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Abstract: The positioning algorithms of the Enhanced Long-Range Navigation (eLoran) system
primarily include the hyperbolic positioning algorithm and the pseudorange positioning algorithm.
However, the calculations present in the existing literature are inaccurate and lack empirical data,
and a thorough and precise comparison of the two algorithms has yet to be conducted. Therefore,
this paper employs a combination of simulation analysis and empirical analysis to explore these
two positioning algorithms in depth, with an optimization of the initial position calculation in
the pseudorange algorithm. Under ideal conditions without observational errors, through precise
calculations and analysis, the positioning errors of both algorithms are approximately zero, and
full-area solutions can be achieved. Under conditions with observational errors, this study shows
that both algorithms exhibit positioning errors, with the pseudorange algorithm achieving a level of
accuracy comparable to that of the hyperbolic algorithm. At the same time, the empirical analysis
further verified this conclusion. Additionally, this study found that the pseudorange positioning
algorithm demonstrated better applicability in practical applications, as it successfully resolved the
multivalued and singularity issues present in the hyperbolic positioning algorithm.

Keywords: eLoran; hyperbolic positioning algorithm; pseudorange positioning algorithm; positioning
accuracy

1. Introduction

The Global Navigation Satellite System (GNSS) is currently the most widely used
navigation system. However, due to its weak signals, it is vulnerable to interference,
making it susceptible to certain limitations and weaknesses. To address this issue, the
Enhanced Long-Range Navigation (eLoran) system, a terrestrial radio navigation system,
has gained increasing attention. Built on the foundation of the traditional Loran-C system,
eLoran offers enhanced anti-jamming capabilities, broader coverage, and higher reliability,
making it a critical complement and backup to GNSS, particularly in scenarios where
GNSS signals face interference, obstruction, or malicious attacks. Although eLoran’s
positioning accuracy is generally inferior to GNSS, modern advancements in technologies
such as transmission systems, differential techniques, and precise time synchronization
have significantly improved its accuracy [1,2]. This allows eLoran to provide reliable
Positioning, Navigation, and Timing (PNT) services.

The traditional Loran-C system uses the hyperbolic positioning algorithm, which
eliminates the clock bias between the receiver and the system. On this basis, various
computational methods have also been developed, such as cross-chain and additional
constraint conditions [3–5]. In recent years, the system has undergone upgrades and
modifications, developing into the eLoran system. The most obvious improvement is
that all eLoran signals can be related to a common time reference, and thus, pseudorange
measurements are available for all transmitters [6]. As a result, the pseudorange positioning
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algorithm can be used for positioning calculations. This algorithm is not constrained
by station chains, making it more flexible and commonly used in integrated navigation
systems [7–11].

However, the positioning accuracy of the eLoran system has certain limitations. To
overcome this, some studies have proposed improving accuracy by correcting propagation
delays [12–16], while also exploring various enhancement methods [17–19]. The majority
of the research focuses on the analysis of Dilution of Precision (DOP) values and the
conditions of the forward operating area [20–22] but has overlooked the accuracy analysis
of the hyperbolic positioning algorithm and pseudorange positioning algorithm themselves.
Even under ideal conditions without observational errors, the computational accuracy of
these two algorithms across the entire area has not been fully revealed. Most studies suggest
that the positioning errors of both algorithms are at the meter level [23,24]. However,
research conducted by Yan et al. found that the positioning error of the pseudorange
positioning algorithm can reach millimeter-level accuracy [25].

Furthermore, the pseudorange positioning algorithm may encounter convergence
errors when reliable initial position information is lacking. To address this issue, many
scholars use the initial position derived from the hyperbolic positioning algorithm as the
initial value for the pseudorange positioning algorithm, thus making the pseudorange
positioning algorithm somewhat dependent on the hyperbolic positioning algorithm. Liu
et al. proposed a branch and bound algorithm based on interval contraction, which effec-
tively resolves the initialization problem of the pseudorange positioning algorithm [26,27].
Although this algorithm is complex, it provides an effective solution.

Despite the existing research foundation, comparative studies of the two positioning
algorithms remain insufficient. Most of the literature relies on simulation analysis, which,
while helpful for research, fails to accurately reflect the impact of eLoran groundwave signal
propagation errors on positioning accuracy in real-world environments. Some studies have
adopted empirical analysis methods, but due to experimental constraints, they are typically
limited to one or two measured points, which makes the findings less convincing.

