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Abstract: As one of the main causes of sickness and mortality, heart disease, also known as cardiovas-
cular disease, must be detected early in order to be prevented and treated. The rapid development of
computer technology presents an opportunity for the cross-combination of medicine and informatics.
A novel stacking model called SDKABL is presented in this work. It uses three classifiers, namely
K-Nearest Neighbor (KNN), Decision Tree (DT), and Support Vector Machine (SVM) at the base layer
and the Bidirectional Long Short-Term Memory based on Attention Mechanisms (ABiLSTM) model at
the meta layer for the ultimate prediction. For lowering the temporal complexity and enhancing the
model’s accuracy, the dimensionality reduction approach is seen to be crucial. Principal Component
Analysis (PCA) was utilized in SDKABL to minimize dimensionality and facilitate feature fusion.
Using several performance measures, including precision, F1-score, accuracy, recall, and Receiver
Operating Characteristic (ROC) score, the performance of SDKABL was compared to that of other
independent classifiers. The experimental findings demonstrate that our proposed model combining
individual classifiers with the stacking method helps improve the prediction model’s accuracy.

Keywords: heart disease; risk forecasting; machine learning

1. Introduction

Non-communicable illnesses currently account for 41 million annual fatalities, or
74% of all deaths worldwide [1]. With 17.9 million fatalities annually, cardiovascular
illnesses represent the greatest percentage of noncommunicable disease (NCD)-related
mortality [1]. One of the main causes of sickness and mortality is heart disease, often
known as cardiovascular disease [2].

Data storage, processing, and transmission capabilities have significantly improved
due to the rapid development of computer techniques such as the big data [3] and the
Internet of Things (IoT) [4]. This has facilitated the development of health big data and
created opportunities for the cross-integration of informatics and medicine [5,6].

When people seek medical treatment, a large amount of data will be generated,
which is converted into digital format and stored in computers or databases and becomes
Electronic Health Records (EHRs) [7]. The EHRs not only record important patient data
but also hide hidden knowledge, including the relationship between data and conditions.
In-depth analysis of these medical data based on data mining technology can extract useful
information from huge datasets and make decision support for individual disease diagnosis
methods and treatment programs [8,9].

However, there are a few significant drawbacks to conventional machine learning
(ML) approaches, such as [10,11]:
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• Model training requires a lot of resources and high-quality datasets.
• Overfitting, the model lacks generalization and robustness.

In ensemble learning, a more efficient and complex model is created by combining
various ML algorithms to build a unique, more powerful model, thus harnessing their
combined strengths [12]. Compared with a single model [13], this cooperative method can
upgrade the performance and generality of forecasts. Ensemble learning has been used to
detect, diagnose, and predict different diseases [14,15].

There are several integrated learning strategies, such as stacking, augmentation, voting,
and bagging [16,17]. The model used in this paper adopts the idea of superposition.
Stacking requires multiple learning stages to improve overall performance by combining
multiple basic models [18].

The main principle is:
First, the training dataset is divided into subsets that are used to train different

basic models.
These basic models are then used to make predictions, and these predictions are used

as new features.
Finally, a meta model (usually a simple linear model) is used to learn how these new

features relate to the real tags.
This paper aims to generate a disease prediction model using the stacking method to

enhance the prediction accuracy. This article makes the following specific contributions:

• Three classifiers at the base layer and one at the meta layer are used to create a stacked
model that is intended to predict heart disease.

• Exploratory data analysis and preprocessing are used to enhance the standard of
the dataset.

• The contribution of each feature to the disease is determined, and dimensionality
reduction techniques are utilized to obtain valuable information from the dataset.

• Extensive experiments are conducted, and the model is optimized in combination
with hyperparameter tuning.

The rest of the article is organized as follows: Section 2 provides a review of this work.
Section 3 discusses the methodology used. Section 4 provides the experimental results and
comparative analysis. Section 5 summarizes the conclusions of the research and outlines
future directions.

2. Related Work

In recent years, medical systems have used IoT technology to collect data to diagnose
diseases and prognoses. An automatic prediction model of heart disease with three main
phases was proposed in [19]. The input data are modified by Z-score standardization
as a preprocessing step. An improved quantum CNN (IQCNN) makes the prediction
based on extracted characteristics. Compared with other traditional methods, the proposed
IQCNN model achieves 0.91 with a learning rate of 70% and thus has better performance
in predicting heart disease.

A heart disease prediction system based on hierarchical Bidirectional Long Short-Term
Memory with Guard dog Hunting Optimization (GdHO-BiLSTM) was proposed in [20].
The GdHO-BiLSTM model utilizes optimization techniques to enhance its capability in
data recognition. By using the fusion layered BiLSTM model, the time dependence in
the sequence data is obtained. The findings suggest that the proposed model has greater
predictive capabilities and provides a reference for clinicians and healthcare providers.

