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Abstract: Recursive neural networks and transformers have recently become dominant in hyper-
spectral (HS) image classification due to their ability to capture long-range dependencies in spectral
sequences. Despite the success of these sequential architectures, mainstream deep learning meth-
ods primarily handle two-dimensional structured data. However, challenges such as the curse of
dimensionality, spectral variability, and confounding factors in hyperspectral remote sensing images
limit their effectiveness, especially in remote sensing applications. To address this issue, this paper
proposes a novel land cover classification algorithm that integrates random forests with a spectral
transformer network structure (RS-Net). Firstly, this paper presents a combination of the Gramian
Angular Field (GASF) and Gramian Angular Difference Field (GADF) algorithms, which effectively
maps the multidimensional time series constructed for each pixel onto two-dimensional image fea-
tures, enabling precise extraction and recognition in the backend network algorithms and improving
the classification accuracy of land cover types. Secondly, to capture the relationships between features
at different scales, this paper proposes a SpectralFormer network architecture using the Context
and Structure Encoding (CASE) module to effectively learn dependencies between channels. This
architecture enhances important features and suppresses unimportant ones, thereby addressing the
semantic gap and improving the recognition capability of land cover features. Finally, the final
prediction results are determined by a voting mechanism from the Random Forest algorithm, which
synthesizes predictions from multiple decision trees to enhance classification stability and accuracy.
To better compare the performance of RS-Net, this paper conducted extensive experiments on three
benchmark HS datasets obtained from satellite and airborne imagers, comparing various classic
neural network models. Surprisingly, the RS-Net algorithm achieves high performance and efficiency,
offering a new and effective tool for land cover classification.

Keywords: hyperspectral image classification; recursive neural networks; transformers; spectral
transformer network structure (RS-Net); land cover classification accuracy

1. Introduction

Remote sensing technology plays a crucial role in land cover and land use analysis. It
allows for detailed mapping of ecosystems, urban development, agriculture, and natural
resources [1-4]. Hyperspectral remote sensing technology [5], as an advanced means of
Earth observation, provides rich data support for surface cover classification, environ-
mental monitoring, resource management [6-8], and other fields by recording reflectance,
transmittance, and radiance information of landforms over hundreds of continuous spectral
bands [9-12]. Hyperspectral remote sensing technology has been widely used in various
fields. In agriculture, hyperspectral remote sensing monitors crop growth, assesses soil
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nutrients, and detects pests. In forestry, it enables tree species identification, forest resource
assessment, and fire monitoring [13-15]. In the field of forestry, hyperspectral remote
sensing can be used for forest resource investigation, tree species identification, and forest
fire monitoring [16—-18]. In the field of environmental monitoring, hyperspectral remote
sensing can be used for water quality assessment, air quality monitoring, and urban heat
island effect research [19-21]. In the field of geological exploration, hyperspectral remote
sensing can be used for mineral resources exploration, geological structure analysis, and
lithology identification [22-24].

Hyperspectral images are distinguished by their high dimensionality, superior reso-
lution, and robust signal-to-noise ratio, which empowers us to detect and track nuanced
alterations on the earth’s surface with greater precision. Nevertheless, the handling and
interpretation of hyperspectral imagery are fraught with challenges, including the man-
agement of vast data volumes, the intricacy of processing, and the complexities associated
with feature extraction [25-27]. The data footprint of hyperspectral images is consider-
able, as each pixel encapsulates data from numerous spectral channels, ranging into the
hundreds. This magnitude of data imposes significant burdens on storage, transmission,
and computational processing.

The basic principle of hyperspectral remote sensing technology is to utilize the elec-
tromagnetic wave radiation characteristics of sensors in different bands to obtain spectral
information of features [28]. Hyperspectral images have high dimensionality, meaning they
contain a large number of consecutive spectral bands. This richness of information enables
precise identification and classification of features. High resolution, on the other hand,
refers to hyperspectral images with small pixel sizes that can clearly depict the details and
structures of the features. A high signal-to-noise ratio ensures the quality and reliability of
hyperspectral images, enabling more accurate analysis and interpretation of image data.

