑘]))𝑘∈𝑁𝑖

 (4)

By this method, the model computes the weight coefficients 𝛼𝑖𝑗 , which are then

utilized to update each node’s embedding representation through a weighted sum

operation. Utilizing the ELU (Exponential Linear Unit) activation function, the final

embedding representation for each node is acquired:

ℎ𝑖
′ = ELU(∑ 𝛼𝑖𝑗𝑊ℎ𝑗 𝑗∈𝑁𝑖

) (5)

Equation (5) elucidates the calculation method for single-head attention. To boost the

model’s generalizability and ensure learning stability, this study incorporates a multi-

head attention mechanism, as illustrated in Equation (6). This mechanism, by concurrently

executing 𝐾 independent single-head attentions and concatenating their outcomes,

augments the model’s processing capability and robustness:

ℎ𝑖
′ = ||𝑘=1

𝐾 ELU(∑ 𝛼𝑖𝑗
𝑘 𝑊𝑘ℎ𝑗 𝑗∈𝑁𝑖

) (6)

In Equation (6), 𝐾 stands for the count of attention heads, with this study employing

8 heads. The 𝛼𝑖𝑗
𝑘 represents the attention weight coefficient on the kth head, and 𝑊𝑘 is

the linear transformation matrix corresponding to the kth head. Following multi-head

attention processing, this study opts for concatenation to generate ℎ𝑖
′ as the final node

feature representation, thus the ultimate node output ℎ𝑖
′ embodies 𝐾𝐹′ node features.

These processes are illustrated in Figure 2, where ℎ2 to ℎ5 serve as neighbor nodes

to ℎ1 . The diagram utilizes distinct arrow shapes to represent the distinct attention

computation processes.

Figure 2. Multi-head attention.

3. TCC_GAT Model

3.1. The Overall Network Architecture

This article introduces a Two-Channel Classification Algorithm Based on Graph

Attention Network (TCC_GAT), designed to optimize the performance of GNN in node

Figure 2. Multi-head attention.

3. TCC_GAT Model
3.1. The Overall Network Architecture

This article introduces a Two-Channel Classification Algorithm Based on Graph At-
tention Network (TCC_GAT), designed to optimize the performance of GNN in node
classification tasks. The algorithm mainly acquires high-order neighborhood information
through two approaches, utilizing parallel graph attention networks to effectively cap-
ture neighborhood structure and feature information, thereby significantly enhancing the
embedding representation of target nodes. This method effectively overcomes the short-
comings of traditional GNN models in aggregating high-order neighborhood information
and capturing structural information. The overall framework of the model consists of three
modules: the graph reconstruction module, the graph data feature mining module, and the
final result prediction module, with specific details shown in Figure 3.

Electronics 2024, 13, 3985 7 of 23

Electronics 2024, 13, x FOR PEER REVIEW 7 of 24

classification tasks. The algorithm mainly acquires high-order neighborhood information

through two approaches, utilizing parallel graph attention networks to effectively capture

neighborhood structure and feature information, thereby significantly enhancing the

embedding representation of target nodes. This method effectively overcomes the

shortcomings of traditional GNN models in aggregating high-order neighborhood

information and capturing structural information. The overall framework of the model

consists of three modules: the graph reconstruction module, the graph data feature mining

module, and the final result prediction module, with specific details shown in Figure 3.

Figure 3. Overall framework diagram of the TCC_GAT.

Firstly, the graph reconstruction module exploits cosine similarity to mine the

similarity of interactive behaviors between nodes, identifying strongly related nodes to

reinforce the basic graph structure while increasing its capacity to aggregate high-order

neighborhood information. Subsequently, relying on the similarity matrix, this module

utilizes the K-nearest neighbors algorithm to restructure the graph, thereby generating a

graph structure that reflects their interaction behavior similarity, enhancing the model’s

ability to aggregate structural information and high-order neighborhood information.

Next, the outputs from the graph construction module, along with the node feature

information, are inputted into the graph data feature mining module. This module

updates the node embedding representations based on the newly constructed graph

structure as the basis for neighborhood aggregation, using different GAT models. The

embedding information of the same node under different graph structures is integrated,

serving as the basis for model prediction, with node categories predicted through a fully

connected layer and Softmax. Finally, the model adjusts network parameters based on

gradient information calculated by the loss function, thereby improving the model’s

classification performance.

3.2. Graph Reconstruction Module

In the study of recommendation algorithms, collaborative filtering techniques have

been extensively applied [64]. Consequently, this paper incorporates the concept of

collaborative filtering, designs a graph reconstruction module, and integrates it into the

GNN framework to enhance the basic graph structure and, thus, improve the model’s

performance in node classification tasks.

Figure 3. Overall framework diagram of the TCC_GAT.

Firstly, the graph reconstruction module exploits cosine similarity to mine the similar-
ity of interactive behaviors between nodes, identifying strongly related nodes to reinforce
the basic graph structure while increasing its capacity to aggregate high-order neighbor-
hood information. Subsequently, relying on the similarity matrix, this module utilizes
the K-nearest neighbors algorithm to restructure the graph, thereby generating a graph
structure that reflects their interaction behavior similarity, enhancing the model’s ability
to aggregate structural information and high-order neighborhood information. Next, the
outputs from the graph construction module, along with the node feature information,
are inputted into the graph data feature mining module. This module updates the node
embedding representations based on the newly constructed graph structure as the basis for
neighborhood aggregation, using different GAT models. The embedding information of
the same node under different graph structures is integrated, serving as the basis for model
prediction, with node categories predicted through a fully connected layer and Softmax.
Finally, the model adjusts network parameters based on gradient information calculated by
the loss function, thereby improving the model’s classification performance.

3.2. Graph Reconstruction Module

In the study of recommendation algorithms, collaborative filtering techniques have
been extensively applied [64]. Consequently, this paper incorporates the concept of col-
laborative filtering, designs a graph reconstruction module, and integrates it into the
GNN framework to enhance the basic graph structure and, thus, improve the model’s
performance in node classification tasks.

Figure 4 displays node i2 and its interactive behavior (i.e., local information within
the graph structure). The GAT allocates attention weight coefficients to the first-order
neighborhood exclusively, thereby accomplishing the task of neighborhood information
aggregation. However, when conducting a commonality analysis of nodes i2 and others
such as i1, i3, i6, i7, i8, it is observed that nodes i2 and i8 exhibit a higher similarity in
interactive behaviors, suggesting a higher likelihood of them belonging to the same category.
In the process of feature fusion, the importance of i8 relative to i2 should be considered
greater than that of other nodes.

Electronics 2024, 13, 3985 8 of 23

Electronics 2024, 13, x FOR PEER REVIEW 8 of 24

Figure 4 displays node 𝑖2 and its interactive behavior (i.e., local information within

the graph structure). The GAT allocates attention weight coefficients to the first-order

neighborhood exclusively, thereby accomplishing the task of neighborhood information

aggregation. However, when conducting a commonality analysis of nodes 𝑖2 and others

such as𝑖1, 𝑖3, 𝑖6, 𝑖7, 𝑖8 , it is observed that nodes 𝑖2 and 𝑖8 exhibit a higher similarity in

interactive behaviors, suggesting a higher likelihood of them belonging to the same

category. In the process of feature fusion, the importance of 𝑖8 relative to 𝑖2 should be

considered greater than that of other nodes.

Figure 4. Local interaction diagram.

However, for a GAT to capture high-order neighborhood information similar to that

of node 𝑖8, it necessitates an increase in the depth of the network model. That is, multiple

convolution operations are required to achieve the capability of aggregating high-order

neighborhood information. Yet, with the decay of feature information during network

propagation, even the acquisition of high-order features exerts a relatively limited impact

on the target node. An excessive number of network layers leads to embedding features

learned by different nodes becoming overly alike, making it difficult to distinguish

effectively, thus causing the oversmoothing phenomenon and consequently restricting

performance improvement. Therefore, this paper proposes the introduction of the

collaborative filtering concept, through reconstructing the graph structure, to enhance the

probability of target nodes directly aggregating neighbors with similar traits. The

objective is to effectively capture the information of nodes in deep neighborhoods without

increasing the number of network layers, thereby mitigating the issue of oversmoothing

and enhancing the model’s ability to classify.

The graph reconstruction module utilizes the interactive behaviors between nodes as

the basis for constructing the graph. However, the adjacency matrix generated by these

interactive behaviors often exhibits highly sparse characteristics, which are not conducive

to subsequent similarity calculations. To mitigate this issue, this paper adopts an

undirected graph approach, forming a diagonal matrix to improve the sparsity problem

to a certain extent. For the problem of isolated nodes, to ensure the effectiveness of the

computation, an identity matrix is added to the adjacency matrix, creating an adjacency

matrix with self-loops, �̃� which acts as the feature matrix for the nodes. 𝑎�̃� represents the

ith row of matrix �̃�, indicating the feature information of node 𝑖. Using cosine similarity,

calculate the differences in interaction behaviors between different nodes, thereby laying

the groundwork for subsequent graph construction.