Therefore, this paper will conduct a thorough study and comparison of the hyperbolic
positioning and pseudorange positioning algorithms of the eLoran system using a method
combining simulation and empirical analysis. In the simulation analysis, the performance
of the algorithms will be analyzed under both conditions, with and without observation
errors. Under conditions without observational errors, by utilizing a search method to
solve for unknown variables and applying suitable convergence thresholds, the positioning
errors of the two algorithms are further minimized and clarified, and full-area solutions can
be achieved. Additionally, a simpler mathematical geometric method is applied to solve
the initial value problem in the pseudorange positioning algorithm, thereby simplifying
the algorithm. Under conditions with observational errors, the impact of different sources
of errors on the positioning accuracy of two algorithms was studied, and a comparison of
the two algorithms was conducted. Finally, calculations and analyses of empirical data
further verify the conclusions drawn from the simulation analysis.

2. Hyperbolic Positioning Algorithm

The eLoran system typically uses the hyperbolic positioning algorithm for positioning.
This algorithm requires at least one single chain, which consists of one master station
and two secondary stations. The receiver captures signals transmitted from the master
and secondary stations of the same chain and measures the time differences between the
secondary stations relative to the master station. Under the condition of a constant signal
propagation speed, the time differences can be converted into distance differences. Using
the mathematical definition of a hyperbola, the distance difference between a moving point
and two fixed points is a constant value, which allows for the drawing of a hyperbola with
these two fixed points as foci. Based on two time differences, two intersecting hyperbolas
can be drawn, and one of the intersection points of the hyperbolas is the receiver’s location.
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The hyperbolic positioning algorithm consists of two parts. The first part involves
calculating the initial position, which is the receiver’s rough location. The Earth is simplified
into a perfect sphere, and distances are calculated on the sphere’s surface to determine the
initial position. The second part calculates the precise position by performing Newton’s
iteration on the ellipsoidal surface based on the initial position. The final result of the
iteration is the precise position of the receiver.

2.1. Solve for the Initial Position

The geometric relationships of the hyperbolic positioning algorithm are shown in
Figure 1. Station 2 is the leader station, and Stations 1 and 3 are the two secondary stations,
with their coordinates being (φ2, λ2), (φ1, λ1), and (φ3, λ3), respectively. Point P is the
location of the receiver, and its coordinates are the unknown variable (φ, λ). β1 is the
azimuth angle from Station 1 to Station 2, β3 is the azimuth angle from Station 3 to Station 2,
and θ is the azimuth angle from the receiver point P to Station 2. d1 is the spherical distance
between Station 1 and Station 2, d3 is the spherical distance between Station 3 and Station
2, and ρ1, ρ2, and ρ3 are the spherical distances from Stations 1, 2, and 3 to the receiver,
respectively. The spherical distances are measured in radians.
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Based on the geometric relationship diagram above, the following system of formula
is established using the spherical triangle cosine law and the principles of hyperbolic
positioning [23]. 

cos ρ1 = cos d1 cos ρ2 + sin d1 sin ρ2 cos(θ − β1)
cos ρ3 = cos d3 cos ρ2 + sin d3 sin ρ2 cos(θ − β3)
ρ1 − ρ2 = ξ1
ρ3 − ρ2 = ξ2

, (1)

where ξ1 and ξ2 represent the spherical distance differences between the receiver and the
leader and secondary stations, which can be obtained using the formula ξi = ∆Ti × c/a,
where ∆Ti is the known time difference, c is the speed of electromagnetic waves in the air,
and a is the length of the Earth’s semi-major axis. The unknown variables are ρ1, ρ2, ρ3,
and θ.

This paper simplifies and integrates the formula for solving. When solving the un-
known variable θ in the system formula, a search method is applied, where values satisfying
the conditions are obtained through an iterative search. The search step is 0.0001 degrees,
which is equivalent to 0.36 arcseconds, corresponding to 10.8 m. Compared to directly
solving the formula, the search method offers greater flexibility and adaptability, avoiding
the complexity of solving via trigonometric functions. However, since the system of the
formula does not have a unique solution, it is necessary to first determine whether point P
is located in the front or back region and, accordingly, set a reasonable search range for θ.
Once θ is determined, the remaining three unknowns can be easily solved. After converting
the solved θ and ρ2, the spherical latitude and longitude can be obtained, representing the
initial location (φ0, λ0).
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2.2. Solve for the Precise Position

After approximately determining the receiver’s position, the Newton iteration method
is applied on the ellipsoidal surface to correct the initial position, using the coordinates of
the leader and secondary stations and the time differences. When the iteration converges
to a certain extent, the resulting coordinates are the precise position of the receiver.