Hyperspectral remote sensing [29-32] technology employs specialized sensors to
capture geophysical information, with these sensors capable of recording extensive nar-
rowband data across a spectrum ranging from the visible to the near-infrared wavelengths.
Specifically, hyperspectral imagery typically encompasses dozens to hundreds of contigu-
ous spectral bands, each with a width of a few to several tens of nanometers, endowing
the data with an exceptionally high spectral resolution. For instance, certain hyperspec-
tral imaging systems are capable of producing images with a wavelength range of 400 to
2500 nanometers, with band intervals of 10 nanometers or less. This fine spectral resolution
imbues hyperspectral imagery with a “high-dimensional” characteristic, as each pixel
corresponds to a spectral curve comprising hundreds of spectral measurements. In terms
of spatial resolution, hyperspectral remote sensing imagery can offer ground resolutions
ranging from several meters to several tens of meters, which is contingent upon the specific
design of the sensor and the altitude of the flight platform.

Hyperspectral remote sensing image classification enhances target differentiation by
leveraging the unique characteristics of hyperspectral data, extending beyond conventional
multispectral methods. Traditional algorithms, however, are limited in their effectiveness
for hyperspectral images [33]. Convolutional Neural Networks (CNNs) have emerged
as a promising deep learning technique for this purpose, capable of autonomous feature
learning and classification through multilayer networks [34]. Despite their potential, CNNs
face challenges such as high computational requirements, overfitting due to the large
number of spectral bands in hyperspectral data, and the need for complex preprocessing,
which can affect model performance.

Researchers have turned to recurrent neural networks (RNNSs) for classifying high-
resolution and complex hyperspectral remote sensing images, especially for time-series
data like multitemporal images [35]. RNNs excel in capturing temporal features, crucial
for analyzing dynamic changes in ground cover types across time points, supporting
applications in natural resource management and environmental monitoring. Despite their
strength in handling complex data, RNNs’ computational efficiency can be low, leading to
investigations into optimizing their architecture and incorporating attention mechanisms
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to enhance long-distance dependency capture [36]. U-Net, an advanced Convolutional
Neural Network architecture [37], has become integral in hyperspectral remote sensing due
to its strong feature extraction and adaptability to complex scenes [38]. Its unique structure,
with contraction and expansion paths, allows for effective feature representation learning
and precise image segmentation. While U-Net excels in recognizing and classifying surface
cover types, challenges like processing efficiency and overfitting during training persist.
Researchers are addressing these by enhancing the U-Net architecture and integrating
advanced learning techniques.

ViT is a model for image classification that utilizes the Transformer architecture [39].
It divides an image into fixed-size blocks (tokens) and processes these blocks as input to
the Transformer. There are architectures in the ViT model, such as the two proposed in the
literature [40,41], that can integrate ViT with two large models and share the weights. This
enables the same processing to be applied to different image locations, thereby utilizing the
data more efficiently. The advantage of this processing is that it enables the Transformer to
utilize the data more fully, which is valuable to learn. SpectralFormer is a framework based
on the Transformer [42], which integrates the Vision Transformer (ViT) and Transformer
in hyperspectral remote sensing technology. In hyperspectral remote sensing technology,
SpectralFormer can process the continuous spectral information of hyperspectral images.
It captures the dependencies between different spectral bands by using the self-attention
mechanism to enhance the recognition and classification of surface coverage types. The ap-
plication of SpectralFormer in hyperspectral remote sensing technology offers several
advantages: SpectralFormer can automatically learn comprehensive feature representations
from hyperspectral images, thereby enhancing the recognition and classification of surface
coverage types. Recognition and classification capabilities. Adaptability to complex image
scenes and efficient computational performance. However, SpectralFormer faces challenges
in hyperspectral remote sensing, such as efficiently processing large-scale datasets and
dealing with the overfitting problem during model training.

Overall, the utilization of SpectralFormer in hyperspectral remote sensing technology
holds great significance. It offers new ideas and methods for remote sensing image classi-
fication and target detection [43]. Therefore, we should not abandon the SpectralFormer
network in favor of developing a new framework to capitalize on its advantages. Therefore,
there is an urgent need for a more refined method to overcome these limitations. This
will help solve the problem by efficiently maintaining the richness of information during
feature extraction and ensuring the consistency of spatial and semantic information during
feature fusion. In this paper, we propose a new RS image semantic segmentation network
framework called RS-Net, applied to hyperspectral remote sensing data for land cover
classification. Firstly, we suggest that the combination of GASF and GADF efficiently maps
the target information embedded in the one-dimensional signals processed in the Trans-
former to the features on the 2D image. This approach solves the problem of accurately
extracting and recognizing information in the back-end network algorithm. Secondly, we
introduce the SpectralFormer network architecture using the CASE module to effectively
learn the dependencies between channels, enhancing important features and suppress-
ing unimportant ones. The semantic gap refers to the discrepancy between the low-level
spectral and spatial features directly extracted from the raw hyperspectral data and the
intuitive understanding and interpretation of scenes by humans. This gap exists in the
mapping process from raw pixel values to category labels with clear semantic meanings.
The method is capable of capturing the relationships between features at different scales,
thereby addressing the semantic gap issue. Ultimately, the prediction outcomes are refined
through a voting process incorporating outputs from numerous decision trees [44], thereby
enhancing the robustness and precision of the classification.