This paper chooses cosine similarity to calculate the differences in interactive

behaviors between different nodes. Due to the characteristics of the data itself, when

measuring differences using distance metrics, more emphasis is placed on relative

differences. The cosine angle effectively avoids the variances in the individual perception

of similarities, focusing more on the differences between dimensions rather than absolute

numerical differences. For example, when analyzing the viewing behaviors of two dramas

by users A and B, with user A’s viewing vector being (0,1) and user B’s (1,0), their cosine

similarity is significant while the Euclidean distance is minimal. Analyzing the two users’

preferences for different videos, it is clear that cosine similarity, which focuses more on

relative differences, should be used.

Figure 4. Local interaction diagram.

However, for a GAT to capture high-order neighborhood information similar to that
of node i8, it necessitates an increase in the depth of the network model. That is, multiple
convolution operations are required to achieve the capability of aggregating high-order
neighborhood information. Yet, with the decay of feature information during network prop-
agation, even the acquisition of high-order features exerts a relatively limited impact on the
target node. An excessive number of network layers leads to embedding features learned
by different nodes becoming overly alike, making it difficult to distinguish effectively,
thus causing the oversmoothing phenomenon and consequently restricting performance
improvement. Therefore, this paper proposes the introduction of the collaborative filtering
concept, through reconstructing the graph structure, to enhance the probability of target
nodes directly aggregating neighbors with similar traits. The objective is to effectively
capture the information of nodes in deep neighborhoods without increasing the number of
network layers, thereby mitigating the issue of oversmoothing and enhancing the model’s
ability to classify.

The graph reconstruction module utilizes the interactive behaviors between nodes
as the basis for constructing the graph. However, the adjacency matrix generated by
these interactive behaviors often exhibits highly sparse characteristics, which are not
conducive to subsequent similarity calculations. To mitigate this issue, this paper adopts
an undirected graph approach, forming a diagonal matrix to improve the sparsity problem
to a certain extent. For the problem of isolated nodes, to ensure the effectiveness of the
computation, an identity matrix is added to the adjacency matrix, creating an adjacency

matrix with self-loops,
∼
A which acts as the feature matrix for the nodes.

∼
ai represents the

ith row of matrix
∼
A, indicating the feature information of node i. Using cosine similarity,

calculate the differences in interaction behaviors between different nodes, thereby laying
the groundwork for subsequent graph construction.

This paper chooses cosine similarity to calculate the differences in interactive behaviors
between different nodes. Due to the characteristics of the data itself, when measuring dif-
ferences using distance metrics, more emphasis is placed on relative differences. The cosine
angle effectively avoids the variances in the individual perception of similarities, focusing
more on the differences between dimensions rather than absolute numerical differences.
For example, when analyzing the viewing behaviors of two dramas by users A and B, with
user A’s viewing vector being (0,1) and user B’s (1,0), their cosine similarity is significant
while the Euclidean distance is minimal. Analyzing the two users’ preferences for different
videos, it is clear that cosine similarity, which focuses more on relative differences, should
be used.

By continuously traversing all nodes between the current node and all nodes through
Formula (1), the similarity matrix S is obtained, where sij represents the degree of similarity
between nodes i and j. The higher the value, the more similar the interactive behaviors
between the two nodes are. After calculating the similarity matrix S, nodes with the highest
similarity are added to the basic graph structure, increasing the number of neighbors
for the target node and generating an enhanced graph (represented by the enhanced
graph adjacency matrix Ae). This facilitates the model’s ability to integrate high-order
neighborhood information during the convolution process, thereby improving the overall
performance of the model.

Electronics 2024, 13, 3985 9 of 23

Figure 5 shows the enhanced graph structure, with red lines representing the edges
added compared to the basic graph structure. This method extends the model’s connectivity
on the first-order neighborhood, facilitating subsequent feature aggregation.

Electronics 2024, 13, x FOR PEER REVIEW 9 of 24

By continuously traversing all nodes between the current node and all nodes through

Formula (1), the similarity matrix 𝑆 is obtained, where 𝑠𝑖𝑗 represents the degree of

similarity between nodes i and j. The higher the value, the more similar the interactive

behaviors between the two nodes are. After calculating the similarity matrix 𝑆 , nodes

with the highest similarity are added to the basic graph structure, increasing the number

of neighbors for the target node and generating an enhanced graph (represented by the

enhanced graph adjacency matrix 𝐴𝑒). This facilitates the model’s ability to integrate

high-order neighborhood information during the convolution process, thereby improving

the overall performance of the model.

Figure 5 shows the enhanced graph structure, with red lines representing the edges

added compared to the basic graph structure. This method extends the model’s

connectivity on the first-order neighborhood, facilitating subsequent feature aggregation.

Figure 5. Enhanced graph.

However, this approach serves merely as an expansion of the basic graph structure,

and its impact is relatively limited; the structural information that the model can capture

in the feature aggregation phase is also quite singular. Therefore, this paper reconstructs

the basic graph structure through the KNN algorithm. By utilizing the similarity in

interactive behaviors between different nodes, the top K most similar nodes are selected

as neighbors for the target node, thereby constructing a new graph structure (a similar

behavior graph) that reflects the similarity in interactive behaviors. This serves as the basis

for downstream model aggregation, represented by the similar behavior adjacency matrix

𝐴𝑠 . This method allows the model to capture more comprehensive structural and

neighborhood information, thereby improving the effectiveness of the embedding

representation. Figure 6 shows the new graph structure constructed using the KNN

algorithm.

Figure 6. Similar behavior graph.

Ultimately, the graph reconstruction module outputs two types of graph structures

(𝐴𝑒 and 𝐴𝑠), which are used for learning the embedding representations of identical

nodes, facilitating the processing of subsequent tasks.

Figure 5. Enhanced graph.

However, this approach serves merely as an expansion of the basic graph structure,
and its impact is relatively limited; the structural information that the model can capture in
the feature aggregation phase is also quite singular. Therefore, this paper reconstructs the
basic graph structure through the KNN algorithm. By utilizing the similarity in interactive
behaviors between different nodes, the top K most similar nodes are selected as neighbors
for the target node, thereby constructing a new graph structure (a similar behavior graph)
that reflects the similarity in interactive behaviors. This serves as the basis for downstream
model aggregation, represented by the similar behavior adjacency matrix As. This method
allows the model to capture more comprehensive structural and neighborhood information,
thereby improving the effectiveness of the embedding representation. Figure 6 shows the
new graph structure constructed using the KNN algorithm.

Electronics 2024, 13, x FOR PEER REVIEW 9 of 24

By continuously traversing all nodes between the current node and all nodes through

Formula (1), the similarity matrix 𝑆 is obtained, where 𝑠𝑖𝑗 represents the degree of

similarity between nodes i and j. The higher the value, the more similar the interactive

behaviors between the two nodes are. After calculating the similarity matrix 𝑆 , nodes

with the highest similarity are added to the basic graph structure, increasing the number

of neighbors for the target node and generating an enhanced graph (represented by the

enhanced graph adjacency matrix 𝐴𝑒). This facilitates the model’s ability to integrate

high-order neighborhood information during the convolution process, thereby improving

the overall performance of the model.

Figure 5 shows the enhanced graph structure, with red lines representing the edges

added compared to the basic graph structure. This method extends the model’s

connectivity on the first-order neighborhood, facilitating subsequent feature aggregation.

Figure 5. Enhanced graph.

However, this approach serves merely as an expansion of the basic graph structure,

and its impact is relatively limited; the structural information that the model can capture

in the feature aggregation phase is also quite singular. Therefore, this paper reconstructs

the basic graph structure through the KNN algorithm. By utilizing the similarity in

interactive behaviors between different nodes, the top K most similar nodes are selected

as neighbors for the target node, thereby constructing a new graph structure (a similar

behavior graph) that reflects the similarity in interactive behaviors. This serves as the basis

for downstream model aggregation, represented by the similar behavior adjacency matrix

𝐴𝑠 . This method allows the model to capture more comprehensive structural and

neighborhood information, thereby improving the effectiveness of the embedding

representation. Figure 6 shows the new graph structure constructed using the KNN

algorithm.

Figure 6. Similar behavior graph.

Ultimately, the graph reconstruction module outputs two types of graph structures

(𝐴𝑒 and 𝐴𝑠), which are used for learning the embedding representations of identical

nodes, facilitating the processing of subsequent tasks.

Figure 6. Similar behavior graph.

Ultimately, the graph reconstruction module outputs two types of graph structures
(Ae and As), which are used for learning the embedding representations of identical nodes,
facilitating the processing of subsequent tasks.

