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Abstract: In this paper, a deep learning-based device modeling framework for design-technology
co-optimization (DTCO) is proposed. A ResNet surrogate model is utilized as an alternative to
traditional compact models, demonstrating high accuracy in both single-task (I–V or C–V) and
multi-task (I–V and C–V) device modeling. Moreover, transfer learning is applied to the ResNet
model, using the BSIM-CMG compact model for a 12 nm FinFET SPICE model as the pre-trained
source. Through this approach, superior modeling accuracy and faster training speed are achieved
compared to a ResNet surrogate model initialized with random weights, thereby meeting the rapid
and efficient demands of the DTCO process. The effectiveness of the ResNet surrogate model in
circuit simulation for 12 nm FinFET devices is demonstrated.

Keywords: design-technology co-optimization; FinFET; BSIM-CMG; SPICE model; ResNet surrogate
model; transfer learning

1. Introduction

As device dimensions continue to shrink, traditional device manufacturing and cir-
cuit design processes face escalating challenges. The emergence of new structures [1,2],
materials [3,4], mechanisms [5,6], and approaches [7] for devices has introduced signif-
icant difficulties for the rapid growth of the semiconductor industry based on Moore’s
law. A novel methodology is urgently needed to reduce the cost and time-to-market of
next-generation devices. Design-technology co-optimization (DTCO) aims to continuously
improve performance and power consumption by closely integrating device, process, and
circuit design, optimizing each step even as technological advancements decelerate [8]. In
the post-Moore’s Law era, DTCO has become increasingly prominent [9].

Simulation Program with Integrated Circuit Emphasis (SPICE) models are an impor-
tant link in the device-to-circuit chain. Rapid and extensive iterations are vital to DTCO
methodology to keep up with the fast-evolving technology landscape. However, transi-
tioning from compact models to SPICE models is time-consuming, often taking several
weeks [10,11]. This time lag poses a significant bottleneck in the design cycle, necessitating
more efficient modeling techniques.

Fin Field-Effect Transistor (FinFET) devices have become mainstream in advanced
process nodes due to their superior performance [12,13]. However, the three-dimensional
structure and complexity of FinFETs pose significant challenges for compact modeling.
Traditional physics-based and empirical compact models, such as Berkeley Short-channel
Insulated Gate Field Effect Transistor Model-Common Multi-Gate (BSIM-CMG), require
extensive manual parameter fitting, which is labor-intensive and time-consuming [14,15].
Recently, machine learning methods have opened new avenues for FinFET modeling.
In 2021, Wang J et al. [16] proposed an Artificial Neural Network (ANN)-based FinFET
modeling method using limited Technology Computer Aided Design (TCAD) data. In
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the same year, K. Xia [17] presented a method to create corner models for lookup table-
based Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) models through input–
output mapping. In 2022, M. Kao et al. [18] introduced an ANN-assisted physics-driven
approach for MOSFET modeling. In the same year, Chien-Ting Tung et al. [19] demonstrated
a neural network-based device modeling framework for advanced FETs, showing potential
in accelerating circuit simulation speed compared to BSIM. In 2023, Hyunjoon Jeong
et al. [20] developed an expandable ANN-based compact model for emerging transistors.
In the same year, Jiahao Wei et al. [21] introduced an ANN-based MOSFET model for
0.18 µm analog processes, using novel data preprocessing and Latin hypercube sampling
to reduce training data while outperforming the BSIM4 model in fitting and simulations.
In 2024, Ya-Shu Yang et al. [22] presented a physical-based ANN framework for Gate-All-
Around (GAA) MOSFETs. In the same year, Ziyao Yang et al. [23] proposed a graph-based
compact model (GCM) using graph neural networks for efficient parameter extraction in
12 nm FinFETs.

However, existing machine learning modeling methods have limitations. The fitting
and generalization capabilities of ANN models are limited, making it difficult to accurately
describe the strong nonlinear characteristics of FinFET devices. Models trained from scratch
often require large amounts of data and time, challenging the fast iteration demands of the
industry. Existing methods mainly focus on fitting single characteristics, lacking unified
modeling of multiple characteristics.