The main contributions of this paper are summarized as follows:

(1) Proposing a fusion of Random Forest and SpectralFormer network architecture (RS-
Net) algorithm for land cover classification to address the challenges of dimensional
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catastrophe, spectral variability, and confusion arising from hyperspectral remote
sensing images.

(2) Enhancing characterization by combining GASF and GADF for the Grammy cor-
ner field.

(3) Introducing more powerful contextual modeling and feature interaction with the
CASE module.

(4) Employing a dual-network architecture enhances robustness in handling noisy data
and outliers, effectively capturing diverse texture features, preventing information
loss and excessive feature fusion, and thereby improving the differentiation in land
cover classification for remote sensing images.

2. Methodology and Data
2.1. Dataset

In order to determine if the model proposed in this paper achieves high accuracy
and superior qualitative results for land cover classification across various satellite remote
sensing image products that are universal and generalizable, we selected three benchmark
hyperspectral (HS) datasets for experiments. We utilized an airborne acquisition platform
to provide a comprehensive and realistic validation of our proposed algorithm. In the ex-
periments of this paper, we selected three hyperspectral known public datasets. The details
are summarized in Table 1. The Houston data, Indian Pines data, and Pavia University
data are presented below. In this paper, the Indian Pines dataset, the Pavia University
dataset, and the Houston dataset are divided such that the training set comprises 50% of all
samples, the validation set comprises 25%, and the test set also comprises 25%.

Table 1. Summary of the three investigated HS datasets, including data collection information labels,
feature classification information labels, and corresponding sample sizes.

Dataset Houston Indian Pines Pavia University
Sensor ITERS CASI-1500 AVIRIS ROSIS
platform Aircraft-borne Aircraft-borne Aircraft-borne
Loc. and Time America, 2012 Northwest Indiana, 1992 Italy, 2003
GSD 2.5m 20m 1.3 m
Wavelength 364-1046 nm 400-2500 nm 430-860 nm
Data size 349 x 1905 x 144 145 x 145 x 220 610 x 340 x 103

# Class Samples Class Samples Class Samples
1 Unclassified Alfalfa 46 Asphalt 6631
2 Healthy grass 1251 Corn-notill 1428 Meadows 18,649
3 Stressed grass 1254 Corn-mintill 830 Gravel 2099
4 Synthetic grass 697 Corn 237 Trees 3064
5 Trees 1244 Grass-pasture 483 Painted metal sheets 1345
6 Soil 1242 Grass-trees 730 Bare Soil 5029
7 Water 325 Grass-pasture-mowed 28 Bitumen 1330
8 Residential 1268 Hay-windrowed 478 Self-Blocking Bricks 3682
9 Commercial 1244 Oats 20 Shadows 947
10 Road 1252 Soybean-notill 972
11 Highway 1227 Soybean-mintill 2455
12 Railway 1235 Soybean-clean 593
13 Parking Lot 1 1233 Wheat 205
14 Parking Lot 2 469 Woods 1265
15 Tenni Buildings-Grass-Trees-

ennis Court 428 ) 386

Drives

16 Running Track 660 Stone-Steel-Towers 93

Table 1 summarizes the three investigated datasets on high school (HS), including
information on data collection labels, feature classification labels, and corresponding sam-
ple sizes.
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(1) Houston Data: The first hyperspectral dataset was collected in June 2012 by the ITRES
CASI-1500 sensor. It includes hyperspectral imagery of the University of Houston
and its surrounding area in Texas, USA. The dataset was provided by the NSF-
funded Center for Airborne Laser Mapping (NCALM) at the University of Houston.
The images are 349 x 1905 pixels in size and contain 144 bands distributed over a
spectral range from 364 nm to 1046 nm, with the lidar modality containing one channel.
Fifteen distinguishable land cover classes were studied in the scene, and the spatial
resolution of the image reached 2.5 m. Additionally, we acquired specific details about
this dataset. For example, the color quality of the images is high and contains a wealth
of detailed information. In addition, the accuracy of these images has been verified,
demonstrating their ability to faithfully represent the actual properties of the target
objects. In addition, this dataset provides a wealth of geographic information, which
is highly valuable for various research areas.