3.3. Graph Data Feature Mining Module

This paper employs the GAT as the foundational model for feature fusion. By integrat-
ing self-attention layers, GAT effectively overcomes the limitations of traditional GCN and
their related approximations. It utilizes an attention mechanism to allocate unique weights
to different nodes within neighborhoods. This strategy significantly enhances the model’s
sensitivity to newly added neighbor nodes, thereby facilitating a deeper understanding
and learning of neighborhood information.

In the implementation phase, the similar behavior adjacency matrix As (which achieves
self-loops by adding an identity matrix to As along with the node features h, are input
into the GAT1. The calculation is performed according to Equation (7), producing node

Electronics 2024, 13, 3985 10 of 23

embedding representations Zs that exhibit similar interactive behaviors, serving as the
output from GAT1:

Zl
s = ||Kk=1ELU

(
∑j∈Ni(As)

αk
ijW

kZl−1
s

)
(7)

In this process, feature extraction is realized through the use of linear transformation
matrices Wk, facilitating the calculation of attention coefficients αk

ij, which serve as the
attention weights between node i and its neighbor j in the Similar behavior graph. By
leveraging these weight metrics αk

ij and employing the ELU as the activation function, a non-
linear transformation is applied to the learned embedding representations, where K denotes
the number of attention heads. The adoption of the multi-head attention mechanism not
only stabilizes the learning process but also effectively mitigates the risk of overfitting. By
aggregating the feature information from K attention heads, an enhanced node embedding
representation Zl

s on the graph of similar behaviors is constructed, thereby enhancing both
the model’s expressive power and its classification accuracy.

Subsequently, the enhanced graph adjacency matrix Ae, generated through cosine
similarity, along with the base features h, are fed into the second GAT2. As indicated by
Equation (8), although αk

ij and Wk represent the attention parameters and feature extraction
matrices within GAT2, respectively, and maintain the same form as those within GAT1, the
two models operate independently and do not share parameters.

Zl
e = ||Kk=1ELU

(
∑ j∈Ni(Ae)

αk
ijW

kZl−1
e

)
(8)

Ultimately, features of the same node Zs and Ze are captured independently by the
two GAT networks from different graph structures. These features are then fused by setting
the hyperparameter β to amalgamate node information from the disparate networks, culmi-
nating in the final node embedding representation Z. This representation is subsequently
fed into the classification prediction module for multi-class prediction, as delineated in
Equation (9):

Z = (β × Zs) + ((1 − β)× Ze) (9)

The two-channel learning strategy implemented in this paper comprehensively cap-
tures the feature information and details of the two graph structures, reflecting them fully
in the nodes’ embedding representations, thereby significantly improving the model’s
classification performance.

3.4. Classification Result Prediction Module

Building upon the aforementioned framework, this study opts for cross-entropy as
the loss function, suitable for addressing semi-supervised classification problems. The
feature extraction matrix W is applied to the input node embedding representations for
feature selection, and Softmax is utilized as the activation function to obtain the model’s
final output ŷ, as depicted in Equation (10):

ŷ = Softmax(W·Z + b) (10)

The cross-entropy loss function is employed to measure the difference between pre-
dicted labels and true labels, calculating the classification loss function Lclass:

Lclass = −∑l∈L ∑M
c=1 ylcln(ŷlc) (11)

Here, M represents the number of categories, and ylm denotes the true labels describing
the real categories of the current nodes, directing predictions for all l ∈ L under the
guidance of the labeled training set L. Predicted outcomes are represented using ŷlm.
Through backpropagation, network parameters are optimized and updated with the goal
of minimizing the loss function, enabling the model to effectively learn and recognize

Electronics 2024, 13, 3985 11 of 23

the significance differences between nodes, thereby significantly enhancing the overall
performance and classification accuracy of the algorithm.

4. TCC_GAT Model
4.1. Pseudocode for TCC_GAT

In this paper, a Two-Channel Classification Algorithm Based on Graph Attention
Network (TCC_GAT) is introduced. This algorithm merges the concept of collaborative
filtering, constructs two distinct graph structures, and employs parallel graph attention
networks to effectively aggregate neighborhood information from each structure, thereby
significantly enhancing performance. The following is the pseudocode for the graph
reconstruction module, which is one of the key components of the TCC_GAT Algorithm 1.

Algorithm 1: The pseudo code of the TCC_GAT

Input:
Number of nearest neighbors in KNN : K
Graph adjacency matrix : A
Number of nodes in the graph : N

Output:
Similarity behavior graph adjacency matrix : As
Enhanced graph adjacency matrix : Ae

1 Initialize As

2
∼
A = A + I;

3 for i = 0 to N − 1 do
4 for j = 0 to N − 1 do

5 sij =
∼
ai ·

∼
aj∥∥∥∼

ai

∥∥∥·∥∥∥∼
aj

∥∥∥ =
∑n

k=1

(∼
aik×

∼
ajk

)
√

∑n
k=1

(∼
aik

)2
×
√

∑n
k=1

(∼
ajk

)2
//Cosine similarity

6 sii = 0; //Zeroing self-similarity
7 end for
8 end for
9 for i = 0 to N − 1 do //Iterate over all nodes
10 dist = zip (S [i], range (N));
11 //Storing similarities and indices of node i with all other nodes in a list
12 dist = sorted (dist, key = lamda, x :−x[0]);
13 //Sorting pairs in descending order by similarity
14 for m = 0 to K − 1 do
15 neighbourID = dist[m][1];
16 //Finding the indices of the top K most similar neighbors
17 end for
18 for each j ∈ neighbourID do
19 As[i][j]= 1.0;
20 As[i][j]= As[j][i]; // Create adjacency matrixAs
21 end for
22 for each j ∈ neighbourID[0] do
23 A[i][j]= 1.0;
24 A[i][j]= A[j][i]; //Enhanced adjacency matrix A
25 end for
26 end for
27 Ae= A; // Create adjacency matrixAe
28 return Ae, As

Based on the pseudocode presented above, it is demonstrated how the graph recon-
struction module within the TCC_GAT algorithm utilizes cosine similarity and the KNN
method to improve the graph structures. Subsequently, by aggregating neighborhood
information from different graph structures through parallel GAT models, the algorithm
can generate embedding representations of the same node across various graph structures.

Electronics 2024, 13, 3985 12 of 23

By integrating these diverse embeddings, a significant enhancement in node classification
performance is ultimately achieved.

4.2. Analysis of Complexity for TCC_GAT

The time complexity of the TCC_GAT model is O(|V|FF′+|E|F′)× K, where F repre-
sents the initial feature dimensionality of the nodes, F′ is the new feature dimensionality
after passing through a graph attention layer, and K is the number of heads in the multi-
head attention mechanism.

In the TCC_GAT model, the features hi of the target node are initially passed through
a feature extraction matrix W for feature transformation, with a time complexity of O(FF′).
For all nodes in the graph, the complexity is O(|V|FF′), where |V| is the number of nodes
in the graph. When calculating attention coefficients, the model utilizes a shared attention
mechanism a, concatenating the vectors of any two nodes and mapping them to real space,
which incurs a time complexity of O(F′). Since this calculation is performed for each
edge, the complexity for this part is O(|E|F′). The aggregation process, being a weighted
summation operation, does not involve complex computations. By employing a graph
reconstruction strategy, the model is capable of converging in fewer epochs. Overall, the
proposed model demonstrates a clear advantage in complexity.

5. Experimental Results and Analysis
5.1. Dataset

To validate the performance of the algorithm proposed in this paper, experiments
were conducted on three commonly used citation datasets for node classification: Cora,
Citeseer, and Pubmed. Nodes in these datasets represent academic papers, while the
citation relationships between these papers constitute the edge information of the datasets.
The specific dataset statistics are presented in Table 1 below.

Table 1. Citation data set.

Dataset Node Edge Feature Label

Cora 2708 5429 1433 7
Citeseer 3327 4732 3703 6
Pubmed 19,717 44,338 500 3

The Cora dataset primarily comprises academic papers from the machine learning
field and has been widely used in the deep learning domain in recent years. This dataset
contains a total of 2708 paper samples, categorized into seven classes: Case-Based, Ge-
netic Algorithms, Neural Networks, Probabilistic Methods, Reinforcement Learning, Rule
Learning, and Theory. Each paper is represented by a 1433-dimensional word vector. Each
dimension corresponds to a word from a dictionary of 1433 words; the value is 1 if the
word appears in the paper, otherwise, it is 0.

The Citeseer dataset encompasses papers from six major academic fields: Agents,
Artificial Intelligence, Database, Machine Learning, and Human-Computer Interaction. It
contains a total of 3327 papers, which form the dataset’s relationship network through
mutual citations. After removing stop words and filtering out words that appear less than
ten times in the corpus, 3703 unique words were extracted.

The Pubmed dataset is derived from the Pubmed database and consists of 19,717
scientific papers in the field of diabetes, classified into three categories: Diabetes Mellitus,
Experimental; Diabetes Mellitus Type 1; Diabetes Mellitus Type 2. The papers in this dataset
are linked through 44,338 citation relationships. Each paper is represented by a TF/IDF
weighted word vector, extracted from a dictionary comprising 500 unique vocabulary terms.