To overcome these limitations, a compact modeling method for FinFETs based on
Residual Network (ResNet) is proposed. By introducing residual connections, ResNet can
effectively extract and learn multi-scale features from data, demonstrating strong fitting
capabilities for highly nonlinear functions. We introduce an innovative approach using
ResNet into FinFET compact modeling and conduct pre-training and transfer learning
based on the BSIM-CMG model, improving modeling efficiency and accuracy. Moreover,
the ResNet surrogate model to circuit simulation is applied, validating the effectiveness of
the proposed modeling method in the DTCO process.

The rest of this paper is organized as follows. Section 2 provides a comprehensive
overview of the data preparation and preprocessing steps. Section 3 presents the training
and testing procedures of the ResNet model. Section 4 discusses the results and analysis
of the ResNet model’s performance in both single-task and multi-task device modeling.
Moreover, a 13-stage Ring Oscillator (RO) circuit based on FinFET devices was built to
verify the accuracy of the ResNet model as compared to the commercial SPICE model with
High-Speed SPICE (Hspice) simulation results. Section 5 discussions on the ResNet model’s
improvements and future work directions. Section 6 concludes the paper by summarizing
the key findings and potential applications.

2. Data Preparation and Pre-Processing

In this study, extensive simulations of FinFET devices were conducted, focusing on
critical device parameters and the corresponding simulation curves. A high-dimensional
dataset was then constructed, which included channel length (L), channel width (W),
number of fins (NFIN), temperature (Temp), gate-source voltage (Vgs), drain-source voltage
(Vds), drain-source current (Ids), gate-source capacitance (Cgs), gate-drain capacitance
(Cgd), and gate-bulk capacitance (Cgb), as listed in Table 1.

Table 1. Dataset parameter ranges and step sizes.

Parameter Range Step Sizes

L (nm) 16 to 240 4
W (nm) 10 to 1000 10
NFIN 1 to 20 1

Temp (◦C) −25 to 125 50
Vgs (V) 0 to 2 0.2
Vds (V) 0 to 2 0.05
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Channel Length (L) and Channel Width (W) were identified as fundamental geometric
dimensions that directly influence the device’s scaling properties, threshold voltage, and
drive current. Channel length scaling was recognized as critical for improving transistor
speed and reducing power consumption, while channel width was observed to affect the
current-carrying capability of the device.

The effective width of the FinFET was determined by the number of fins (NFIN),
which directly impacts the drive strength and overall performance of the device. More fins
typically result in higher drive current, making this a key design parameter.

Temperature (Temp) variations were found to significantly affect semiconductor per-
formance, influencing carrier mobility and leakage currents. By including temperature
as a parameter, the modeling of FinFET behavior under different operating conditions
was enabled.

Gate-Source Voltage (Vgs) and drain-source voltage (Vds) were considered essential
bias conditions that control the switching behavior of the FinFET. Vgs was observed to
affect the inversion layer formation and control the on/off state of the device, while Vds
was found to influence the current flow through the channel.

Drain-source current (Ids) was identified as the primary output characteristic and was
determined to be a direct function of the applied voltages (Vgs and Vds) and the device’s
physical dimensions. It reflects the device’s ability to conduct electricity in the on-state.

Gate-source capacitance (Cgs), gate-drain capacitance (Cgd), and gate-bulk capacitance
(Cgb) were considered critical for understanding the switching speed and dynamic behavior
of the device. These capacitances were found to affect the charging and discharging times
during switching events, which are crucial for high-speed applications.

Moreover, the choice of these output characteristics, particularly Ids, Cgs, Cgd, and
Cgb, was motivated by their suitability for packaging into scalable lookup table models.
These models were intended to be implemented in Verilog-A syntax, enabling circuit-level
simulations that accurately reflect the behavior of FinFET devices under various operating
conditions. The use of lookup tables was recognized for allowing efficient interpolation
and fast simulation, which is essential for validating device performance in large-scale
circuit designs.

Therefore, the combination of these parameters was selected to provide a compre-
hensive representation of FinFET’s electrical and physical characteristics. This approach
was employed to ensure that a robust surrogate model could be developed, capable of
accurately predicting device behavior, while also facilitating subsequent circuit simulation
and verification using Verilog-A.