Three enhancement algorithms were used to predict heart disease in [21]. The gradient
boosting method has the best accuracy of all the algorithms. With gradient augmentation,
the suggested model outperforms the others regarding accuracy, recall, and F1-score.

Similarly, researchers have utilized ensemble learning, particularly the stacking method,
because it has been effective in forecasting other illnesses.
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In [22], a novel stacking model called PaRSEL was put forward. At the meta layer, Log-
itBoost is used to carry out the final prediction after four classifiers are used at the base layer.
In PaRSEL, several dimensionality reduction techniques are also used, including Linear
Discriminant Analysis (LDA) and Recursive Feature Elimination (RFE). Furthermore, a va-
riety of methods are employed to address the imbalance of datasets. Our proposed PaRSEL
model achieves the highest accuracy compared with other independent classifiers. This
suggests that PaRSEL is better at predicting heart disease than other independent classifiers.

A Statistical Feature Selection (SFS) stacking framework was proposed in [23]. It
selects the best features from a data collection using four feature techniques. In addition,
the results are predicted using two stacking methods. Both models achieved significant
performance indicators on all three datasets.

Two datasets were used to conduct experiments in the literature [24]. The best perfor-
mance was achieved when a stackable integrated classifier was used, where support vector
machines and gradient enhancement were used to extract features, and logistic regression
was used to predict Parkinson’s disease. The stacked integrated classifier achieved 94.87%
accuracy and a 90.00% Area Under Curve (AUC) in the first dataset, and 96.18% accuracy
and a 96.27% AUC in the second dataset. The final results indicate the proposed stacking
model’s validity, which helps improve the overall diagnostic outcome.

A new heart disease prediction model based on a two-stage stacked method was
proposed in [25]. For higher-performance models such as random forests, extreme gradient
enhancement, and decision trees, additional improvements were made using stack inte-
gration techniques. The stacked model leveraged the power of all three models to achieve
96% accuracy, 98% recall, and 96% ROC scores. Under the same experimental settings, the
accuracy of the model always reached 96.88%.

An integrated model is proposed in [26], which consists of three stages: feature
extraction, stack feature set creation, and final prediction. Convolutional and deep neural
networks were employed to extract the dataset’s’ features. According to the simulation
findings, the suggested model is more precise than both single-mode and homogenous
multi-mode frameworks.

The study by [27] proposed an enhanced method for the early prediction of chronic
diseases. This method used RFE in combination with SVM to reduce complexity. The
improved dataset is then fed into a robust XGBoost classifier. Model performance is
improved by hyperparameter tuning using Bayesian optimization.

Ref. [28] used the extremely imbalanced diabetes dataset to propose two integrated
approaches: hybrid and blending. For this imbalance problem, the Proximity-Weighted
Synthetic Oversampling (ProWSyn) technique is implemented. For the precise and early
identification of diabetes, we suggest the Hi-Le model, a mix of the Highway and LeNet
models. The Hi-Le model outperforms its individual model in precision, recall, accuracy,
and F1-score. Additionally, we suggest a hybrid model dubbed HiTCLe that predicts
diabetes by combining Temporal Convolutional Networks (TCN), LeNet, and Highway. Of
all the methods compared, HiTCLe performed best.

In [29], the risk of heart disease was predicted using an enhanced ML method. This
algorithm uses an average-based block algorithm to divide the sample randomly. Classifi-
cation and Recovery Tree (CART) is used to model each part. Finally, the time classifier
integration method of weights is used to integrate multiple CART patterns. Finally, a
precision-based weighted burn-in classifier integration is used to create uniform integra-
tions from different CART models. The usefulness of the suggested strategy for estimating
the risk of heart disease was shown by experiments conducted on the two datasets.

3. Proposed Methodology
3.1. Dimensionality Reduction

Dimensionality reduction is the process of feature dimensionality reduction on a
given dataset, which can eliminate redundancy and noise and improve model performance
and visualization.
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This paper mainly uses the PCA algorithm, the main principle of which is to find
orthogonal bases sequentially from the original space. The rule is the direction of the
maximum difference in the primitive data, and the number of orthogonal bases to be
selected is determined by the cumulative contribution rate, and then the original data are
projected onto this set of orthogonal bases; that is, a new set of features is obtained, while
the maximum information of the original data is retained [30].

In this paper, PCA is used for data reduction and feature extraction. By setting the
n_components parameter, you can select the features that are most associated with disease.
The optimum value of n_components is 4, according to the experimental results. By setting
n_components = 4, the four features most related to heart disease are selected, which can
improve the model’s prediction accuracy.