(2) Indian Pines Data: The second hyperspectral dataset was collected in 1992 using an
Airborne Visible Infrared Imaging Spectrometer (AVIRIS) to conduct comprehensive
measurements of the Indian Pines region in northwestern Indiana, USA. The resulting
image data totaled 145 x 145 pixels in size, had a spatial resolution of 20 m, covered a
broad spectral range of 400-2500 nm, and encompassed 220 bands. It is worth noting
that among these bands, bands 104 to 108, 150 to 163, and 220 were identified as noisy
bands. These bands were purposely excluded from the subsequent analysis process.
The remaining 200 bands were finally selected for in-depth study.

(8) Pavia University Data: The last dataset was collected in 2003 using the German ROSIS-
03 Airborne Reflectance Optical Spectral Imager in the city of Pavia, Italy. The size of
the images is 610 x 340 pixels with a spatial resolution of 1.3 m. The dataset covers
the wavelength range of 430-860 nm and contains 115 spectral channels. For the
classification study, we specifically selected 103 bands and excluded the 12 bands
interfered with by noise to ensure the accuracy of the results. This carefully selected
subset helps improve data processing efficiency and reduce sensitivity to noise.

2.2. RS-Net Model

In response to the limitations of current deep learning methods, which predominantly
handle two-dimensional data and struggle with issues such as dimensionality curse, spec-
tral variability, and classification confusion in hyperspectral remote sensing images, this
study introduces a novel algorithmic framework named RS-Net. This framework integrates
Random Forest and the SpectralFormer network architecture for land cover classification,
as depicted in Figure 1. The primary innovation of this paper lies in the effective trans-
lation of one-dimensional signal data into two-dimensional image features. To achieve
this, we propose the use of the Gramian Angular Field (GASF) and Gramian Angular
Difference Field (GADF) algorithms. These algorithms adeptly map the target information
embedded within the one-dimensional signals, which are processed by the Transformer,
onto a two-dimensional feature space. This approach significantly enhances the accuracy
of feature extraction and recognition within the backend network algorithms. To address
the challenge of capturing feature relationships across different scales, we introduce the
SpectralFormer network equipped with the CASE module. This module is designed to
effectively learn the inter-channel dependencies, thereby enhancing the prominence of
important features while suppressing less relevant ones. This targeted feature refinement
addresses the semantic gap issue commonly encountered in hyperspectral image analysis.
The final component of the RS-Net algorithm is the Random Forest classifier, which is
employed to aggregate the prediction results from the SpectralFormer network. By con-
solidating these results through a voting mechanism, the algorithm achieves pixel-level
multispectral image classification. This strategy not only realizes a more precise classifi-
cation but also effectively mitigates the semantic gap and dimensionality curse problems
inherent in hyperspectral remote sensing imagery. In summary, this paper systematically
develops and integrates a series of innovative techniques to overcome the challenges asso-
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ciated with hyperspectral image classification. The proposed RS-Net algorithm leverages
the strengths of both SpectralFormer for feature representation and Random Forest for
robust classification, resulting in a comprehensive and effective solution for land cover
classification in hyperspectral remote sensing images.

Transformer Encoeders with Cross-layer Adaptive Fusion(CAF) Lx
il
. s

Encoderl ~——»  Encoder2 ——»  Encoder3 —Y—  Encoder3 —Y—»

Encoder ‘[
& Lx

Embedded Sectral Spectral Bands: e.g. , from1ton

Figure 1. Schematic representation of the RS -Net architecture for hyperspectral image classifica-
tion tasks.

2.2.1. Grameen Corner (GAFs)

The 1D sequence data are scaled and converted from the Cartesian coordinate system
to the polar coordinate system. The temporal correlation of different points in time is

then identified by analyzing the angle sum/difference between these points, as illustrated
in Figure 2.