The Nano High-Speed SPICE (NanoSpice) simulator was used to simulate two dif-
ferent models. The BSIM-CMG compact model produced 29,000 files, each containing
451 data points with a total memory usage of 1.32 GB. The 12 nm FinFET SPICE model
generated 24,000 files, each containing 451 data points with a total memory usage of 1.09 GB.
These simulation datasets were used in our proposed deep learning-based device modeling
framework for design-technology co-optimization (DTCO).

The deep learning-based device modeling framework was built on the Linux operating
system. The server was configured with an AMD EPYC 7H12 64-Core Processor (AMD,
Santa Clara, CA, USA) running at 1.5–2.6 GHz, an NVIDIA GeForce RTX 3090 GPU
(NVIDIA Corporation, Santa Clara, CA, USA), 2044 GiB of memory, and a 21 TB SSD
(Samsung Electronics, Suwon, Republic of Korea). The deep learning algorithm was
implemented using a Jupyter Notebook within the Anaconda environment. The Python
version used was 3.10.12, and the PyTorch version was 2.0.1+cu117.

Data augmentation was performed based on the physical information of the devices,
incorporating the physical and electrical characteristics into the input data via data aug-
mentation, effectively embedding physical information into the model.

Min–max scaling was applied to the input data (L, W, NFIN, Temp, Vgs, Vds, and
data augmentation) to reduce the magnitude differences between features in the high-
dimensional dataset. This scaling accelerates model convergence and prevents certain
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features from disproportionately influencing the loss function. For the target variables
(Ids, Cgs, Cgd, and Cgb), logarithmic transformation was used to compress magnitude
differences, and small constants were added to avoid infinite negative values from zero
inputs. The dataset preprocessing is presented in Figure 1. The dataset was randomly split
into training, validation, and test sets with a ratio of 7:2:1.
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3. Train and Test

It is known that a fully connected ANN structure is used in most deep learning-based
surrogate models for semiconductor device use. While an ANN with sufficiently broad
neuron architecture can accurately represent models, shallow networks with limited feature
parameters struggle to maintain accuracy and generalization. These limitations lead to
overfitting of the training data and inadequate approximation capabilities, necessitating
deeper networks to manage the complexities of new semiconductor device structures.
Although deep networks like Convolutional Neural Networks (CNNs), Recurrent Neu-
ral Networks (RNNs), and transformers have achieved significant success in image and
natural language processing, modeling semiconductor devices aims to approximate real
computational scenarios. Therefore, a fully connected ResNet structure was adopted to
ensure modeling accuracy.

ResNet in this work incorporates traditional residual connections and varying neuron
counts across hidden layers. Unlike conventional fully connected ResNets, where residual
connections are added at every layer, residuals were strategically introduced at specific
layers in our design. This selective approach reduces the number of residual summations,
allowing for more efficient gradient computation and helping to control the complexity of
the model. The varying number of neurons in different layers enables the model to scale and
adapt at various levels, enhancing its ability to capture multi-level features more effectively.

More specifically, residual connections were applied after every two hidden layers, as
shown in Figure 2.

Residual connections were added at strategic points, specifically after every two
hidden layers, to maintain gradient flow through the network and reduce the risk of
vanishing gradients. This approach ensures that the network can be effectively trained
even with increased depth, without requiring residuals at every layer.

By selectively adding residual connections, the overhead of summing residuals at every
layer, which can introduce unnecessary complexity, is avoided. Instead, residuals were
applied at key transition points where feature transformations occur, allowing the model to
benefit from the stabilizing effects of residuals without overcomplicating the architecture.
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Each pair of hidden layers was treated as performing a specific level of feature trans-
formation. With residuals introduced after every two layers, the model was enabled to
capture and combine features from different levels more effectively, resulting in a richer
representation of the input data. This selective approach allowed the model to scale and
expand its learning capacity.

In shallow ANN structures, due to the presence of fewer hidden layers, the gradient
vanishing problem is minimal. In this context, Sigmoid and tanh are appropriate activation
functions. However, in deeper residual networks, using Sigmoid or tanh can lead to
gradient diminishing across layers, rendering the early layers nearly untrainable. To
address this issue, the Lintanh activation function was designed, combining the advantages
of both linear and tanh functions. The Lintanh function is defined in Equation (1).