3.2. Machine Learning Techniques
3.2.1. Support Vector Machine (SVM)

The SVM is a powerful supervised learning system that can handle problems related
to regression and classification. Its core goal is to construct a decision model by training
the label information of the sample, which effectively classifies the unknown data points
into two preset categories. Unlike general linear classifiers, SVM is unique in that it is
non-probabilistic and focuses on finding an optimal hyperplane that maximizes the degree
of separation between different classes of data points to form clear boundaries. SVM can
also be used to classify nonlinear data. The key to this transformation lies in the kernel
function, which can cleverly map the original low-dimensional data to a high-dimensional
space, thus giving the ability to accurately classify nonlinear data [31].

3.2.2. Decision Tree (DT)

A decision tree is a tree-like data structure used to represent decision rules and class
results. It is an inference-based method used to transform the seemingly chaotic known
information into a tree structure that can predict the unknown information. Every path
that connects the root node to the leaf node is used by the algorithm as a decision rule.

3.2.3. K-Nearest Neighbor

K-Nearest Neighbor (KNN) is a typical classification algorithm in the ML field. The
core concept of the algorithm can be summarized as “birds of a feather flock together,
people flock together”; that is, using close examples to predict category belonging. It
involves comparing a new sample with a set of samples of an existing known class, first
measuring the distance between the new sample and all known samples, and then selecting
the k samples that are closest. Based on the rule of majority decision, the new sample
will be assigned to the category with the most occurrences among the k samples, which is
mathematically expressed as follows:

o(x1, x2) =
√

∑n
i=1(x1,i − x2,i)2

where n represents the number of features of the sample points, and x1 and x2 represent
two different sample points.

3.2.4. ABiLSTM

In 1990, Elman first proposed the concept of Recurrent Neural Networks (RNNs).
RNNs show remarkable ability in processing language sequence data. Since RNNs consider
the state of the previous time point when processing data, when the network input is a
long sequence of data, the distant gradient will tend to 0, the near-distance gradient will
not disappear, and it is easy to produce the phenomenon of gradient disappearance during
the training process.

The LSTM and RNN are structurally consistent in that both combine the output of the
previous unit with the current input. The key difference, however, is that LSTM can use
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the sigmoid function to selectively retain information through the forget gate. BiLSTM is a
stack of forward and backward LSTMs. Compared with one-way LSTM, the transitivity of
the flow sequence in both directions can be considered simultaneously.

Attention mechanisms are inspired by the human visual system, which allows neural
networks to focus on specific inputs or features. Bahdanau and his team [32] employed an
attention mechanism to weed out a large amount of irrelevant information by sifting infor-
mation from top to bottom and adding weights to key features to assess their importance.

Therefore, by integrating the attention mechanism into the BiLSTM network (ABiL-
STM), the output of the bidirectional LSTM layer is given different levels of attention, which
can better focus on the identification of the core features of the patient’s disease and can
effectively focus on the key feature information of the patient’s disease, thus improving the
accuracy of the model classification.

3.3. Ensemble Model Named SDKABL

Numerous ML methods have been developed to forecast heart disease in individuals.
The suggested stacking model makes an important contribution to heart disease prediction.
Figure 1 displays the flow chart for the suggested model, called SDKABL.
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As shown in Figure 1, the SDKABL model is mainly composed of three parts, namely
data preprocessing, the base layer, and the meta layer. In the data preprocessing module,
the SDKABL model first processes the original data, mainly including processing outliers
and dividing the training set and the test set. Then, feature importance analysis is carried
out to screen out the few features most relevant to the prediction results. Finally, the PCA
method is used for feature fusion. The SDKABL model uses the SVM, DT, and KNN ML
methods for feature fitting and selection in the base classifier. Finally, the meta-layer learner
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uses the features generated above to make the final prediction. Theoretical analysis is
carried out below.

Suppose the original dataset is D = {(xi, yi)}n
i=1, where xi ∈ Rd represents the eigen-

vector of the ith sample and yi ∈ {0, 1} represents the label of the ith sample. While yi = 1
means that the individual has heart disease, and yi = 0 means that the individual does not
have heart disease. We then split the dataset into an 80% training set and a 20% test set,
i.e., Dtrain = {(xi, yi)}0.8n

i=1 , Dtest = {(xi, yi)}n
i=0.8n+1. Data preprocessing is performed on

the dataset, including feature selection, outlier processing, and PCA. A tree-based model is
used to analyze the importance of features, and the feature importance score is assumed to
be fimportance. Each characteristic value xij is judged as to whether it is an outlier. If it is an
outlier, it is filled or deleted. A new feature space zi = PCA(xi), zi ∈ Rk, k < d is obtained
by PCA. Multiple base learners (SVM, DT, KNN) are used to train the training set, and the
prediction probability or category is output as a new feature. For each base learner Mj,
the output is fMj = Mj(Dtrain), fMj ∈ Rm. Where j ∈ {1, 2, 3} represents the output of
base learners, such as SVM, DT, and KNN, respectively, which are combined into a new
matrix F =