Electronics 2024, 13, 3985 13 of 23

5.2. Experimental Setup

The experimental environment for the model includes both hardware configuration
and software versions. On the hardware side, the GPU model used is the GeForce RTX
2080 Ti, and the CPU is an Intel(R) Xeon(R) Gold 6130. The software environment relies on
the Windows 10 operating system, with Python version 3.8.3, and PyTorch version 1.7.1.
All experiments were conducted on the Jupyter Notebook platform.

Regarding dataset splitting, this paper follows the method outlined in the GAT paper.
The proposed model was tested across various datasets and compared with other models
for analysis. To ensure fairness in comparison, all reference models were configured with
their optimal parameter settings. Following best practices cited in other related papers,
adjustments were made to comparison models to achieve optimal results. In specific
experimental settings, the learning rate for the model was set to 0.009, with the number of
iterations (epochs) at 300, and the number of attention heads in the multi-head attention
mechanism set to 8. The model employs the adaptive optimizer Adam [40], with a dropout
rate of 0.6, a regularization coefficient of 0.001, and ReLU as the activation function. The
experiments were conducted with a random seed set to 72 to ensure the validity and
repeatability of the experiment results.

5.3. Comparison Model Introduction

This experiment contrasts the accuracy of the model proposed in this study with other
models to validate the effectiveness of the proposed model. The following provides a brief
introduction to the models compared:

• Deep Walk [65]: A graph structure data mining method that combines Random Walk
and the Word2Vec algorithm. It manages to learn the implicit structure information
of networks and represents nodes in the graph as vectors containing latent structural
information.

• Node2vec Model: A graph embedding method that considers neighborhood char-
acteristics of Depth-First Search (DFS) and Breadth-First Search (BFS), acting as an
extension of the Deep Walk algorithm.

• Graph Convolutional Network (GCN): GCN updates the embedding representation
of each node by aggregating information from adjacent nodes, learning more complex
feature representations by stacking multiple graph convolutional layers.

• GCNII [66]: Introduced to mitigate the oversmoothing phenomenon of GCN, the
GCNII model enhances the model’s generalization capacity by introducing adaptive
aggregation and polynomial parameterization mechanisms, allowing for dynamic
usage of different graph structures and tasks.

• Deep Graph Convolutional Neural Network (DeepGCN): Built upon stacking mul-
tiple layers of graph convolutional networks. It expands the range of information
propagation by deepening graph convolution layers while effectively alleviating the
oversmoothing issue through the introduction of identity mapping and residual struc-
tures.

• Graph Attention Network (GAT): The GAT model adaptively fuses neighborhood
feature information through a self-attention mechanism and captures different feature
subspaces through a multi-head attention mechanism, thereby enhancing the model’s
expressive power.

The experiments conducted on Cora, Citeseer, and Pubmed datasets, evenly split for
training, validation, and testing, highlight the superior performance of the model proposed
in this article.

5.4. Experimental Results

To ensure fairness in experimentation, the same strategy was employed for dataset
division, conducting semi-supervised experiments on identical citation network datasets.
The datasets were divided such that, for each category, 20 nodes were selected for training.
The initial embeddings for training algorithms utilized the feature information of the

Electronics 2024, 13, 3985 14 of 23

nodes. Moreover, 500 nodes were used for validation, and 1000 nodes were utilized for
testing purposes. Table 2 below presents the performance results of different models on
three datasets.

Table 2. Accuracy results of semi supervised classification experimental data.

Method Cora Citeseer Pubmed

DeepWalk 67.2% 43.2% 65.3%
Node2vec 75.7% 64.7% 77.2%

GCN 81.5% 70.3% 79.0%
GCNII 82.6% 68.9% 78.8%

DeepGCN 84.3% 73.1% 79.2%
GAT 83.8% 72.0% 79.3%

TCC_GAT 86.1% 73.4% 83.8%

To offer a more vivid and direct visualization of the test results, these are presented in
a bar chart in Figure 7.

Electronics 2024, 13, x FOR PEER REVIEW 15 of 24

Figure 7. Model accuracy comparison across datasets.

It can be observed that the GCN model, which aggregates neighborhood information

through the graph structure, shows a significant improvement in node classification

performance compared to traditional methods based on random walks, confirming the

superiority of graph convolutional networks in handling graph-structured data. The

enhancement brought by GCNII indicates that improving the convolution method indeed

aids in enhancing the understanding of graph structures, though this enhancement is

relatively limited. More importantly, aggregating information from the graph structure

fosters the generation of better node embeddings, thereby boosting the model’s

classification performance.

The DeepGCN model, through incorporating residual structures, extends the depth

of the model and enhances its ability to aggregate higher-order neighborhood

information, thereby achieving an improvement in overall performance. However, when

handling large-scale datasets, the performance improvement remains marginal. In

contrast, the GAT model, by introducing attention mechanisms, achieves significant

performance enhancement with merely a shallow model structure. Comparative analysis

between DeepGCN and GAT demonstrates that the traditional GAT model sufficiently

captures crucial graph structural features at shallow levels, while attempts by DeepGCN

to capture more hierarchical graph structural features by deepening the model do not

result in significantly noticeable marginal benefits.

Building on this observation, the TCC_GAT model proposed in this work optimizes

the graph structure on the basis of GAT. It effectively captures the graph structure and

pays attention to higher-order neighborhood information. By employing a shallow model

architecture, it avoids excessive reliance on deep-level features, thus achieving up to a

4.5% increase in classification performance as compared to the baseline GAT model.

5.5. Hyperparameter Discussions

This section addresses the hyperparameter settings, focusing on two crucial

hyperparameters: learning rate and the choice of K for the K-nearest neighbors. The

adjustment of the learning rate plays a pivotal role in the convergence speed of the

algorithm: an excessively high learning rate may prevent the model from converging to

the optimal point, whereas a learning rate that is too low could result in slow convergence,

making it challenging to escape local optima, thereby directly impacting model accuracy.

On the other hand, the choice of K in the TCC_GAT model proposed herein determines

the number of neighboring nodes; selecting too many neighborhood nodes increases

Figure 7. Model accuracy comparison across datasets.

It can be observed that the GCN model, which aggregates neighborhood information
through the graph structure, shows a significant improvement in node classification perfor-
mance compared to traditional methods based on random walks, confirming the superiority
of graph convolutional networks in handling graph-structured data. The enhancement
brought by GCNII indicates that improving the convolution method indeed aids in enhanc-
ing the understanding of graph structures, though this enhancement is relatively limited.
More importantly, aggregating information from the graph structure fosters the generation
of better node embeddings, thereby boosting the model’s classification performance.

The DeepGCN model, through incorporating residual structures, extends the depth of
the model and enhances its ability to aggregate higher-order neighborhood information,
thereby achieving an improvement in overall performance. However, when handling large-
scale datasets, the performance improvement remains marginal. In contrast, the GAT model,
by introducing attention mechanisms, achieves significant performance enhancement with
merely a shallow model structure. Comparative analysis between DeepGCN and GAT
demonstrates that the traditional GAT model sufficiently captures crucial graph structural
features at shallow levels, while attempts by DeepGCN to capture more hierarchical
graph structural features by deepening the model do not result in significantly noticeable
marginal benefits.

Electronics 2024, 13, 3985 15 of 23

Building on this observation, the TCC_GAT model proposed in this work optimizes
the graph structure on the basis of GAT. It effectively captures the graph structure and
pays attention to higher-order neighborhood information. By employing a shallow model
architecture, it avoids excessive reliance on deep-level features, thus achieving up to a 4.5%
increase in classification performance as compared to the baseline GAT model.

5.5. Hyperparameter Discussions

This section addresses the hyperparameter settings, focusing on two crucial hyperpa-
rameters: learning rate and the choice of K for the K-nearest neighbors. The adjustment
of the learning rate plays a pivotal role in the convergence speed of the algorithm: an
excessively high learning rate may prevent the model from converging to the optimal
point, whereas a learning rate that is too low could result in slow convergence, making
it challenging to escape local optima, thereby directly impacting model accuracy. On the
other hand, the choice of K in the TCC_GAT model proposed herein determines the number
of neighboring nodes; selecting too many neighborhood nodes increases computational
load, reducing convergence speed, while selecting too few may lead to insufficient learning
of neighborhood information, affecting model efficiency.

To ensure the accuracy of the experimental data and the effectiveness of the experi-
mental conditions, this study adopts a controlled variable approach to obtain experimental
results. In the learning rate testing experiments, a fixed K value of 3 is used; similarly,
in experiments to select the K value, the learning rate is fixed at 0.009 to ensure accurate
experimental outcomes.