Lintanh(x) =
{

x, i f x ≥ 0
tanh(x), i f x < 0

(1)

It maintains linearity for non-negative inputs, thereby preventing gradient vanishing,
while providing non-linear transformation for negative inputs using tanh. Compared
to Rectified Linear Unit (ReLU) and Leaky ReLU, which are commonly used in deep
neural networks, Lintanh can capture more feature information. The smoothness and
zero-centered output of tanh contribute to stable training and faster convergence. The
first and second derivatives of Lintanh smoothly transition from negative to non-negative
inputs, helping to avoid abrupt gradient changes and ensuring stable training. The Lintanh
function is presented in Figure 3a, with the first and second derivative curves shown in
Figures 3b and 3c, respectively.

Electronics 2024, 13, x FOR PEER REVIEW 6 of 14 
 

 

   
(a) (b) (c) 

Figure 3. (a) Lintanh curves. (b) Lintanh’s first derivatives curves. (c) Lintanh’s second derivatives. 

In contrast, the ReLU activation function, while popular in deep learning, has discon-
tinuities in its first and second derivatives. Specifically, the first derivative of ReLU is not 
continuous at zero, transitioning abruptly from 0 to 1, and the second derivative is unde-
fined at this point. The first derivative of ReLU can be expressed in Equation (2). 𝑓ᇱሺ𝑥ሻ ൌ ൜1, 𝑖𝑓 𝑥  00,         𝑖𝑓 𝑥 ൏ 0 (2)

At x = 0, the derivative is not continuous, as the left-hand derivative is 0 and the right-
hand derivative is 1. This lack of smoothness poses significant challenges in circuit simu-
lation environments, particularly when using SPICE simulators. In these environments, 
device models, including surrogate models, often require the calculation of higher-order 
derivatives to accurately simulate the physical behavior of electronic devices. The matrix 
formulations used in SPICE simulators rely on the computation of multiple derivatives to 
ensure stable and accurate numerical results. The discontinuities in ReLU’s derivatives 
can lead to numerical instability, making it less suitable for such simulations. 

In contrast, Lintanh offers smooth first and second derivatives, making it a better fit 
for circuit modeling and simulation tasks that require accurate higher-order derivative 
calculations. The smoothness of Lintanh ensures that models built using this activation 
function can be seamlessly integrated into SPICE-like simulators, where the ability to com-
pute continuous and stable derivatives is critical for simulating the dynamic behavior of 
devices under various conditions. 

Considering the linear and non-linear aspects of the Lintanh activation function, 
Kaiming Uniform initialization was chosen to ensure stable output variance for each layer. 
Through uniform distribution, Kaiming Uniform initialization helps maintain good gra-
dient flow in deep networks during early training. 

Next, the AdaptiveSmoothL1 loss function was designed as written in Equation (3). 
When the actual data value is zero, Smooth L1 loss is applied, which is robust to outliers 
and suitable for handling zero targets. When the data value is non-zero, the absolute dif-
ference between the predicted and actual values is first computed and then the relative 
error is calculated. When the relative error exceeds 1, the loss function will speed up 
model convergence, enhancing learning in high-error scenarios. Conversely, if the relative 
error is below 1, the loss function will improve prediction accuracy, making the model 
more precise in low-error situations. It is seen that the proposed model can adjust flexibly 
to different situations, enhancing overall prediction performance. 

𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝑆𝑚𝑜𝑜𝑡ℎ𝐿1 ൌ
⎩⎪⎨
⎪⎧ 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1൫𝑦ௗ, 𝑦௧௨൯, 𝑖𝑓 𝑦௧௨ ൌ 0

⎩⎪⎨
⎪⎧ |𝑦ௗ െ 𝑦௧௨||𝑦௧௨| െ 0.5, 𝑖𝑓 ห𝑦ௗ െ 𝑦௧௨ห|𝑦௧௨|  1

0.5 ൈ ൬|𝑦ௗ െ 𝑦௧௨||𝑦௧௨| ൰ଶ , 𝑖𝑓 ห𝑦ௗ െ 𝑦௧௨ห|𝑦௧௨|  1  , 𝑖𝑓 𝑦௧௨ ് 0  (3)

Figure 3. (a) Lintanh curves. (b) Lintanh’s first derivatives curves. (c) Lintanh’s second derivatives.