[
fM1 , f M2

, fM3

]
, F ∈ Rm×3. On the basis of the newly generated features, the

ABiLSTM model is used for training and prediction. The input of ABiLSTM is a new eigen-
matrix F, and its process can be described as ht = BiLSTM(Ft, ht−1). Where ht indicates
the hidden state of step t. On the basis of BiLSTM, an attention mechanism is added to
assign the importance of different time step features. It can be expressed by the following

formula: αt =
exp(hT

t WhT)
∑T

t−1 exp(hT
t WhT)

. The final predicted output is ŷ = σ

(
Wo

(
T
∑

t=1
αtht

)
+ bo

)
.

Where σ represents the sigmoid function, and Wo and bo are the weight matrix and bias of
the output layer.

The structure diagram of the ABiLSTM model is listed in Figure 2.
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3.4. Performance Metrics

In the classification system of this study, the data are divided into two main categories:
one is the actual situation about whether an individual suffers from heart disease, which is
defined as the true category of the data, the other is the disease condition predicted by the
model, which is called the expected state. Based on these two pieces of information, we are
able to construct a Confusion Matrix (CM). CMs, also called error matrices, are a common
tool for assessing the capability of data mining models. In this matrix, each row represents
the actual class of the sample, while each column shows the output result predicted by the
model. The details are shown in Table 1.

Table 1. CM.

Predict

1 0

True
1 TP FN
0 FP TN

(1) Accuracy (Acc)

Accuracy is the proportion of model classification results that are correct.

Accuracy =
TP + TN

TP + TN + FP + FN

(2) Precision (Pre)

Precision is the proportion of true positive class in the data, the model classification
results of which are positive class.

Precision =
TP

TP + FP

(3) Recall (Rec)

The recall rate is the proportion of all positive data that is successfully predicted to
be positive.

Recall =
TP

TP + FN

(4) F1-score (F1)

The parameter closely related to the accuracy rate and recall rate is the F1-score, which
is a comprehensive index to reconcile the accuracy rate and recall rate. This index is more
objective and fair for model evaluation, and its calculation method is as follows:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall

(5) Area Under Curve (AUC)

The AUC of a curve represents the size of the area covered by the ROC curve. The
corresponding calculation formula is as follows:

TPR =
TP

TP + FN

FPR =
FP

FP + TN

Generally, if the AUC index of the ROC curve exceeds 0.5, it behaves as a convex curve,
which indicates that the model is performing well. On the contrary, if it is lower than this
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value, it implies that the classification performance is not satisfactory. Therefore, selecting a
classifier with a high AUC value is the key to optimizing the model evaluation of machine
learning algorithms.

3.5. Hyperparameter Optimization

The setting of hyperparameters greatly affects the performance of the model. Grid-
SearchCV and other technologies are used to explore the hyperparameter space effectively,
and the optimal parameters of the SDKABL model are determined. The SDKABL model’s
parameters are shown in Table 2.

Table 2. SDKABL model’s parameters.

Model Parameter Value

SVM

C 1
kernel RBF

gamma scale
degree 3

tol 0.001

DT

max_depth 10
min_samples_leaf 1
min_samples_split 2

criterion gini
splitter best

KNN
n_neighbors 5

weights uniform
algorithm auto

ABiLSTM

bilstm node amount 32
dense_1 node amount 32

dense_1 activate function relu
dense_2 node amount 2

dense_2 activate function sigmoid
learning_rate 0.001

loss binary_crossentropy

3.6. Experimental Environment

For data processing, we used the numpy and pandas libraries. We used seaborn and
matplotlib for data visualization and result evaluation. In addition, we used a range of
functions from sklearn, including machine learning models, PCA methods, and model
evaluation functions. Finally, we used the tensorflow and keras libraries to build a neural
network model. The deployment environment for the above code was built using Anaconda
2022.05, and the IDE tool was Pycharm 2022.3. All experiments in this paper are completed
on Lenovo Rescuer R9000P 2021. The Rescuer is made in China and sourced from Haikou,
China. The Rescuer consists of an AMD Ryzen 7 5800H developed by Advanced Micro
Devices, Inc. (Santa Clara, CA, USA), memory from Samsung and an NVIDIA GeForce
RTX 3070 Laptop made by Nvidia (Santa Clara, CA, USA).