ξ1 and ξ2 are continuous bivariate functions with respect to the unknown point (φ, λ),
where (φ, λ) represent the spherical latitude and longitude coordinates. The following
system of formula is established. {

ξ1 = F1(φ, λ)
ξ2 = F2(φ, λ)

, (2)

The function F(φ, λ) represents the spherical distance differences between point (φ, λ)
and the leader and secondary stations, with units in radians. Given the initial position
(φ0, λ0), the corresponding spherical distance differences in radians, denoted as ξ0

1 and ξ0
2,

can be calculated and satisfy the equation.{
ξ0

1 = F1(φ0, λ0)
ξ0

2 = F2(φ0, λ0)
, (3)

Expand the system of Formula (2) using a Taylor series around the initial position
(φ0, λ0), neglecting higher-order terms. The positional deviation (∆φ, ∆λ) between the
true position (φ, λ) and the initial position (∆φ, ∆λ) is represented by ∆φ = φ − φ0,
∆λ = λ − λ0. The final system of equations is as follows:{

ξ1 − ξ0
1 = ∂ξ1

∂φ ∆φ + ∂ξ1
∂λ ∆λ

ξ2 − ξ0
2 = ∂ξ2

∂φ ∆φ + ∂ξ2
∂λ ∆λ

, (4)

where ξ1 and ξ2 are the spherical distance differences derived from the time differences
measured by the receiver. ξ0

1 and ξ0
2 are the geodetic distance differences between the initial

position (φ0, λ0) and the leader and secondary stations, divided by the Earth’s semi-major
axis. The Andoyer–Lambert formula is used to calculate the geodetic distances on the
ellipsoidal surface, as shown in Equation (3). By calculating the partial derivatives at the
initial position (φ0, λ0), the position error ∆φ and ∆λ can be solved.

The iteration process corrects the initial position using the positional deviations ∆φ
and ∆λ, resulting in new initial coordinates φ0 = φ0 + ∆φ, λ0 = λ0 + ∆λ. The new initial
position is then substituted back into the formula, and the process is repeated. When the
absolute values of the positional deviations are smaller than the predetermined convergence
threshold, the calculation is complete, and the resulting position is the precise position of
the receiver. Finally, this precise position is converted from spherical latitude and longitude
to ellipsoidal latitude and longitude, yielding the receiver’s precise geodetic coordinates
(B, L).

3. Pseudorange Positioning Algorithm

The pseudorange positioning algorithm eliminates the dependency on the station
chain in the hyperbolic positioning algorithm. However, the pseudorange contains the clock
bias between the receiver and the eLoran system, which cannot be eliminated and must be
treated as an unknown to be solved. Along with the receiver’s latitude and longitude, a
total of three unknown variables need to be solved, requiring at least three stations, though
they do not need to be within the same chain. The receiver receives signals from each
station and measures the propagation time delay of each signal to the receiver, which is
then used to calculate the distance between the receiver and each station [28]. With each
station as a center and the distance between each station and the receiver as the radius,
circles are drawn, and the intersection of the arcs is the location of the receiver, with only
one intersection point existing.
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The pseudorange positioning algorithm also consists of two parts: calculating the
initial position and calculating the precise position.

3.1. Solve for the Initial Position

Its geometric relationship diagram is the same as that shown in Figure 1, and the
following system of the formula can be established using the spherical triangle cosine rule.{

cos ρ1 = cos d1 cos ρ2 + sin d1 sin ρ2 cos(θ − β1)
cos ρ3 = cos d3 cos ρ2 + sin d3 sin ρ2 cos(θ − β3)

, (5)

This system of formula contains only one unknown, yet it is constrained by two
formulae. In this case, the multivalued nature of the sine and cosine functions will not
pose an obstacle to the solution, nor will it lead to multiple solutions. During the solution
process, the search method is similarly applied, with a search step of 0.0001◦, and the search
range is from 0◦ to 360◦, allowing for the solution across the full-area. Once θ is found, the
initial position (φ0, λ0) can be easily obtained.