In the context of learning rate selection, the study conducted a series of tests by setting
the learning rate within a numeric range from one to a hundred times 0.001. The experiment
adhered to the parameter settings consistent with those mentioned earlier and varied model
parameters one by one to assess the independent impact of each parameter. As shown
in Figure 8, from a global perspective on data performance, the model exhibits peaks in
performance at learning rate settings of 0.009 and 0.022. After conducting mean value tests
ten times, it was observed that when the learning rate is set to 0.009, the model achieves
the highest accuracy rate of 0.87, along with optimal stability.

Electronics 2024, 13, x FOR PEER REVIEW 16 of 24

computational load, reducing convergence speed, while selecting too few may lead to

insufficient learning of neighborhood information, affecting model efficiency.

To ensure the accuracy of the experimental data and the effectiveness of the

experimental conditions, this study adopts a controlled variable approach to obtain

experimental results. In the learning rate testing experiments, a fixed K value of 3 is used;

similarly, in experiments to select the K value, the learning rate is fixed at 0.009 to ensure

accurate experimental outcomes.

In the context of learning rate selection, the study conducted a series of tests by

setting the learning rate within a numeric range from one to a hundred times 0.001. The

experiment adhered to the parameter settings consistent with those mentioned earlier and

varied model parameters one by one to assess the independent impact of each parameter.

As shown in Figure 8, from a global perspective on data performance, the model exhibits

peaks in performance at learning rate settings of 0.009 and 0.022. After conducting mean

value tests ten times, it was observed that when the learning rate is set to 0.009, the model

achieves the highest accuracy rate of 0.87, along with optimal stability.

Figure 8. Learning rate selection.

To assess the impact of the hyperparameter K on model performance, this study

conducted a comprehensive evaluation across a range of K values from 1 to 10. This was

undertaken to explore the specific influence of varying numbers of neighboring nodes on

the performance of the proposed model when constructing the graph structure. Figure 9

presents the results of this series of experiments, where the horizontal axis represents the

number of neighboring nodes selected by the K-nearest neighbors algorithm in

constructing the graph structure, and the vertical axis denotes the model’s accuracy. The

results indicate that the model achieved the highest accuracy rate when the number of

neighboring nodes was set to 3. As the value of K gradually increased, the accuracy of the

model began to slowly decline. This trend was similarly validated in experiments

conducted on other datasets. Increasing the number of neighboring nodes indeed

contributes to enhancing the model’s classification effect; however, as the number of

neighbors further increases, so does the accompanying noise information, which in turn

leads to a decline in model performance. These findings emphasize the need to balance

enhancing model performance and controlling noise when selecting the value of K.

Figure 8. Learning rate selection.

To assess the impact of the hyperparameter K on model performance, this study
conducted a comprehensive evaluation across a range of K values from 1 to 10. This was
undertaken to explore the specific influence of varying numbers of neighboring nodes on

Electronics 2024, 13, 3985 16 of 23

the performance of the proposed model when constructing the graph structure. Figure 9
presents the results of this series of experiments, where the horizontal axis represents the
number of neighboring nodes selected by the K-nearest neighbors algorithm in constructing
the graph structure, and the vertical axis denotes the model’s accuracy. The results indicate
that the model achieved the highest accuracy rate when the number of neighboring nodes
was set to 3. As the value of K gradually increased, the accuracy of the model began to
slowly decline. This trend was similarly validated in experiments conducted on other
datasets. Increasing the number of neighboring nodes indeed contributes to enhancing
the model’s classification effect; however, as the number of neighbors further increases,
so does the accompanying noise information, which in turn leads to a decline in model
performance. These findings emphasize the need to balance enhancing model performance
and controlling noise when selecting the value of K.

Electronics 2024, 13, x FOR PEER REVIEW 17 of 24

Therefore, based on these experiments and analyses, this study ultimately

determines to set the K value to 3 and the learning rate to 0.009 as the hyperparameter

configuration for the model presented in this paper.

Figure 9. K numbers of neighbors.

5.6. Time Complexity

Under identical experimental settings and dataset partition strategies, this study

compared the TCC_GAT model proposed herein with the GAT and GCN models on the

Cora, Citeseer, and Pubmed datasets in terms of training time. Given the distinct

performances of these models on different graph structures, the improved graph

structures proven effective for them were selected as the basis for model aggregation

testing. Table 3 distinctly demonstrates that, compared to the GCN model with a simpler

overall structure, the model presented in this paper exhibits certain discrepancies in

convergence speed, primarily attributable to the advantages brought about by the smaller

parameter volume of GCN. However, in the comparative analysis with the base model

GAT, it is observed that the TCC_GAT algorithm designed in this paper, which improves

graph structure information through parallel GAT, significantly reduces the model’s

training time.

Table 3. Time comparison table.

Method Cora Citeseer Pubmed

GAT 67.5069 s 46.3596 s 162.0160 s

GCN 13.7267 s 16.2523 s 43.6845 s

TCC_GAT 23.0002 s 17.2497 s 55.5295 s

Specifically, for the Cora dataset, the training duration of TCC_GAT amounts to only

34% of that required by GAT. Similarly, on other datasets, this model also demonstrates

enhanced time efficiency. These experimental results validate that the parallel strategy

proposed in this study not only achieves effectiveness in enhancing model performance

but also demonstrates the capability to improve time efficiency.

Figure 9. K numbers of neighbors.

Therefore, based on these experiments and analyses, this study ultimately determines
to set the K value to 3 and the learning rate to 0.009 as the hyperparameter configuration
for the model presented in this paper.

5.6. Time Complexity

Under identical experimental settings and dataset partition strategies, this study
compared the TCC_GAT model proposed herein with the GAT and GCN models on
the Cora, Citeseer, and Pubmed datasets in terms of training time. Given the distinct
performances of these models on different graph structures, the improved graph structures
proven effective for them were selected as the basis for model aggregation testing. Table 3
distinctly demonstrates that, compared to the GCN model with a simpler overall structure,
the model presented in this paper exhibits certain discrepancies in convergence speed,
primarily attributable to the advantages brought about by the smaller parameter volume
of GCN. However, in the comparative analysis with the base model GAT, it is observed
that the TCC_GAT algorithm designed in this paper, which improves graph structure
information through parallel GAT, significantly reduces the model’s training time.

Electronics 2024, 13, 3985 17 of 23

Table 3. Time comparison table.

Method Cora Citeseer Pubmed

GAT 67.5069 s 46.3596 s 162.0160 s
GCN 13.7267 s 16.2523 s 43.6845 s

TCC_GAT 23.0002 s 17.2497 s 55.5295 s

Specifically, for the Cora dataset, the training duration of TCC_GAT amounts to only
34% of that required by GAT. Similarly, on other datasets, this model also demonstrates
enhanced time efficiency. These experimental results validate that the parallel strategy
proposed in this study not only achieves effectiveness in enhancing model performance
but also demonstrates the capability to improve time efficiency.

5.7. Ablation Experiment

To comprehensively assess the influence of each component of the model on the overall
performance and its necessity, this paper designed and executed a series of ablation studies.
The aim was to delve into the impact of different modules within the model on its overall
performance by adjusting various components. In the comparative experiments, the GAT
utilized the model’s optimal parameter settings. To fully explore the model’s potential, the
maximum training epochs were set to 10,000, providing the model with ample learning
time. Additionally, to enhance training efficiency and prevent overfitting, an early stopping
mechanism was introduced. Training automatically ceases when there is no significant
improvement in model performance over 100 consecutive training epochs. The obtained
results of ablation experiments is shown in Table 4.

Table 4. Results of ablation experiments.

Dataset Metrics GAT GAT-A GAT- B GAT-C TCC_GAT

Cora

F1 82.25% 82.72% 80.11% 83.50% 85.19%
precision 82.52% 82.99% 80.10% 82.74% 84.70%

recall 82.15% 82.60% 80.55% 84.60% 85.70%
accuracy 83.80% 84.30% 82.20% 84.70% 86.10%

Citeseer

F1 66.95% 66.96% 67.10% 67.02% 68.12%
precision 68.60% 69.10% 64.60% 65.89% 70.00%

recall 71.81% 71.88% 72.60% 72.66% 73.38%
accuracy 71.81% 71.80% 72.60% 72.88% 73.40%

Pubmed

F1 78.30% 78.64% 81.10% 82.51% 83.17%
precision 78.42% 78.89% 81.20% 82.62% 83.30%

recall 78.18% 78.53% 81.56% 82.50% 83.12%
accuracy 79.30% 79.91% 82.10% 83.00% 83.80%

Experimental results, as presented in Table 4, offer a comprehensive display of various
model configurations’ performance across different evaluation metrics. Through an in-
depth analysis of these results, a clear understanding of each module’s contribution to
the overall model performance is achieved, providing an important basis for further
optimization and improvement of the model.

Descriptions of models in Table 4:

• GAT: The GAT model represents a baseline single-channel setup, employing the
original node interaction behavior graph as input. It serves as a benchmark in this
study to assess the performance of other enhanced models.