Electronics 2024, 13, 4040 6 of 13

In contrast, the ReLU activation function, while popular in deep learning, has dis-
continuities in its first and second derivatives. Specifically, the first derivative of ReLU is
not continuous at zero, transitioning abruptly from 0 to 1, and the second derivative is
undefined at this point. The first derivative of ReLU can be expressed in Equation (2).

f ′(x) =

{
1, i f x ≥ 0
0, i f x < 0

(2)

At x = 0, the derivative is not continuous, as the left-hand derivative is 0 and the right-
hand derivative is 1. This lack of smoothness poses significant challenges in circuit simu-
lation environments, particularly when using SPICE simulators. In these environments,
device models, including surrogate models, often require the calculation of higher-order
derivatives to accurately simulate the physical behavior of electronic devices. The matrix
formulations used in SPICE simulators rely on the computation of multiple derivatives to
ensure stable and accurate numerical results. The discontinuities in ReLU’s derivatives can
lead to numerical instability, making it less suitable for such simulations.

In contrast, Lintanh offers smooth first and second derivatives, making it a better fit
for circuit modeling and simulation tasks that require accurate higher-order derivative
calculations. The smoothness of Lintanh ensures that models built using this activation
function can be seamlessly integrated into SPICE-like simulators, where the ability to
compute continuous and stable derivatives is critical for simulating the dynamic behavior
of devices under various conditions.

Considering the linear and non-linear aspects of the Lintanh activation function,
Kaiming Uniform initialization was chosen to ensure stable output variance for each
layer. Through uniform distribution, Kaiming Uniform initialization helps maintain good
gradient flow in deep networks during early training.

Next, the AdaptiveSmoothL1 loss function was designed as written in Equation (3).
When the actual data value is zero, Smooth L1 loss is applied, which is robust to outliers
and suitable for handling zero targets. When the data value is non-zero, the absolute
difference between the predicted and actual values is first computed and then the relative
error is calculated. When the relative error exceeds 1, the loss function will speed up model
convergence, enhancing learning in high-error scenarios. Conversely, if the relative error is
below 1, the loss function will improve prediction accuracy, making the model more precise
in low-error situations. It is seen that the proposed model can adjust flexibly to different
situations, enhancing overall prediction performance.

AdaptiveSmoothL1 =


SmoothL1

(
ypred, ytrue

)
, i f ytrue = 0

|ypred−ytrue|
|ytrue | − 0.5, i f |ypred−ytrue|

|ytrue | > 1

0.5 ×
(
|ypred−ytrue|

|ytrue |

)2
, i f |ypred−ytrue|

|ytrue | ≤ 1
, i f ytrue ̸= 0

(3)

Furthermore, when the batch size is set as 10, the initial learning rate of the Adam
algorithm is set as 1 × 10−4, and weight decay is set as 1 × 10−7; the training will be
stopped early to effectively prevent overfitting during surrogate model training.

Figure 4 shows the training and prediction flow of the ResNet model. The raw FinFET
device data are preprocessed, including data enhancement, feature normalization, and
logarithmic transformation, to form a dataset suitable for neural network training. The
ResNet model was trained on the training set and the model performance was evaluated
on the validation set at the end of each epoch to terminate the training early if overfitting
occurred. The trained models are predicted on the test set and compared with the SPICE
simulation values to evaluate the fitting and generalization ability of the models. In
practical applications, the trained ResNet model can be used as a compact model to
quickly and accurately predict the I–V and C–V characteristics of FinFET devices under
any parameter combinations.
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4. Results