3.2. Solve for the Precise Position

After obtaining the initial position, the ellipsoidal pseudorange positioning algorithm
is applied, iterating on the ellipsoidal surface. The positioning equation based on the
pseudorange can be simplified as follows:

Di = Li − tu · c, (6)

where Di represents the pseudorange value from a certain station to the receiver. Li
represents the geodetic distance between the station and the receiver; the geodetic distance
between two points is calculated using the Andoyer–Lambert formula [29]. tu represents
the clock bias between the station signal and the receiver. Let the receiver’s initial position
be (φ0, λ0, tu0), where (φ0, λ0) is the initial position obtained earlier, and set the initial
clock bias tu0 = 0. Expanding this Equation at the initial position using a Taylor series and
neglecting the higher-order terms, the following system of formula can be established.

D1 − L10(φ0, λ0, tu0) + tu0 × c = ∂Di
∂φ

∣∣∣
L10

∆φ + ∂Di
∂λ

∣∣∣
L10

∆λ + ∂Di
∂tu

∣∣∣
L10

∆tu

D2 − L20(φ0, λ0, tu0) + tu0 × c = ∂Di
∂φ

∣∣∣
L20

∆φ + ∂Di
∂λ

∣∣∣
L20

∆λ + ∂Di
∂tu

∣∣∣
L20

∆tu

D3 − L30(φ0, λ0, tu0) + tu0 × c = ∂Di
∂φ

∣∣∣
L30

∆φ + ∂Di
∂λ

∣∣∣
L30

∆λ + ∂Di
∂tu

∣∣∣
L30

∆tu

, (7)

where, D1, D2, and D3 are the pseudorange values measured by the receiver. The pseudor-
ange positioning equation can then be organized into the following form.

B = A · X, (8)

where

B =

 D1 − L10(φ0, λ0, tu0) + tu0 × c
D2 − L20(φ0, λ0, tu0) + tu0 × c
D3 − L30(φ0, λ0, tu0) + tu0 × c

, A =


∂Di
∂φ

∣∣∣
L10

∂Di
∂λ

∣∣∣
L10

∂Di
∂tu

∣∣∣
L10

∂Di
∂φ

∣∣∣
L20

∂Di
∂λ

∣∣∣
L20

∂Di
∂tu

∣∣∣
L20

∂Di
∂φ

∣∣∣
L30

∂Di
∂λ

∣∣∣
L30

∂Di
∂tu

∣∣∣
L30

, X =

 ∆φ
∆λ
∆tu



Using the least squares method, the system of formula can be solved, yielding

X = (AT A)
−1 · (AT B), (9)

The solution vector ∆φ, ∆λ, ∆tu represents the deviation values. Once these deviations
are determined, the position can be corrected. The new position is then substituted back
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into the formula for further iteration. This process is repeated until the absolute values of
the deviations are smaller than the predefined convergence threshold. After the calculation
process is completed, the final position is converted from spherical coordinates to ellipsoidal
coordinates. The output position is the receiver’s precise location and the clock bias value
that satisfies the conditions.

4. Simulation Analysis

To compare the positioning accuracy of the two algorithms, latitude and longitude
positioning error is used as a metric, meaning the difference between the calculated position
and the true position.

This paper uses the Nanhai station chain as an example for simulation analysis. The
leader station is located in Hezhou, Guangxi, with secondary stations located in Raoping,
Guangdong, and Chongzuo, Guangxi. The analysis is divided into two categories based on
the presence or absence of observational errors.

In the case without observational errors, the time difference is the difference in the
geodesic distances on the ellipsoidal surface between the receiver and the leader and
secondary stations, while the pseudorange is the geodesic distance on the ellipsoidal
surface between the receiver and the station. The positioning error reflects the inherent
error of the algorithm itself.

In the case with observational errors, the time difference is the sum of the geodesic
distance difference on the ellipsoidal surface between the receiver and the leader and
secondary stations and the observational error. The pseudorange is the sum of the geodesic
distance between the receiver and the station on the ellipsoidal surface and the observa-
tional error. The positioning error in this case reflects the impact of observational errors on
positioning accuracy.

The simulation environment in this paper is based on Matlab R2023b, running on
the Windows 11 operating system, with hardware featuring an Intel Core Ultra 7 155H
processor and 32 GB of memory to ensure efficient and accurate simulation calculations.

This paper simulated the latitude and longitude positioning within a specific region
and converted the positioning errors into distance measurements, quantified in meters.
The simulation covered the area within a latitude range of 18◦ to 28◦ and a longitude range
of 102◦ to 122◦. The simulation was performed with a step size of 0.5 degrees.