4. Experiments and Results

In this section, the simulation results of the SDKABL model are evaluated and dis-
cussed. At the base level, three different ML classifiers, namely SVM, DT, and KNN, are
implemented. ABiLSTM is deployed on the meta-layer of the proposed model. In order to
obtain accurate and efficient results, we used PCA technology to perform feature fusion.

4.1. Dataset Description

For this study, we used the Cleveland dataset, the Framingham dataset, and the Z-
Alizadeh Sani dataset. The Cleveland and Z-Alizadeh Sani datasets were obtained from the
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UCI (The University of California, Irvine) machine learning repository [33]. The Cleveland
dataset contains 303 instances, with 14 different attributes (13 predictors; 1 class), such as
exang, oldpeak, slope, etc. (Table 3). The Z-Alizadeh Sani dataset contains 303 instances
with 56 different attributes (55 predictors; 1 class) [34]. The Framingham dataset was
obtained from the Kaggle website [35], and consists of 4240 instances with 16 attributes
(15 predictors, 1 class) (Table 4).

Table 3. Cleveland dataset’s details.

Sr. No. Attributes Description Range

1 Age Age [29, 77]

2 Sex Sex (1 = Male, 0 = Female) {0, 1}

3 Cp Chest pain type {0, 1, 2, 3}

4 Trestbps Resting blood pressure [94, 200]

5 Chol Serum cholestoral [126, 564}

6 Fbs Fasting blood sugar > 120 mg/dL {0, 1}

7 Restecg Resting electrocardiogram results {0, 1, 2}

8 Thalach Maximum heart rate achieved [71, 202}

9 Exang Exercise induced angina {0, 1}

10 Oldpeak ST depression induced by exercise relative to rest [0, 6.2]

11 Slope The slope of the highest moving ST-segment {0, 1, 2}

12 Ca Number of major vessels (0–3) colored by flourosopy {0, 1, 2, 3, 4}

13 Thal Blood disease {0, 1, 2, 3}

14 HeartDisease 1 = YES, 0 = NO {0, 1}

Table 4. Framingham dataset’s details.

Sr. No. Attributes Description Range

1 male 1 = YES, 0 = NO {0, 1}

2 age patient age [32, 70]

3 education patient’s education level {0, 1, 2, 3, 4}

4 currentSmoker current smoker {0, 1}

5 cigsPerDay number of cigarettes smoked per day [0, 70}

6 BPMeds whether to take blood pressure medication {0, 1}

7 prevalentStroke whether you have had a stroke {0, 1}

8 prevalentHyp whether you have high blood pressure {0, 1}

9 diabetes whether you have diabetes {0, 1}

10 totChol total cholesterol level [107, 696]

11 sysBP systolic blood pressure [83.5, 295]

12 diaBP diastolic blood pressure [48, 142.5]

13 BMI body mass index [15.54, 56.8]

14 heartRate heart rate [44, 143]

15 glucose glucose level [40, 394]

16 HeartDisease 1 = YES, 0 = NO {0, 1}
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The Framingham dataset included missing attributes, and attributes with missing data
included education, cigsPerDay, BPMeds, totChol, BMI, heartRate, and glucose. There is no
direct relationship between the education attribute and the heart disease prediction, so the
blank value of the education attribute is treated with all zeros. The cigsPerDay attribute is
the number of cigarettes smoked in a day; the remaining data average is taken as 9 and
filled in. The number of 0 value data of the BPMeds attribute is 4063, and the number
of 1 value data is 124. The number of 0 value data is much greater than that of 1 value
data, so we have blank data with 0 values. The BMI attribute contains 19 blank pieces of
data. Take the average of the remaining 4221 pieces of data and fill in the blank with 25.8.
The heartRate attribute has only one blank data block, filled with an average of 76 of the
remaining 4239 data. The number of blank data in the glucose attribute is 388, and the
average value of the remaining 3852 data is filled in. It is important to note that the unit of
the age attribute is the number of days and can be converted to the number of years. Since
the Z-Alizadeh Sani dataset contains a large number of continuous variables, it is necessary
to normalize some of its features, including features FBS, TG, LDL, WBC, and PLT. Since
the Z-Alizadeh Sani dataset contains a large number of continuous variables, it is necessary
to normalize some of its features, including features FBS, TG, LDL, WBC, and PLT.

In each dataset, 20% of the samples were used for testing and 80% were used for
training. The Z-Alizadeh Sani dataset has too many features, so it is not included in this list
and heat map.

The heatmap function in the seaborn library is used to display the correlation between
each feature. The correlation between the two characteristics is stronger for deeper grid
colors; a positive correlation is shown by colors near red, and a negative correlation is
indicated by colors near blue. Conversely, the lighter the grid color, the lower the correlation
between the corresponding two features. The heat maps of the Cleveland and Framingham
datasets are shown in Figures 3 and 4.
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Figure 4. Correlation heatmap in the Framingham dataset.