Figure 5 shows the trends of the training loss (AdaptiveSmoothL1), validation loss
(MAPE), and test set R2 accuracy of the ResNet model in 12 nm FinFET single-task (I–V
or C–V) and multi-task (I–V and C–V) modeling. During the training process, an early-
stopping strategy was employed to prevent overfitting, with the training being terminated
if the validation loss did not decrease for 6 consecutive epochs. This is consistent with the
early-stopping strategy described earlier. As shown in Figure 5a, the optimal training loss
of ResNet is 1.3962 × 10−5 (54th epoch) for single-task learning of I–V characteristics and
4.2310 × 10−5 (39th epoch) for multi-task learning of I–V and C–V characteristics. In both
cases, the training loss converges quickly and stabilizes at a low level, indicating that ResNet
effectively learns the nonlinear I–V and C–V characteristics of FinFET devices. The slightly
higher training loss observed in multi-task learning compared to single-task learning
is due to the increased modeling difficulty of fitting both I–V and C–V characteristics
simultaneously. Figure 5b shows the variation of MAPE loss of ResNet on the validation
set, where the best MAPE is 1.141 × 10−4 (54th epoch) for I–V single-task learning and
4.594 × 10−4 (40th epoch) for I–V and C–V multi-task learning. The trend of the validation
loss is consistent with the training loss, reaching the optimum at the early stopping point
and then slightly increasing, indicating the effectiveness of the early stopping strategy
in preventing model overfitting. The validation MAPE of multi-task learning is slightly
higher than that of single-task learning, but the overall control is still at a low level, as
shown in Figure 5c. On the test set, the best R2 for the I–V single-task is as high as
0.999992 (54th epoch), and the best R2 for the I–V and C–V multi-task reaches 0.999579
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(45th epoch), and the goodness-of-fit of both of them is very close to 1. This indicates
that ResNet can accurately reproduce the electrical characteristics of FinFET devices under
different bias conditions, demonstrating its strong nonlinear mapping ability. It is noted
that the R2 of multi-task learning is slightly lower than that of single-task learning, but the
difference between the two is small, which still meets the industry requirements for device
modeling accuracy.
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To further enhance the analysis, a comparative study between the ResNet and ANN
models in both single-task and multi-task learning contexts is presented in Figure 6. Key
performance indicators such as training loss, validation loss, and test set accuracy (R2) are
evaluated. As shown in Figure 6a, lower training loss (AdaptiveSmoothL1) is consistently
achieved by the ResNet model compared to the ANN model. Similarly, in Figure 6b, better
validation loss (MAPE) is observed for the ResNet model across both single-task and multi-
task learning. Finally, in Figure 6c, higher test set accuracy (R2) is reached by the ResNet
model in comparison to the ANN model. The superior performance of ResNet is attributed
to the use of residual connections, which are shown to mitigate gradient vanishing issues
and improve the model’s ability to capture complex nonlinear relationships in FinFET
device modeling.
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Figure 7 shows the I–V and C–V characteristic curves of some test set samples, compar-
ing the ResNet prediction curves with the SPICE simulation curves. Figure 7a displays the
Ids–Vgs characteristics, while Figure 7b–d present the Cgs–Vds, Cgd–Vds, and Cgb–Vds
characteristics, respectively. In each sub-figure, the ResNet prediction curves are closely
aligned with the SPICE simulation curves under all bias conditions, accurately capturing
the I–V and C–V characteristics of FinFET devices and C–V characteristics of the FinFET
device. It is demonstrated that the ResNet model has a strong nonlinear fitting ability and
can accurately reproduce the trends of the Ids current and Cgs, Cgd, and Cgb capacitance
of FinFET devices under different Vds and Vgs biases.
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Figure 8 presents the comparison of ResNet predicted values with SPICE simulated
values on the FinFET device I–V and C–V characterization test set. There are four subplots:
the Figure 8a Ids comparison, Figure 8b Cgs comparison, Figure 8c Cgd comparison, and
Figure 8d Cgb comparison. The left side of each subfigure represents the ResNet prediction
results and the right side is the SPICE simulation data. Scatter points are plotted on the
VGS–VDS plane, and colors indicate the magnitude of the corresponding characteristics.
In subfigures, it is shown that the color distributions of the ResNet predictions and SPICE
simulations are highly consistent, confirming the high-precision fitting ability of the model.
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Figure 9 is the performance of ResNet on generalization test sets, including single-task
IV modeling (a), single-task IV transfer learning modeling (b), multi-task IV–CV modeling
(c), and multi-task IV–CV transfer learning modeling (d). For single-task IV modeling,
the average number of training rounds is 10, the average training loss is 8.36 × 10−4, the
average validation loss is 1.323 × 10−3, and the average test R2 is 0.99974. For single-task
IV migration learning, the average number of training rounds is 1, the average training
loss is 6.34 × 10−4, the average validation loss is 1.265 × 10−3, and the average test R2 is
0.99975. The average test R2 is 0.99973. It can be seen that utilizing migration learning
can significantly reduce the number of rounds required for training, while maintaining a
comparable level of loss and R2 to that of ab initio training. For multi-task IV–CV modeling,
the average number of training rounds is 16, the average training loss is 3.19 × 10−4, the
average validation loss is 6.81 × 10−4, and the average test R2 is 0.99442, whereas for multi-
task IV–CV migration learning, the average number of training rounds is 5.6, the average
training loss is 4.33 × 10−5, the average validation loss is 2.22 × 10−4, and the average test
R2 is 0.99973. It can be demonstrated that using migration learning can significantly reduce
the number of training rounds required, while maintaining the same level of loss and R2 as
that of scratch training. The average training loss is 4.33 × 10−4, the average validation
loss is 2.22 × 10−4, and the average test R2 is as high as 0.99967. Multi-task migratory
learning achieves better loss and R2 performance than multi-task ab initio training while
significantly shortening the training time.