4.1. No Observational Errors

Under ideal conditions without observational errors, the positioning error is deter-
mined by the inherent computational accuracy of the algorithms. To improve the perfor-
mance of both algorithms, this paper first conducted numerous repeated experiments to
explore the best solution methods and optimal iterative convergence thresholds. After
careful adjustments and testing, both algorithms achieved high levels of computational
accuracy. Subsequently, to comprehensively assess the algorithms’ accuracy and avoid the
influence of isolated outliers, a large-scale simulation analysis was carried out.

4.1.1. Hyperbolic Positioning Algorithm

First, the approximate region of the receiver is estimated to determine whether it is
in the forward or backward zone. Next, the necessary time difference data are simulated.
During this process, based on the coordinates of each station and the receiver, the distances
between each station and the receiver on the ellipsoid surface are calculated. These distance
differences are then converted into time differences by considering the speed of electromag-
netic wave propagation. Finally, the hyperbolic positioning algorithm is applied to solve
for the receiver’s coordinate position.

In the calculation, the key condition for convergence is that the absolute values of
the deviation ∆φ, ∆λ are both less than the set convergence threshold. Through extensive
experimental research and data analysis, this paper sets the convergence threshold of
the hyperbolic positioning algorithm at 10−9 degrees, which corresponds to a distance
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error of 0.1 mm. In most cases, the iterative process converges after about four iterations.
Increasing the convergence threshold does not significantly affect the positioning results,
while lowering the threshold may degrade the results. This iterative threshold strikes a good
balance between positioning accuracy and computational efficiency. In the subsequent
experiments with the hyperbolic positioning algorithm, this convergence threshold is
consistently used to ensure the reliability and consistency of the results. Additionally,
considering that some regional points may not meet the preset convergence condition, a
limit is set so that if the number of iterations exceeds 50, the process will automatically exit
the loop.

In the simulation area, to avoid the negative impact of excessively large positioning
errors on the overall results, the error range is constrained, and points with errors larger
than 10−4 are discarded. Then, the remaining regional points are analyzed and displayed
in detail. The latitude and longitude error results of the hyperbolic positioning algorithm
for this region are shown in Figure 2.
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From the simulation result maps, it can be observed that under ideal conditions
without observational errors, the hyperbolic positioning algorithm successfully computes
the position for most of the region and achieves high-precision results, with positioning
errors approaching zero. However, when the positioning point is located near the extension
or reverse extension of the two baseline lines, singularity issues occur, leading to errors in
the positioning calculations.

4.1.2. Pseudorange Positioning Algorithm

To simplify the research process, the clock offset between the receiver and the eLoran
system is set to zero. During the calculation, there are no multiple-value situations, so there
is no need to determine the approximate region where the receiver is located. Subsequently,
based on the coordinates of each station and the user point, and using the geodetic distance
calculation formula, the pseudorange values measured by the receiver are simulated.
Finally, using simulation data, the pseudorange positioning algorithm is applied to solve
for the receiver’s coordinate position.

In the calculations, the key condition for convergence is that the absolute values of
the deviation values ∆φ, ∆λ, ∆tu are all less than the set convergence threshold. Through
extensive repeated experimental studies, this paper sets the convergence threshold for the
pseudorange positioning algorithm at 10−11 degrees, with approximately four iterations
needed to achieve good positioning results and reduce redundant calculations. In the
subsequent pseudorange positioning algorithm experiments, this convergence threshold
is consistently used to ensure the reliability and consistency of the results. Additionally,
considering that some regional points may not meet the preset convergence conditions, a
limit is set so that if the number of iterations exceeds 50, the process will automatically exit
the loop.
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In the simulation area, to avoid the negative impact of excessively large positioning
errors on the overall results, the error value range is restricted. Points with errors greater
than 10−4 are discarded, and the remaining regional points are displayed and analyzed in
detail. The latitude and longitude error results for the pseudorange positioning algorithm
in this region are shown in Figure 3.
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From the simulation result maps, it can be observed that under ideal conditions with-
out observational errors, the pseudorange positioning algorithm successfully solves all
regions and achieves high-precision positioning, with positioning errors close to zero. Addi-
tionally, the pseudorange positioning algorithm resolves the singularity issues encountered
in the hyperbolic positioning algorithm. The two uncolored points in Figure 3 do not
indicate the occurrence of singularity issues, but rather their positioning error is 10−3,
exceeding the range set by the current data display limits.