As can be seen from Figure 3, feature trestbps, chol, thalach, oldpeak, ca, and Heart-
Disease are highly correlated with age. The features of trestbps, chol, oldpeak, and ca
are positively correlated with age, while the features of thalach and HeartDisease are
negatively correlated with age. Generally speaking, a feature increases with the increase
in another feature that is positively correlated with it, and decreases with the increase
in another feature that is negatively correlated with it, and vice versa. For example, the
feature cp obtained from the heat map showed a high positive correlation with the feature
HeartDisease. It can be seen from Table 3 that cp is the kind of chest pain; that is, the more
severe the type of chest pain, the higher the likelihood of having heart disease, which is the
same as common sense would suggest.

It can also be seen from Figure 3 that features of HeartDisease are highly correlated.
From high to low, the features are exang, cp (feature oldpeak), thalach, ca, slope, thal, sex,
age, trestbps(feature restecg), chol, and fbs.

As can be seen from Figure 4, features cigsPerDay and currentSmoker, features sysBP
and diaBP, features prevalentHyp and diaBP, and features prevalentHyp and diaBP are
highly correlated. Among them, the feature cigsPerDay represents the number of cigarettes
smoked per day, and the feature currentSmoker represents whether or not one smokes, and
only then will you obtain the number of cigarettes smoked per day. prevalentHyp, sysBP,
and diaBP are all indicators of blood pressure. prevalentHyp represents whether or not you
have hypertensive disease, sysBP represents systolic blood pressure, and diaBP represents
diastolic blood pressure. People with hypertensive disease have high systolic and diastolic
blood pressure, which is what people would expect. Feature glucose represents a person’s
glucose level, and when glucose is high, it will lead to diabetes, so feature glucose is related
to feature diabetes.

4.2. Experimental Results

In this section, we utilize different machine learning classifiers to build a prediction
model and validate the efficacy of our suggested methodology across three datasets.
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4.2.1. Experiment Using the Cleveland Dataset

First, Figure 5 and Table 5 compare the influence of the PCA method for feature fusion
on prediction accuracy in dataset 1.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 5. ROC curve of SDKABL model with and without PCA in dataset 1. 

Table 5. Performance of SDKABL model with and without PCA in dataset 1. 

Methods Acc Pre Rec F1 CM 

SDKABL with PCA 0.918 0.918 0.919 0.918 27 23 29 

SDKABL without PCA 0.770 0.791 0.763 0.777 18 113 29 

From Figure 5 and Table 5, the influence of the PCA method on the performance in-
dicators of the SDKABL model, including accuracy, precision, and recall, can be obtained. 
In addition, CMs are also given to show the performance of the classifier. 

What can be obtained is that the data processed by PCA show better performance 
under the same classifier. The values of these four indexes all reach more than 91%, among 
which recall increases the most, by 15.6% compared with the data without PCA pro-
cessing. Although precision shows the least improvement, it improves by 12.7%. In the 
CM, the data processed by PCA greatly reduces false positives in the classification of the 
SDKABL model and greatly increases the number of true negative samples. Finally, the 
AUC values of the two methods were obtained through the ROC curve. The AUC value 
of the model trained by PCA processing data was 0.92, which was much higher than that 
of the model trained without PCA processing, while the AUC value of the model trained 
without PCA processing was only 0.76. 

Figure 6 and Table 6 show the comparison between the SDKABL method and the DT, 
KNN, and SVM. The max_depth parameter of DT is 5, and the n_neighbors parameter of 
KNN is 7. 

Table 6. Performance of SDKABL model compared with base models in dataset 1. 

Methods Acc Pre Rec F1 CM 

SDKABL 0.918 0.918 0.919 0.918 27 23 29 

DT 0.820 0.827 0.823 0.825 26 38 24 

KNN 0.705 0.705 0.706 0.705 21 810 22 

SVM 0.705 0.728 0.696 0.712 15 144 28 

Figure 5. ROC curve of SDKABL model with and without PCA in dataset 1.

Table 5. Performance of SDKABL model with and without PCA in dataset 1.

Methods Acc Pre Rec F1 CM

SDKABL with PCA 0.918 0.918 0.919 0.918 27 2
3 29

SDKABL without PCA 0.770 0.791 0.763 0.777 18 11
3 29

From Figure 5 and Table 5, the influence of the PCA method on the performance
indicators of the SDKABL model, including accuracy, precision, and recall, can be obtained.
In addition, CMs are also given to show the performance of the classifier.