Gramian Angular Field

Series X | Polar Coordinate

image data

w2

Figure 2. Schematic diagram of the structure of the Gramercy corner.

The green line on the far left represents 1. Given a time series X, it is scaled to fit
between the green lines. The proposed mapping then generates a result in the polar
coordinate system with a unique inverse function. The green, red, and blue circles in the
middle diagram are provided to visually distinguish the polar coordinate angles. As time
increases, the corresponding values twist between different angular points on the circle,
akin to ripples in water.

Depending on whether it is an angular sum or an angular difference, there are two
implementations: GASF (which corresponds to an angular sum) and GADF (which corre-

sponds to an angular difference). Firstly, the data are scaled to the range of [-1, 1] or [0, 1].
The formula for scaling is as follows:

x; — min(x)

X0 = max(x) — min(x) @)
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Swish x is an input. The scaled sequence data are converted to a polar coordinate
system, i.e., the values are considered as the angle cosines and the timestamps as the radii,
with the following formula:

a = arccos(x;), -1 < (x;) < 1 ()

Correspondence of angles and

GASF=x-x—I—x2 -\/T— 22 3)

Corresponding to the angle difference:

GASE=+1—22 -x—x -\/1—2x2 (4)

Then, we combine two methods GASF and GADF to generate images to achieve
feature extraction through the network.

In the processing of time series data, the combination of the Gram Angle Sum Field
(GASF) and Gram Angle Difference Field (GADF) enables a multidimensional characteri-
zation of the data, thus enhancing the learning and recognition capabilities of the model.
The GASF focuses on the overall morphology and structure of the time series, which is
crucial for understanding the fundamental static patterns and intrinsic characteristics of
the dataset. On the other hand, the GADF concentrates on the dynamic changes and
trends within the time series, which is vital for analyses concerned with the evolution and
transformation of data over time. It can provide insights into the temporal variations in the
data in classification recognition. By combining these two representations, the model can
effectively capture diverse information about the time series data, thereby offering a more
comprehensive feature set for future learning tasks.

This integrated representation enhances the model’s capacity to identify crucial pat-
terns in time series data and contributes to enhancing the model’s performance, particularly
when handling intricate time series data. In addition, this diversity of features helps reduce
the risk of overfitting the model and enhances the model’s capacity to generalize over
unseen data, enabling it to adjust to various learning task demands. Pictorial representa-
tions of time series data can be combined with other types of data, such as text or images,
to enhance the processing capabilities of the model. This approach makes multimodal
learning more straightforward and effective, enhancing the overall performance of the
model. In summary, the combination of GASF and GADF provides an effective feature
extraction method that can offer robust support for processing and analyzing time series
data. With this approach, the model can better capture the key information in time series
data, thus improving its performance in various application scenarios.

2.2.2. Contextual and Structural Encoding (CASE)

In the field of deep learning, especially in computer vision tasks, feature extraction
and channel recalibration are key steps to improve model performance. This study pro-
poses to apply the Squeeze-and-Excitation (SE) module before and after integrating it
with the Transformer architecture to incorporate channel attention, creating the CASE
module, as illustrated in Figure 3. The CASE module introduces an extra processing step to
improve channel selection and tuning capabilities during feature extraction, allowing for
more precise control over the feature representation. In the Transformer architecture that
incorporates channel attention, the SE module can be inserted after the self-attention layer
to enhance the model’s focus on crucial feature channels, conveying more valuable infor-
mation in subsequent layers. The SE module can be applied after the multihead attention
computation to further adjust the importance of the channels based on the attention-
weighted features, enabling the model to prioritize features that are more relevant to the
current task. We also propose the idea that the SE module can be applied after each head of
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multihead attention separately, adjusting the importance of the channels according to the
different subspace information captured by each head.

Channel Attention and squeeze-and-excitation

/ Channel Attention
moid

. Shared MLP 7
1”4 1

Avg Pooling

Max Pooling

Input Feature i,/

Max Pooling \ / Avg Pooling

Refined Feature Spatial Attention

scale excitation squeeze . Convix7
m-'<— o Squeeze. Sigmoid > onv7x
1X1Xc2 1X1Xc2 h - - -

C

w

Figure 3. CASE module.

The width, height, and channel numbers are represented by the symbol x, which
denotes multiplication, while the sigmoid symbol represents the fusion of two features.