• GAT-A: The GAT-A model, an improved single-channel GAT setup, utilizes cosine
similarity to enhance the basic interaction behaviors, generating an enhanced graph.
This graph forms the basis for model aggregation aimed at capturing richer inter-node
relationships and assessing the effectiveness of high-order neighborhood information.

Electronics 2024, 13, 3985 18 of 23

• GAT-B: The GAT-B model, another single-channel GAT setup, employs the K-nearest
neighbors algorithm to construct a similarity-based graph structure for aggregation.
This approach explores the impact of similarity-based graph structures on model
performance.

• GAT-C: The GAT-C model is a dual-channel classification model combining two dis-
tinct graph structures. It initially performs GAT aggregation using the basic node
interaction behavior graph, then fuses the embedding representations with the out-
puts from the GAT-B model. This design aims to assess whether different graph
structures can complement each other’s model deficiencies, thereby demonstrating
complementary advantages.

• TCC_GAT: The TCC_GAT model is a Two-Channel Classification Algorithm Based on
Graph Attention Network proposed in this study.

Analysis of Experimental Results:
Across all classification metrics, the GAT-A model exhibited superior performance

compared to the baseline GAT model. This result strongly confirms the effectiveness of en-
hancing the basic graph structure using similar interaction behavior nodes. By introducing
cosine similarity, the model is enabled to aggregate high-order neighborhood information
directly, thus improving classification performance.

The GAT-B model exhibited inconsistent performance across different datasets. On
the Cora dataset, GAT-B’s performance was below that of models using the original graph
structure. However, on datasets with richer citation information (such as Citeseer and
Pubmed), GAT-B outperformed GAT using original citation behaviors. This phenomenon
indicates that the effectiveness of reconstructing the paper citation graph structure using
the K-nearest neighbors algorithm largely depends on the richness of edge information.
On datasets with denser edge information, this reconstruction method can bring more
significant performance improvements.

The primary objective of designing the GAT-C model was to validate a hypothesis: the
combined effects of multiple models might surpass that of a singular model. Experimental
results robustly support this hypothesis. By integrating features from both the basic GAT
and GAT-B, the GAT-C model, despite the deficiencies in performance for both GAT and
GAT-B in a single-channel setup, significantly outperformed single models on multiple
metrics when integrated into a dual-channel setup.

Finally, the TCC_GAT model proposed in this paper achieved the best performance
across all three datasets. This result not only validates the effectiveness of the proposed
method but also highlights its stability and adaptability across different data environments.

5.8. Visualization Experiments

In node classification tasks within the realm of graph neural networks, models com-
monly leverage the wealth of graph structure information and neighborhood features to
enhance node identification, ultimately aiming to improve classification accuracy. However,
since node representations are typically high-dimensional data, assessing the quality of
model embeddings in a straightforward manner is challenging. To evaluate the effective-
ness of these generated embeddings, visualization techniques are employed. Nevertheless,
directly evaluating the quality of model embeddings based on feature vectors, due to their
high-dimensional nature, is not intuitive.

Therefore, this study conducted a visualization analysis of embeddings generated
by the TCC_GAT model on the Cora dataset. Comparative models include GCN and
GAT. The nonlinear dimensionality reduction algorithm t-SNE (t-distributed stochastic
neighbor embedding) [67,68] was utilized to reduce high-dimensional data, projecting
feature vectors of different nodes into a three-dimensional space for visualization. Through
these visualization results, it becomes possible to more intuitively observe the distribution
and clustering effects of embeddings generated by different models, thus assessing the
performance of each model in terms of node representation learning.

Electronics 2024, 13, 3985 19 of 23

Figure 10 illustrates the performance of three models on the Cora dataset, presented
through equally proportioned axes in a three-dimensional space. Identical colors repre-
sent the same labels, and the color distribution clearly reveals the visual effects of the
classification by the three models.

Electronics 2024, 13, x FOR PEER REVIEW 20 of 24

(a) (b)

(c)

Figure 10. 3D visualization of Cora dataset using t-SNE. (a) GCN model embeddings-3D t-SNE;

(b) GAT model embeddings-3D t-SNE; (c) TCC_GAT model embeddings-3D t-SNE

For the GCN model, although it manages to distinguish between different node

categories to a certain extent, the boundaries between categories are not well-defined,

resulting in numerous misclassifications. Additionally, the projection of all nodes in the

three-dimensional space appears overly dense, indicating a lack of significant

differentiation between the embeddings of different categories. On the other hand, the

GAT model exhibits a clearer comparative effect in classification. By incorporating an

attention mechanism, the model is better able to comprehend the characteristics of the

graph structure, thus producing more distinct node embeddings and creating gaps

between different clusters. Nonetheless, misclassifications still occur among categories

with fewer data points (projecting into the same space), as evidenced by the difficulty in

precisely distinguishing between categories 5 and 0 in the figure, lacking a clear division.

In comparison, the model proposed in this study renders a more coherent

visualization, forming a congregated state. Within the three-dimensional space, different

categories are situated in their respective areas with almost no significant overlap,

showcasing the model’s superiority. This also validates the effectiveness of graph

Figure 10. 3D visualization of Cora dataset using t-SNE. (a) GCN model embeddings-3D t-SNE;
(b) GAT model embeddings-3D t-SNE; (c) TCC_GAT model embeddings-3D t-SNE.

For the GCN model, although it manages to distinguish between different node
categories to a certain extent, the boundaries between categories are not well-defined,
resulting in numerous misclassifications. Additionally, the projection of all nodes in the
three-dimensional space appears overly dense, indicating a lack of significant differentiation
between the embeddings of different categories. On the other hand, the GAT model exhibits
a clearer comparative effect in classification. By incorporating an attention mechanism, the
model is better able to comprehend the characteristics of the graph structure, thus producing
more distinct node embeddings and creating gaps between different clusters. Nonetheless,
misclassifications still occur among categories with fewer data points (projecting into the
same space), as evidenced by the difficulty in precisely distinguishing between categories 5
and 0 in the figure, lacking a clear division.

Electronics 2024, 13, 3985 20 of 23

In comparison, the model proposed in this study renders a more coherent visualization,
forming a congregated state. Within the three-dimensional space, different categories are
situated in their respective areas with almost no significant overlap, showcasing the model’s
superiority. This also validates the effectiveness of graph structure information and higher-
order neighborhood information in enhancing the embedding representations of nodes,
thereby improving the model’s performance on node classification tasks.

6. Conclusions

This study introduces a Two-Channel Classification Algorithm Based on Graph Atten-
tion Network (TCC_GAT), aimed at enhancing the performance of GNN in node classifica-
tion tasks. Generally, GNN models attempt to improve model performance by incorporat-
ing high-order neighborhood structures and feature information. However, increasing the
model’s depth often leads to oversmoothing. To address this issue, this article proposes an
improved strategy for acquiring high-order information. By exploiting cosine similarity
to explore the similarity in interaction behaviors among nodes, the algorithm identifies
nodes with strong correlations to reinforce the basic graph structure, thereby enhancing its
ability to aggregate high-order neighborhood information while retaining the basic graph
structure. Subsequently, the graph structure is reconstructed using the similarity matrix
and the K-nearest neighbor algorithm, generating a new graph structure that reflects the
similarity in interaction behaviors. This further enhances the model’s ability to aggregate
structural information and high-order neighborhood information. Utilizing parallel GAT
architecture, this study effectively captures the embedding representations of identical
nodes across different structures and updates the embedding representation of the target
node through a merging process.

Comprehensive experimental evaluations, tested across three datasets, demonstrate
that the proposed model significantly improves various performance metrics, including
accuracy, when compared to baseline models. Notably, the model’s convergence rate is more
than double that of the conventional GAT model, reinforcing its superiority in performance.

Nonetheless, there are certain limitations in the generation of node embeddings.
Specifically, the model only utilizes the attention coefficient of the first-order neighborhood
to filter neighboring nodes, thus overlooking the importance of higher-order neighbor-
hoods relative to the target node. This oversight may lead to a deficiency in node feature
information, impacting the effectiveness of neighborhood information aggregation and
consequently affecting classification performance. To overcome this challenge, future re-
search will consider adjusting the importance coefficient of nodes based on the order of
neighboring nodes and their aggregation, increasing the depth of the graph neural network
to further optimize model performance, aiming to achieve more accurate and robust node
classification results.