What can be obtained is that the data processed by PCA show better performance
under the same classifier. The values of these four indexes all reach more than 91%, among
which recall increases the most, by 15.6% compared with the data without PCA processing.
Although precision shows the least improvement, it improves by 12.7%. In the CM, the
data processed by PCA greatly reduces false positives in the classification of the SDKABL
model and greatly increases the number of true negative samples. Finally, the AUC values
of the two methods were obtained through the ROC curve. The AUC value of the model
trained by PCA processing data was 0.92, which was much higher than that of the model
trained without PCA processing, while the AUC value of the model trained without PCA
processing was only 0.76.

Figure 6 and Table 6 show the comparison between the SDKABL method and the DT,
KNN, and SVM. The max_depth parameter of DT is 5, and the n_neighbors parameter of
KNN is 7.

From Table 6, the performance of the SDKABL model is superior to the other three
comparison models in all aspects, followed by the DT model, the AUC value of which
is 0.82, and finally, the KNN and SVM models, the AUC values of which are almost 0.70.
Among them, all indicators of the SDKABL model reach more than 90%, and its AUC value
is 0.92, which is 0.1 higher than that of the DT model after its second performance and
about 0.2 higher than that of the KNN and SVM models.
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Table 6. Performance of SDKABL model compared with base models in dataset 1.

Methods Acc Pre Rec F1 CM

SDKABL 0.918 0.918 0.919 0.918 27 2
3 29

DT 0.820 0.827 0.823 0.825 26 3
8 24

KNN 0.705 0.705 0.706 0.705 21 8
10 22

SVM 0.705 0.728 0.696 0.712 15 14
4 28

4.2.2. Experiment Using the Framingham Dataset

Figure 7 and Table 7 compare the influence of the PCA method for feature fusion on
prediction accuracy in dataset 2.

Table 7. Performance of SDKABL model with and without PCA in dataset 2.

Methods Acc Pre Rec F1 CM

SDKABL with PCA 0.907 0.803 0.895 0.847 661 64
15 108

SDKABL without PCA 0.836 0.702 0.783 0.740 622 103
36 87

Figure 7 and Table 7 show the performance indexes of the PCA method for the SDKABL
model using dataset 2.

It can be seen that the PCA data show better performance under the same classifier.
Although the values of these four indicators are not as good as those of dataset 1, they all
reach more than 80%, with the recall rate improving the most, by 11.2%, compared to the
data without PCA processing. Although the improvement in accuracy is the smallest, it
is also an improvement of 7.1%. In dataset 2, PCA-treated data similarly reduced false
positives in SDKABL model classification and greatly increased the number of TN samples.
Finally, the AUC values of the two methods were obtained by the ROC curve. The AUC
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value of the PCA-treated model is 0.89, which is much higher than that of the non-PCA-
treated model, and the AUC of the non-PCA-treated model is only 0.78.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 6. ROC curve of SDKABL model compared with base models in dataset 1. 

From Table 6, the performance of the SDKABL model is superior to the other three 
comparison models in all aspects, followed by the DT model, the AUC value of which is 
0.82, and finally, the KNN and SVM models, the AUC values of which are almost 0.70. 
Among them, all indicators of the SDKABL model reach more than 90%, and its AUC 
value is 0.92, which is 0.1 higher than that of the DT model after its second performance 
and about 0.2 higher than that of the KNN and SVM models. 

4.2.2. Experiment Using the Framingham Dataset 
Figure 7 and Table 7 compare the influence of the PCA method for feature fusion on 

prediction accuracy in dataset 2. 

 
Figure 7. ROC curve of the SDKABL model with and without PCA in dataset 2. 

  

Figure 7. ROC curve of the SDKABL model with and without PCA in dataset 2.

Figure 8 and Table 8 show the SDKABL method compared to DT, KNN, and SVM.
The best parameter of DT max_depth obtained by the GridSearchCV method is 7, and the
n_neighbors parameter of KNN is 10.
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Figure 8. ROC curve of SDKABL model compared with base models in dataset 2.

From Table 8, the performance of the SDKABL model is superior to the other three
comparison models in all aspects. The AUC values of the SVM, DT, and KNN models are
0.77, 0.75, and 0.70, respectively. Among them, all indicators of the SDKABL model in
dataset 2 reach more than 80%, and the prediction accuracy rate is more than 90%. The
AUC of SDKABL is 0.89, which is 0.12 higher than the SVM model, 0.14 higher than the DT
model, and nearly 0.2 higher than the KNN model.
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Table 8. Performance of SDKABL model compared with base models in dataset 2.

Methods Acc Pre Rec F1 CM

SDKABL 0.907 0.803 0.895 0.847 661 64
15 108

DT 0.776 0.653 0.754 0.700 569 156
34 89

KNN 0.690 0.605 0.697 0.648 498 227
36 87

SVM 0.797 0.671 0.773 0.718 585 140
32 91

4.2.3. Experiment Using the Z-Alizadeh Sani Dataset

Figure 9 and Table 9 compare the influence of THE PCA method for feature fusion on
prediction accuracy in Z-Alizadeh Sani dataset.
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Table 9. Performance of SDKABL model with and without PCA in dataset 3.