Specifically, given an input x with the number of feature channels c1, a feature with the
number of feature channels c2 is obtained after a series of general transformations, such as
convolution. Unlike traditional CNNs, we next recalibrate the previously obtained features
through three operations.

The first operation is the Squeeze operation, which converts each two-dimensional
feature channel into a real value by compressing the spatial dimension of the feature map.
This operation simulates the global receptive field to some extent, enabling the model to
capture the global response distribution across the feature channels. The feature dimensions
after the Squeeze operation align with the number of channels in the original input feature
map, enabling the model to incorporate extra global contextual information while retaining
the original data.

Next is the Excitation operation, which generates a weight for each feature channel via
the parameter. These weights are learned to explicitly model the correlation between feature
channels, similar to a gating mechanism in a recurrent neural network. The Excitation
operation identifies and enhances the feature channels that are most important for the task at
hand, while suppressing the less important ones, thus improving the feature representation
of the model.

Finally, there is the Reweight operation, which applies the weights generated by the
Excitation operation to each channel of the original feature map. This operation realizes the
recalibration of the feature map in the channel dimension through a channel-by-channel
weighting operation. This operation not only adjusts the importance of feature channels
but also dynamically adapts the representation of features based on the task requirements.

The Squeeze-and-Excitation (SE) module enables fine-grained control and adjustment
of feature channels through three operations: Squeeze, Excitation, and Reweight. This
enhances the feature representation capability and performance of the model. In this way,
Computer-Aided Software Engineering (CASE) can further enhance the performance of
the model when processing data such as images and text. This fusion strategy enables the
model to effectively capture and utilize the relationships between feature channels and
subspaces, leading to improved performance across a variety of tasks.



Electronics 2024, 13, 4046

9 of 20

2.2.3. Random Forest

Random Forest (RF), as an ensemble learning method, comprises multiple decision
trees, each independently trained on different subsets of data. In the field of hyperspec-
tral agricultural remote sensing image segmentation, this method demonstrates unique
advantages, particularly when handling high-dimensional datasets. Hyperspectral remote
sensing data typically contains hundreds or even thousands of bands, leading to extremely
high data dimensionality. Random forests can effectively handle high-dimensional data,
without the need for dimensionality reduction or feature selection, by directly utilizing
information from all bands. This feature gives Random Forest a significant advantage in
processing complex and dynamically changing agricultural remote sensing images.

In agricultural remote sensing image segmentation tasks, the number of samples from
different categories may vary significantly, leading to an imbalanced dataset. Random
Forest balances errors by adjusting the weights of each decision tree to enhance the model’s
performance when handling unbalanced datasets. This approach allows the model to
maintain good performance under various data distributions. The process of constructing
the Random Forest model not only helps generate predictions but also evaluates the
importance of features, providing a basis for further feature selection and optimization.
In addition, the parallel integration feature of the RF framework effectively controls the
risk of overfitting while maintaining the engineering implementation simplicity of model
construction and fast training speed.

For unbalanced datasets, the Random Forest model demonstrates good robustness
in balancing errors and enhancing model performance across various data distributions.
At the same time, its robustness to features ensures that high accuracy is maintained even
in the presence of missing features or noise interference.

In practice, model fusion can be achieved by integrating multiple Transformer models
with an RF framework. First, Transformer models are utilized to predict the input data.
Subsequently, the prediction results are employed as inputs for the Random Forest (RF)
model to achieve the final prediction. This approach enhances the overall accuracy and
stability of the model, particularly when working with intricate and dynamically changing
agricultural remote sensing images. This approach combines the sensitivity of deep learning
to local features and the robustness of random forests to global features. It is expected to
achieve a more efficient, accurate, and reliable solution for segmenting agricultural remote
sensing images.