Author Contributions: Conceptualization, Y.W. and L.Y.; methodology, L.Y., X.W. and G.Z.; software,
Y.W.; validation, Y.W., G.Z. and L.Y.; formal analysis, Y.W.; resources, Y.W.; data curation, Y.W;
writing—original draft preparation, X.W. and Y.W.; writing—review and editing, L.Y. and W.D.;
visualization, Y.W; funding acquisition, L.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: Author Xiaolong Wang was employed by the company Oneg Robot Yinchuan
Co., Ltd. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

Electronics 2024, 13, 3985 21 of 23

References
1. Chitradevi, B.; Srimathi, P. An overview on image processing techniques. Int. J. Innov. Res. Comput. Commun. Eng. 2014, 2,

6466–6472.
2. Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE

Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [CrossRef] [PubMed]
3. Zhou, T.; Porikli, F.; Crandall, D.J.; Van Gool, L.; Wang, W. A survey on deep learning technique for video segmentation. IEEE

Trans. Pattern Anal. Mach. Intell. 2022, 45, 7099–7122. [CrossRef] [PubMed]
4. Michelsanti, D.; Tan, Z.H.; Zhang, S.X.; Xu, Y.; Yu, M.; Yu, D.; Jensen, J. An overview of deep-learning-based audio-visual speech

enhancement and separation. IEEE/ACM Trans. Audio Speech Lang. Process. 2021, 29, 1368–1396. [CrossRef]
5. Ran, X.J.; Suyaroj, N.; Tepsan, W.; Ma, J.H.; Zhou, X.B.; Deng, W. A hybrid genetic-fuzzy ant colony optimization algorithm for

automatic K-means clustering in urban global positioning system. Eng. Appl. Artiffcial Intell. 2024, 137, 109237. [CrossRef]
6. Sarzynska-Wawer, J.; Wawer, A.; Pawlak, A.; Szymanowska, J.; Stefaniak, I.; Jarkiewicz, M.; Okruszek, L. Detecting formal

thought disorder by deep contextualized word representations. Psychiatry Res. 2021, 304, 114135. [CrossRef]
7. Lee, J.; Toutanova, K. Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805.
8. Deng, W.; Li, X.Y.; Xu, J.J.; Li, W.H.; Zhu, G.T.; Zhao, H.M. BFKD: Blockchain-based federated knowledge distillation for aviation

Internet of Things. IEEE T. Reliab. 2024.
9. Gao, L.; Wang, H.; Zhang, Z.; Zhuang, H.; Zhou, B. HetInf: Social influence prediction with heterogeneous graph neural network.

Front. Phys. 2022, 9, 787185. [CrossRef]
10. Johnson, F.; Adebukola, O.; Ojo, O.; Alaba, A.; Victor, O. A task performance and fitness predictive model based on neuro-fuzzy

modeling. Artif. Intell. Appl. 2024, 2, 66–72. [CrossRef]
11. Jiang, Y. Information Fusion Recommendation Based on Convolutional Graph and Neural Collaborative Filtering; Jilin University:

Changchun, China, 2018.
12. Yin, L.; Chen, P.; Zheng, G. Session-Enhanced Graph Neural Network Recommendation Model (SE-GNNRM). Appl. Sci. 2022, 12,

4314. [CrossRef]
13. Zhao, H.; Gao, Y.; Deng, W. Defect detection using shuffle Net-CA-SSD lightweight network for turbine blades in IoT. IEEE

Internet Things J. 2024. [CrossRef]
14. Yin, L.; Chen, P.; Zheng, G. Recommendation Algorithm for Multi-Task Learning with Directed Graph Convolutional Networks.

Appl. Sci. 2022, 12, 8956. [CrossRef]
15. Chen, H.; Ru, J.; Long, H.; He, J.; Chen, T.; Deng, W. Semi-supervised adaptive pseudo-label feature learning for hyperspectral

image classification in internet of things. IEEE Internet Things J. 2024, 11, 30754–30768. [CrossRef]
16. Li, W.; Liu, D.; Li, Y.; Hou, M.; Liu, J.; Zhao, Z.; Guo, A.; Zhao, H.; Deng, W. Fault diagnosis using variational autoencoder GAN

and focal loss CNN under unbalanced data. Struct. Health Monit. 2024. [CrossRef]
17. Bhosle, K.; Musande, V. Evaluation of deep learning CNN Model for recognition of Devanagari digit. Artif. Intell. Appl. 2023, 1,

114–118. [CrossRef]
18. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,

2278–2324. [CrossRef]
19. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 2012, 25, 1–9. [CrossRef]
20. Lin, Y.; Guo, D.; Wu, Y.; Li, L.; Wu, E.Q.; Ge, W. Fuel consumption prediction for pre-departure flights using attention-based

multi-modal fusion. Inf. Fusion 2024, 101, 101983. [CrossRef]
21. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
22. Preethi, P.; Mamatha, H.R. Region-based convolutional neural network for segmenting text in epigraphical images. Artif. Intell.

Appl. 2023, 1, 119–127. [CrossRef]
23. Yan, S.; Shao, H.; Wang, J.; Zheng, X.; Liu, B. LiConvFormer: A lightweight fault diagnosis framework using separable multiscale

convolution and broadcast self-attention. Expert Syst. Appl. 2024, 237, 121338. [CrossRef]
24. Guo, D.; Wu, E.Q.; Wu, Y.; Zhang, J.; Law, R.; Lin, Y. FlightBERT: Binary Encoding Representation for Flight Trajectory Prediction.

IEEE Trans. Intell. Transp. Syst. 2023, 24, 1828–1842. [CrossRef]
25. Wang, Z.; Wang, Q.; Liu, Z.; Wu, T. A deep learning interpretable model for river dissolved oxygen multi-step and interval

prediction based on multi-source data fusion. J. Hydrol. 2024, 629, 130637. [CrossRef]
26. Li, T.Y.; Shu, X.Y.; Wu, J.; Zheng, Q.X.; Lv, X.; Xu, J.X. Adaptive weighted ensemble clustering via kernel learning and local

information preservation. Knowl.-Based Syst. 2024, 294, 111793. [CrossRef]
27. Yan, Z.; Yang, H.; Guo, D.; Lin, Y. Improving airport arrival flow prediction considering heterogeneous and dynamic network

dependencies. Inf. Fusion. 2023, 100, 101924. [CrossRef]
28. Li, M.; Lv, Z.; Cao, Q.; Gao, J.; Hu, B. Automatic assessment method and device for depression symptom severity based on

emotional facial expression and pupil-wave. IEEE Trans. Instrum. Meas. 2024, 20, 42. [CrossRef]
29. Li, X.; Zhao, H.; Deng, W. IOFL: Intelligent-optimization-based federated learning for Non-IID data. IEEE Internet Things J. 2024,

11, 16693–16699. [CrossRef]

https://doi.org/10.1109/TNNLS.2021.3084827
https://www.ncbi.nlm.nih.gov/pubmed/34111009
https://doi.org/10.1109/TPAMI.2022.3225573
https://www.ncbi.nlm.nih.gov/pubmed/36449595
https://doi.org/10.1109/TASLP.2021.3066303
https://doi.org/10.1016/j.engappai.2024.109237
https://doi.org/10.1016/j.psychres.2021.114135
https://doi.org/10.3389/fphy.2021.787185
https://doi.org/10.47852/bonviewAIA32021010
https://doi.org/10.3390/app12094314
https://doi.org/10.1109/JIOT.2024.3409823
https://doi.org/10.3390/app12188956
https://doi.org/10.1109/JIOT.2024.3412925
https://doi.org/10.1177/14759217241254121
https://doi.org/10.47852/bonviewAIA3202441
https://doi.org/10.1109/5.726791
https://doi.org/10.1145/3065386
https://doi.org/10.1016/j.inffus.2023.101983
https://doi.org/10.47852/bonviewAIA2202293
https://doi.org/10.1016/j.eswa.2023.121338
https://doi.org/10.1109/TITS.2022.3219923
https://doi.org/10.1016/j.jhydrol.2024.130637
https://doi.org/10.1016/j.knosys.2024.111793
https://doi.org/10.1016/j.inffus.2023.101924
https://doi.org/10.1109/TIM.2024.3415778
https://doi.org/10.1109/JIOT.2024.3354942

Electronics 2024, 13, 3985 22 of 23

30. Bhatti, U.A.; Tang, H.; Wu, G.; Marjan, S.; Hussain, A. Deep learning with graph convolutional networks: An overview and latest
applications in computational intelligence. Int. J. Intell. Syst. 2023, 2023, 8342104. [CrossRef]

31. Lu, Y.; Chen, Y.; Zhao, D.; Liu, B.; Lai, Z.; Chen, J. CNN-G: Convolutional neural network combined with graph for image
segmentation with theoretical analysis. IEEE Trans. Cogn. Dev. Syst. 2020, 13, 631–644. [CrossRef]

32. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and
applications. AI Open 2020, 1, 57–81. [CrossRef]

33. Wu, Z.; Zhan, M.; Zhang, H.; Luo, Q.; Tang, K. MTGCN: A multi-task approach for node classification and link prediction in
graph data. Inf. Process. Manag. 2022, 59, 102902. [CrossRef]

34. Sun, Q.; Chen, J.; Zhou, L.; Ding, S.; Han, S. A study on ice resistance prediction based on deep learning data generation method.
Ocean. Eng. 2024, 301, 117467. [CrossRef]