Methods Acc Pre Rec F1 CM

SDKABL with PCA 0.918 0.907 0.893 0.900 15 3
2 41

SDKABL without PCA 0.738 0.696 0.717 0.706 12 6
10 33

Figure 9 and Table 9 also show the performance indexes of the PCA method on dataset
3 of the SDKABL model proposed in this paper.

The classifier trained by PCA-processed data has better performance in classification
performance, and has different degrees of improvement in multiple indicators. The per-
formance of SDKABL on dataset 3 is similar to that of dataset 1, with both around 90%.
Among them, the improvement in Precision was the largest, increasing by more than 20%
compared to data without PCA processing. Although the improvement in accuracy is
small, it is still 18%. In dataset 3, PCA-treated data significantly reduced false negatives
in SDKABL model classification and significantly increased the number of true positive
samples. Finally, the ROC curve obtains the AUC values of the two methods. The AUC
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value of the PCA treated model is 0.89, which is much higher than that of the non-PCA
treated model. In summary, it can be concluded that the PCA method plays a certain part
in extracting key features and can provide certain help in data processing.

Figure 10 and Table 10 show the SDKABL method compared to decision trees, KNN,
and support vector machines.
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Table 10. Performance of SDKABL model compared with base models in dataset 3.

Methods Acc Pre Rec F1 CM

SDKABL 0.918 0.907 0.893 0.900 15 3
2 41

DT 0.803 0.772 0.812 0.792 15 3
9 34

KNN 0.754 0.711 0.729 0.720 12 6
9 34

SVM 0.803 0.767 0.796 0.781 14 4
8 35

From Table 10, the performance of the SDKABL model is superior to the other three
comparison models in all aspects. The AUC values of the DT, SVM, and KNN models
were 0.81, 0.8, and 0.73, respectively. Among them, the indicators of the SDKABL model in
dataset 3 are around 90%, and the prediction accuracy rate is more than 91%. The AUC
value is 0.89, which is 0.08 higher than the DT model, 0.09 higher than the SVM model, and
0.16 higher than the KNN model. In summary, the superposition model with DT, KNN,
and SVM as the base classifiers and ABiLSTM as the meta-layer classifier greatly improves
the model’s performance compared with a single classifier.

4.2.4. Comparative Analysis of Existing and Proposed Methods

Many academics have employed ML methods to forecast heart disease in recent years.
We also compared and analyzed the experimental results of the SDKABL model with those
in the literature survey, which are shown in Table 11.
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Table 11. Comparative analysis of existing and proposed methods.

#Ref Dataset Classifiers Acc Pre Rec F1

[36] Cleveland dataset SVM 88.5% - - -

[37] Cleveland dataset KNN 88.5% - - -

[38] Cleveland dataset Stacking Model 75.1% - - -

[39] Cleveland dataset HRFLM 88.5% 90.1% 92.8% 91.4%

Our model

Dataset 1
SDKABL

91.8% 91.8% 91.9% 91.8%

Dataset 2 90.7% 80.3% 89.5% 84.7%

Dataset 3 91.8% 90.7% 89.3% 90.0%

Table 11 compares our proposed methods with those of other studies. These methods
include SVM and KNN. Other methods include the stacking model involving KNN, random
forest, and an SVM classifier [38], as well as the Hybrid Random Forest with Linear Model
(HRFLM) [39]. It should be noted that the dataset 1 used in our model is the Cleveland
dataset. From Table 11, the SDKABL model achieves considerable performance. Taken
together, our proposed method performed best on the Cleveland dataset. On the other two
datasets, the SDKABL model we proposed also achieves good results.

It can be seen that the stacking model using the DT, KNN, and SVM models as the base
classifier and ABiLSTM as the meta layer classifier greatly improves the model performance
compared with a single classifier.

5. Conclusions

This study makes a comprehensive exploration of heart disease prediction using fea-
ture selection and a variety of ML classification techniques. A systematic comparison of
several ML algorithms focuses on accuracy and recall rate as the primary metrics to assess
model performance. The results highlight the importance of feature selection and algo-
rithm selection. This study emphasizes the importance of the PCA method in improving
prediction accuracy and reducing dimension. By identifying the optimal configuration of
each model, high accuracy is obtained, and the accuracy of the SDKABL model on the three
datasets is more than 90%. These results demonstrate how well-tuned machine learning
models may improve heart disease early detection. The next step will be to investigate
large-scale dataset trials because of the dangers of overfitting and the requirement for
strong models on huge datasets.
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