Finally, a 13-stage RO circuit composed of FinFET devices was built, and Hspice simu-
lations are performed based on a commercial SPICE model and ResNet model, respectively.
The comparison of the characteristic curves of the two models is plotted in Figure 10.
It is shown that the output voltage waveforms of the 13-stage RO simulated using the
SPICE model and the ResNet model are highly consistent. Both models exhibit stable
oscillation behavior, with the ResNet model accurately capturing the oscillation frequency
and amplitude of the SPICE model.
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5. Discussions

In this study, a surrogate modeling method for FinFET devices based on ResNet was
proposed, which incorporates a transfer learning strategy. Significant improvements in
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modeling accuracy and efficiency were demonstrated by the ResNet model compared to
traditional ANN models, particularly in the modeling of I–V and C–V characteristics of Fin-
FET devices. The experimental results show that the nonlinear behavior of FinFET devices
was accurately captured by the ResNet model, with strong generalization capabilities.

The BSIM-CMG compact model, which provides a comprehensive physical model for
FinFET structures across a wide range of dimensions, was used as the foundation for this
work. The performance of the compact model was successfully replicated by the ResNet-
based surrogate model, suggesting its potential for generalization across different FinFET
structures beyond the 12 nm technology node. This is a critical feature, as it indicates that
future FinFET technologies, such as those at the 7 nm and smaller nodes, could be modeled
by the ResNet model.

Similar to the ANN-based surrogate models discussed in previous studies [16–18], ad-
ditional FinFET parameters, such as Vgs threshold voltage, drain-source on-resistance, and
leakage currents, can also be predicted by the ResNet surrogate model. These parameters
are critical for device evaluation, and, in future work, efforts will be made to integrate them
into the ResNet model to make it a more versatile tool for device modeling.

Finally, while the use of transfer learning significantly accelerated the training of
the SPICE surrogate model, further optimization of the transfer learning process remains
possible. More advanced transfer learning techniques or fine-tuning strategies could
potentially be explored to achieve further reductions in training time and improvements
in accuracy.

6. Conclusions

In conclusion, a ResNet-based surrogate modeling method for FinFET devices was
presented, with a transfer learning strategy incorporated to accelerate the modeling process.
Superior accuracy and efficiency were demonstrated by the ResNet model compared to
ANN models, particularly in the modeling of I–V and C–V characteristics. The BSIM-CMG
compact model was used as the foundation for this work, ensuring that the underlying
physical behavior of FinFET devices across various dimensions was accurately captured by
the ResNet model.

Strong generalization capabilities were shown by the proposed ResNet surrogate
model, making it suitable for application to FinFET structures beyond the 12 nm node.
Future work is planned for validation at the 7 nm technology node. Additionally, the model
is expected to be extended to predict other critical FinFET parameters, which would further
enhance its utility as a device evaluation tool for DTCO.

With its demonstrated efficiency and accuracy, the proposed ResNet-based modeling
method is considered a powerful approach to accelerating the design and optimization
processes in advanced semiconductor technologies, offering a promising tool for future
FinFET device evaluation and modeling.
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