35. Shao, H.; Zhou, X.; Lin, J.; Liu, B. Few-shot cross-domain fault diagnosis of bearing driven by Task-supervised ANIL. IEEE
Internet Things J. 2024, 11, 22892–22902. [CrossRef]

36. Li, B.; Wu, J.; Pi, D.; Lin, Y. Dual mutual robust graph convolutional network for weakly supervised node classification in social
networks of Internet of People. IEEE Internet Things J. 2021, 10, 14798–14809. [CrossRef]

37. Song, Y.J.; Han, L.H.; Zhang, B.; Deng, W. A dual-time dual-population multi-objective evolutionary algorithm with application
to the portfolio optimization problem. Eng. Appl. Artiffcial Intell. 2024, 133, 108638. [CrossRef]

38. Xie, Y.; Yao, C.; Gong, M.; Chen, C.; Qin, A. Graph convolutional networks with multi-level coarsening for graph classification.
Knowl.-Based Syst. 2020, 194, 105578. [CrossRef]

39. Xu, J.; Li, T.; Zhang, D.; Wu, J. Ensemble clustering via fusing global and local structure information. Expert Syst. Appl. 2024, 237,
121557. [CrossRef]

40. Li, M.; Wang, Y.Q.; Yang, C.; Lu, Z.; Chen, J. Automatic diagnosis of depression based on facial expression information and deep
convolutional neural network. IEEE Trans. Comput. Soc. Syst. 2024, 1–12. [CrossRef]

41. Xiao, Y.; Shao, H.; Lin, J.; Huo, Z.; Liu, B. BCE-FL: A secure and privacy-preserving federated learning system for device fault
diagnosis under Non-IID Condition in IIoT. IEEE Internet Things J. 2024, 11, 14241–14252. [CrossRef]

42. Wang, J.; Shao, H.; Peng, Y.; Liu, B. PSparseFormer: Enhancing fault feature extraction based on parallel sparse self-attention and
multiscale broadcast feed-forward block. IEEE Internet Things J. 2024, 11, 22982–22991. [CrossRef]

43. Ma, Y.; Wang, S.; Aggarwal, C.C.; Tang, J. Graph convolutional networks with eigenpooling. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 723–731.

44. Li, Q.; Han, Z.; Wu, X.M. Deeper insights into graph convolutional networks for semi-supervised learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32.

45. Zhu, Z.; Zhang, Z.; Xhonneux, L.P.; Tang, J. Neural bellman-ford networks: A general graph neural network framework for link
prediction. Adv. Neural Inf. Process. Syst. 2021, 34, 29476–29490.

46. Long, Y.; Wu, M.; Liu, Y.; Fang, Y.; Kwoh, C.K.; Chen, J.; Luo, J.; Li, X. Pre-training graph neural networks for link prediction in
biomedical networks. Bioinformatics 2022, 38, 2254–2262. [CrossRef] [PubMed]

47. Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying graph convolutional networks. Int. Conf. Mach. Learn.
PMLR 2019, 97, 6861–6871.

48. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the 31st Conference on
Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; Volume 30.

49. Wang, X.; Zhu, M.; Bo, D.; Cui, P.; Shi, C.; Pei, J. Am-gcn: Adaptive multi-channel graph convolutional networks. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, CA, USA, 6–10 July
2020; pp. 1243–1253.

50. Hong, Y.; Rodriguez, C.; Qi, Y.; Wu, Q.; Gould, S. Language and visual entity relationship graph for agent navigation. Adv. Neural
Inf. Process. Syst. 2020, 33, 7685–7696.

51. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
52. Li, G.; Muller, M.; Thabet, A.; Ghanem, B. Deepgcns: Can gcns go as deep as cnns? In Proceedings of the IEEE/CVF International

Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9267–9276.
53. Li, F.; Chen, J.; Zhou, L.; Kujala, P. Investigation of ice wedge bearing capacity based on an anisotropic beam analogy. Ocean. Eng.

2024, 302, 117611. [CrossRef]
54. Zhao, H.; Wang, L.; Zhao, Z.; Deng, W. A new fault diagnosis approach using parameterized time-reassigned multisynchrosqueez-

ing transform for rolling bearings. IEEE Trans. Reliab. 2024, 1–10. [CrossRef]
55. Xie, P.; Deng, L.; Ma, Y.; Deng, W.Q. EV-Call 120: A new-generation emergency medical service system in China. J. Transl. Intern.

Med. 2024, 12, 209–212. [CrossRef]
56. Deng, W.; Chen, X.; Li, X.; Zhao, H. Adaptive federated learning with negative inner product aggregation. IEEE Internet Things J.

2023, 11, 6570–6581. [CrossRef]
57. Gao, J.; Wang, Z.; Jin, T.; Cheng, J.; Lei, Z.; Gao, S. Information gain ratio-based subfeature grouping empowers particle swarm

optimization for feature selection. Knowl.-Based Syst. 2024, 286, 111380. [CrossRef]
58. Huang, C.; Wu, D.Q.; Zhou, X.B.; Song, Y.J.; Chen, H.L.; Deng, W. Competitive swarm optimizer with dynamic multi-competitions

and convergence accelerator for large-scale optimization problems. Appl. Soft Comput. 2024, 167, 112252. [CrossRef]
59. Rongmei, Z.; Jiahui, Z. Research review of graph neural network technology. J. Hebei Acad. Sci. 2022, 39, 1–13.

https://doi.org/10.1155/2023/8342104
https://doi.org/10.1109/TCDS.2020.2998497
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.ipm.2022.102902
https://doi.org/10.1016/j.oceaneng.2024.117467
https://doi.org/10.1109/JIOT.2024.3360432
https://doi.org/10.1109/JIOT.2021.3091883
https://doi.org/10.1016/j.engappai.2024.108638
https://doi.org/10.1016/j.knosys.2020.105578
https://doi.org/10.1016/j.eswa.2023.121557
https://doi.org/10.1109/TCSS.2024.3393247
https://doi.org/10.1109/JIOT.2023.3340745
https://doi.org/10.1109/JIOT.2024.3377674
https://doi.org/10.1093/bioinformatics/btac100
https://www.ncbi.nlm.nih.gov/pubmed/35171981
https://doi.org/10.1016/j.oceaneng.2024.117611
https://doi.org/10.1109/TR.2024.3371520
https://doi.org/10.2478/jtim-2023-0143
https://doi.org/10.1109/JIOT.2023.3312059
https://doi.org/10.1016/j.knosys.2024.111380
https://doi.org/10.1016/j.asoc.2024.112252

Electronics 2024, 13, 3985 23 of 23

60. Vaswani, A. Attention is all you need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS
2017), Long Beach, CA, USA, 4–9 December 2017.

61. Phan, V.M.H.; Xie, Y.; Zhang, B.; Qi, Y.; Liao, Z.; Perperidis, A.; Phung, S.L.; Verjans, J.W.; To, M.-S. Structural Attention:
Rethinking Transformer for Unpaired Medical Image Synthesis. arXiv 2024, arXiv:2406.18967.

62. Ge, C.; Song, Y.; Ma, C.; Qi, Y.; Luo, P. Rethinking attentive object detection via neural attention learning. IEEE Trans. Image
Process. 2023, 33, 1726–1739. [CrossRef] [PubMed]

63. Lee, J.; Sun, M.; Lebanon, G. A comparative study of collaborative filtering algorithms. arXiv 2012, arXiv:1205.3193.
64. Kingma, D.P. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
65. Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710.
66. Chen, M.; Wei, Z.; Huang, Z.; Ding, B.; Li, Y. Simple and deep graph convolutional networks. Int. Conf. Mach. Learn. PMLR 2020,

119, 1725–1735.
67. Malmqvist, L.; Yuan, T.; Manandhar, S. Visualising argumentation graphs with graph embeddings and t-SNE. arXiv 2021,

arXiv:2107.00528.
68. Long, H.; Chen, T.; Chen, H.; Zhou, X.; Deng, W. Principal space approximation ensemble discriminative marginalized least-

squares regression for hyperspectral image classification. Eng. Appl. Artif. Intell. 2024, 133, 108031. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TIP.2023.3251693
https://www.ncbi.nlm.nih.gov/pubmed/37463088
https://doi.org/10.1016/j.engappai.2024.108031

	Introduction
	Related Work
	Representation of Graph
	Graph Attention Network

	TCC_GAT Model
	The Overall Network Architecture
	Graph Reconstruction Module
	Graph Data Feature Mining Module
	Classification Result Prediction Module

	TCC_GAT Model
	Pseudocode for TCC_GAT
	Analysis of Complexity for TCC_GAT

	Experimental Results and Analysis
	Dataset
	Experimental Setup
	Comparison Model Introduction
	Experimental Results
	Hyperparameter Discussions
	Time Complexity
	Ablation Experiment
	Visualization Experiments

	Conclusions
	References