4.2. Observational Errors

In the simulation analysis in Section 4.1, it can be seen that both algorithms achieve
high positioning accuracy in the absence of observational errors. However, eLoran signals
are influenced by various factors during transmission, leading to observational errors in the
time differences and pseudoranges measured by the receiver, which affects the positioning
results and introduces deviations. To explore the impact of observational errors on different
algorithms, observational errors were divided into systematic and random errors. Four
representative points were selected for simulation analysis, as shown in Figure 4, and
an accurate comparison of the positioning error results was conducted. Subsequently, a
positioning error map was plotted, and the analysis was carried out across the entire plane.
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4.2.1. Systematic Errors

The signal propagation speed is influenced by factors such as the air refractive index,
ground dielectric constant, and conductivity along the propagation path. Additionally,
terrain variations along the propagation path mean that the propagation time does not pre-
cisely correspond to the propagation distance, all of which contribute to systematic errors.

When the systematic error caused by the terrain is not considered, in order to simulate
the time differences and pseudoranges containing systematic errors, a fixed systematic error
of 200 ns, 150 ns, and 180 ns was added to the propagation time from the Hezhou leader
station, the Raoping secondary station, and the Chongzuo secondary station to the receiver
at each test point, respectively. Subsequently, detailed calculations were then performed.
The positioning error results of each simulation point are summarized in Table 1.

Table 1. Positioning error results when the systematic errors are overlaid based on a fixed value.

Method Test Points Positioning Error (m)

Hyperbolic
Positioning Algorithm

1 (−17.82, 9.19)
2 (−25.68, 5.83)
3 (−32.03, 38.83)
4 (42.49, −8.33)

Pseudorange
Positioning Algorithm

1 (−17.82, 9.19)
2 (−25.68, 5.83)
3 (−32.03, 38.83)
4 (42.49, −8.33)

At the same time, the positioning error across the entire simulation range was gener-
ated, as shown in Figures 5 and 6. Due to the high DOP values in the intersection areas
of the baselines and their extended lines, this region exhibits more significant positioning
errors compared to other areas when the same observational error is introduced. When
the data span a wide range, plotting may cause data points with vastly different values
to appear in similar colors, making it difficult to distinguish between them, affecting the
observation results. To better illustrate this, only data points with absolute error values
less than 1000 were displayed, ensuring that each point in the plot clearly and accurately
reflects its true positioning error.
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Furthermore, considering the fact that systematic errors may be related to signal
propagation distance, different systematic errors were added to the propagation delays for
each simulation point based on distance, with the errors being calculated using the Lagrange
interpolation method. These values were derived from the approximate conditions of the
average terrestrial path of 100 kHz ground wave secondary delay (radiated power P = 1 kW)
according to the document [30]. The specific details are shown in Table 2.
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Table 2. Systematic error overlay.

Test Points Hezhou (µs) Raoping (µs) Chongzuo (µs)

1 3.1 2.3 5.5
2 2.7 5.1 2.8
3 4.6 2.8 6.8
4 2.0 4.7 3.0

Subsequently, detailed calculations were performed. The positioning error results of
each simulation point are summarized in Table 3.

Table 3. Positioning error results when the systematic errors are overlaid based on the distances.

Method Test Points Positioning Error (m)

Hyperbolic
Positioning Algorithm

1 (1992.95, 52.90)
2 (1149.07, −416.36)
3 (2159.28, −634.99)
4 (−2299.92, 435.70)

Pseudorange
Positioning Algorithm

1 (1992.95, 52.90)
2 (1149.07, −416.36)
3 (2159.28, −634.99)
4 (−2299.92, 435.70)

At the same time, the positioning error across the entire simulation range was gener-
ated, as shown in Figures 7 and 8. Due to the significant overlay of systematic errors, only
data points with absolute error values of less than 10,000 were displayed.
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From Tables 1 and 3, it can be seen that when systematic errors are present, the
positioning results are affected, resulting in increased positioning errors. Both algorithms
have certain longitude and latitude positioning errors, and the errors are comparable. From
Figures 5–8, a similar conclusion can be drawn, as the positioning error plots for both
algorithms are alike, with differences only being seen at a few points.

4.2.2. Random Errors

In addition to systematic errors, random errors caused by factors such as noise and
weather also affect positioning. Random errors tend to follow a Gaussian distribution.
Therefore, the MATLAB function randn was used to generate a random sequence, and 0.5*
randn µs were added to the signal propagation delays from each station to the receiver.
Each test point was calculated and statistically analyzed 1000 times with different random
errors. After calculations, the average values and standard deviations of the longitude and
latitude positioning errors for each test point were compiled, as shown in Table 4. Since
simulating the entire area requires an enormous amount of computation, the paper chooses
not to present the result in graphical form.

Table 4. Positioning error results when the random errors are overlaid.

Method Test Points Positioning Error (m) Standard Deviation (m)

Hyperbolic
Positioning
Algorithm

1 (1992.95, 52.90) (608.29, 132.49)
2 (1149.07, −416.36) (370.83, 117.24)
3 (2159.28, −634.99) (864.48, 725.80)
4 (−2299.92, 435.70) (599.66, 187.32)

Pseudorange
Positioning
Algorithm

1 (1992.95, 52.90) (608.29, 132.50)
2 (1149.07, −416.36) (370.83, 117.24)
3 (2159.28, −634.99) (864.48, 725.80)
4 (−2299.92, 435.70) (599.66, 187.32)

From Table 4, a similar conclusion can be drawn: when random errors are present, they
will affect the positioning results, leading to increased positioning errors. Both algorithms
exhibit certain latitude and longitude positioning errors, and the errors are similar.

5. Empirical Analysis

Although simulations can be used to study and compare the two different positioning
algorithms of the eLoran system from various angles, the results often differ from the em-
pirical data. These discrepancies may stem from multiple factors, including the simplified
assumptions in the simulation model, the complexity of environmental variables, and un-
certainties that were not considered in the empirical measurements. Empirical data reflect
the combined impact of various complex factors in real environments, such as atmospheric
disturbances, terrain variations, and equipment errors. Therefore, when evaluating the
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performance of both positioning algorithms, it is crucial to combine simulation data and
empirical data.

In the empirical analysis, this paper again takes the South China Sea chain as an
example. By driving the test car, we conducted a detailed investigation across multiple
regions. The experimental equipment is shown in Figure 9. The experimental equipment
includes an eLoran antenna and receiver, a BeiDou antenna and receiver, and a laptop. The
eLoran receiver was modified by the laboratory to accurately output the required time
difference (TD) and time of arrival (TOA) data. Its key technical specifications are as follows:
it has a reception level range of 30 dBaV to 114 dBcV, a noise resistance performance better
than −10 dB, a differential range of 0–604 B, a time difference measurement resolution
better than 10 ns, and a TOA measurement uncertainty better than 30 ns. The BeiDou
receiver has a positioning error within 10 m, and under conditions with no obstructions and
minimal external electromagnetic interference, its positioning accuracy can reach within a
few meters or even better, providing precise test point location information.
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A modified eLoran receiver was used to receive and process the signals, outputting the
corresponding TD and TOA data. Then, the obtained data were processed and analyzed.
Finally, the hyperbolic and pseudorange positioning algorithms were applied to solve and
compare the final positioning results.

To compare the performance of the two algorithms under different geographic lo-
cations and environments, five representative measured points were selected, with their
latitude and longitude information provided by the BeiDou receiver. The specific locations
of the measured points are shown in Figure 10. The surroundings of each test point were
open, with no significant obstructions or other signal interference. During the tests, the
weather was consistently overcast, and the air was slightly humid, which helped maintain
consistent experimental conditions.

For each test point, 500 data points were collected and analyzed over a certain period
of time, with the mean and standard deviation calculated and presented in Tables 5 and 6.
The mean value reflects the overall value of the data during that time period, while the
standard deviation reflects the stability of the data during the same period. The average
values are consistent with the actual conditions, and the data fluctuations are within a
normally acceptable range. TD a represents the difference between the propagation delay
of the signal from the Raoping auxiliary station to the receiver and the propagation delay
of the signal from the Hezhou main station to the receiver. TD b represents the difference
between the propagation delay of the signal from the Chongzuo auxiliary station to the
receiver and the propagation delay of the signal from the Hezhou main station to the
receiver. TOA a represents the propagation delay of the signal from the Hezhou main
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station to the receiver. TOA b represents the propagation delay of the signal from the
Raoping auxiliary station to the receiver. TOA c represents the propagation delay of the
signal from the Chongzuo auxiliary station to the receiver.
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Table 5. Time difference of measured points.

Test Points

TD a TD b

Mean Value
(µs)

Standard
Deviation (ns)

Mean Value
(µs)

Standard
Deviation (ns)

1 15,681.368 80.4675 27,353.825 71.0576
2 15,473.802 94.2426 27,775.038 248.4493
3 15,704.565 48.7438 28,246.973 20.8909
4 14,237.153 49.1377 28,484.112 50.9635
5 15,582.260 56.8033 28,110.931 18.2817

Table 6. Time of arrival of measured points.

Test Points

TOA a TOA b TOA c

Mean
Value
(µs)

Standard
Deviation

(ns)

Mean
Value
(µs)

Standard
Deviation

(ns)

Mean
Value
(µs)

Standard
Deviation

(ns)

1 964.521 24.1511 2181.201 80.4489 1392.949 45.4805
2 831.355 15.9152 1840.487 57.4233 1680.837 211.0433
3 401.239 18.0887 1641.078 56.2687 1722.617 27.9710
4 1013.896 26.6440 786.364 39.6652 2572.255 51.3243
5 900.296 15.2866 2017.870 57.1577 2085.700 20.9044

After processing the data, the mean values of the TD and TOA for each measured
point were selected and substituted into the algorithms for calculation. The time differences
a and b were subtracted from the baseline encoded time delay data of 14,464.6 µs and
26,925.76 µs, respectively. The final calculation results are shown in Tables 7 and 8, which
list the calculation results and the error information. For ease of analysis, the errors are
presented in both degrees and meters, which can be converted between the two units.
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Table 7. Positioning error results of the hyperbolic algorithm.

Measured
Points

Latitude
(◦)

Longitude
(◦)

Latitude
Error

(◦)

Longitude
Error

(◦)

Latitude
Error
(m)

Longitude
Error
(m)

1 21.463172 111.059343 0.001947 −0.00177 210.32 −191.186
2 21.767139 111.996913 0.005868 −0.00051 633.75 −54.85
3 23.009498 112.186284 0.009611 0.000018 1037.95 2.00
4 23.553019 114.629526 0.027884 0.002374 3011.43 256.35
5 26.361470 111.700296 −0.011666 0.000632 −1259.93 68.22

Table 8. Positioning error results of the pseudorange algorithm.

Measured
Points

Latitude
(◦)

Longitude
(◦)

Latitude
Error

(◦)

Longitude
Error

(◦)

Latitude
Error
(m)

Longitude
Error
(m)

1 21.463512 111.060021 0.002287 −0.00109 247.01 −117.97
2 21.767441 111.997294 0.00617 −0.00013 666.38 −13.70
3 23.009729 112.186681 0.009842 0.000415 1062.95 44.81
4 23.553083 114.629654 0.027948 0.002502 3018.37 270.22
5 26.360921 111.700960 −0.012215 0.001296 −1319.22 139.94

From Tables 7 and 8, it can be seen that the calculation results of the hyperbolic
positioning algorithm and the pseudorange positioning algorithm are generally similar.
However, because the data used were uncorrected and directly output by the receiver,
they contained significant interference items such as secondary delays and additional
secondary delays, resulting in large errors. If these interference items are further corrected,
the positioning errors will be significantly reduced. Additionally, Tables 7 and 8 show that
the positioning errors at the two coastal measured points are smaller, suggesting that the
eLoran system performs better in maritime navigation. In contrast, during land navigation,
due to the influence of surrounding terrain and buildings on the signal, larger observational
errors were introduced, leading to less accurate positioning.

6. Conclusions

This paper employs a combination of simulation and empirical analysis to deeply
study and compare the performance of the hyperbolic positioning algorithm and the
pseudorange positioning algorithm.

The simulation analysis evaluates both algorithms in scenarios with and without
observational errors. Under conditions without observational errors, by employing a
search method to solve for the unknowns and applying suitable convergence thresholds of
10−9 degrees for the hyperbolic positioning algorithm and 10−11 degrees for the pseudor-
ange positioning algorithm, both algorithms achieved correct positioning across the entire
area, with errors being essentially zero; the worst-case error did not exceed 10−5 m. The
pseudorange positioning algorithm does not require the prior determination of whether
the point is in the forward or backward region, and it resolves the singularity problem in
the hyperbolic positioning algorithm, thereby improving its practicality in actual applica-
tions. Under conditions with observational errors, a detailed analysis of various errors was
conducted, and it was found that both algorithms exhibited positioning errors, with the
pseudorange algorithm achieving positioning accuracy comparable to that of the hyperbolic
algorithm. In the empirical analysis, five typical measured points were selected, and TD
and TOA data were collected and processed, which were then input into the algorithms for
calculation. The results indicate that the positioning performance of the two algorithms is
comparable, validating the simulation conclusions.

The algorithms themselves do not affect positioning accuracy, the factors influencing
accuracy are the error terms present in the actual data. In the future, by constructing more
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accurate models for secondary time delays and additional secondary time delay estimation
errors, it is expected that positioning accuracy can be further improved.
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