2.2.4. H-Swish Activation Function

The activation function determines the output characteristics of a neural network and
influences its overall performance. In recent years, researchers have proposed a series of
novel activation functions aiming to address the training challenges in neural networks,
particularly the issue of gradient vanishing. Among them, ReLU (Rectified Linear Unit),
as a classical activation function, has attracted a lot of attention due to its simple and
efficient gradient computation. The original design of the Rectified Linear Unit (ReLU)
activation function aims to address the issue of gradient vanishing during neural network
training, which is particularly noticeable in recurrent neural network (RNN) models like
Long Short-Term Memory networks (LSTM). The gradient calculation of the ReLU function
is uncomplicated and direct, assigning a gradient of 0 to inputs less than 0 and 1 to
inputs greater than 0. This design avoids the numerical decay caused by the successive
multiplication of gradients and ensures that the gradient in the forward propagation can
be calculated in the same way as the gradient in the backward propagation. Stable transfer
of the gradient in the forward propagation. However, the sparsity of the ReLU function
also brings certain limitations, especially in cases where the input is consistently negative.
This situation may cause the gradient to remain at 0 during the backpropagation process,
thereby hindering the adjustment of the weights and bias parameters. Consequently, this
can trigger the phenomenon known as neuron death.
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The Swish function not only demonstrates excellent performance but also effectively
alleviates the issue of vanishing gradients, making it widely utilized in neural networks.
The design of this function takes into account the nonlinear characteristics and the stability
of the gradient multiplication, ensuring good performance in training neural networks.
The mathematical formula for the Swish activation function is defined as follows:

Swish(x) = xc(Bx) (5)

Swish x is a special case of the Sigmoid contraction function when positive values
are considered.

In a 2017 study, it was found that the Swish function, as an activation function, signif-
icantly enhances the performance of neural network models when analyzing ImageNet
datasets compared with the ReLU and sigmoid functions. The effectiveness of the Swish
function in the backpropagation process is a key factor contributing to its performance
improvement as it helps alleviate the gradient vanishing problem.

The Swish function mitigates the gradient vanishing problem. It is able to produce
larger gradients during forward propagation, which helps mitigate the gradient vanishing
problem and thus improves the training efficiency of the model. The Swish function is non-
monotonic, enhancing the expressive power of the model in certain intervals, contributing
to improved performance. When the input value is large, the Swish function behaves close
to a linear function, allowing it to smoothly interpolate between linear and ReLU functions
in neural networks, thereby enhancing the generalization ability of the model.

Hard Swish is a variant of Swish that was developed to simplify the computation
of the formula. The original Swish formulation includes a Sigmoid function, which is
computationally complex. Hard Swish replaces the Sigmoid function with a segmented
linear function, making the computation much simpler. The mathematical formula is

defined as follows:
Re LU6(x + 3)

6

where x is the input value of the activation function.

H-Swish (Hard Swish), as an enhanced activation function, offers significant advan-
tages over the original Swish function. H-Swish simplifies the computation process and
reduces computational complexity by utilizing segmented linear functions instead of Sig-
moid functions. This optimization makes H-Swish more computationally efficient in its
execution and is suitable for scenarios that require a large number of parallel computations.
Although H-Swish simplifies the computational process, it still maintains similar perfor-
mance advantages as the original Swish, such as mitigating the gradient vanishing problem
and nonmonotonicity. These features enable H-Swish to maintain a performance compa-
rable to the original Swish while ensuring efficient computation. In summary, H-Swish,
with its enhanced computational efficiency, ease of integration, and consistent performance,
is an optimized choice of activation function, particularly in scenarios that demand efficient
computation and rapid model training.

H — swish = x

(6)

2.2.5. Evaluation Metrics

For the evaluation of hyperspectral pixel classification, in addition to the three tradi-
tional evaluation metrics—Overall Accuracy (OA), Average Accuracy (AA), and Kappa
based on the confusion matrix—we introduce the F1 and Params metrics to assess the
effectiveness of various methods. The Params metrics represent the parameters of each
network. In our experiments, we set the batch size of all methods to 64 in order to accu-
rately compute and compare their parameters. The smaller the value of Params, the fewer
computational resources are used for the corresponding model.

2.2.6. Comparative Methods

The primary goal of our experiments is to assess whether the proposed RS-Net can
be deemed a state-of-the-art tool for hyperspectral image classification tasks. Therefore,
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we have chosen four popular deep learning-based solutions for comparison: CNN, RNN,
Transformer, and SpectralFormer’s model. The details of our competitors are as follows.
(1) A CNN consists of a convolutional layer, a corresponding 1-D or 2-D BN layer, ReLU
composition, a Fully Connected (FC) layer, a Maximum Pooling layer, and an output layer.
(2) In an RNN, two layers of loops and cascaded gated loop units are included. (3) The
Transformer model is based on the Vision Transformer (ViT) architecture, consisting of 5
encoder blocks with a dimension of 64 for each grouped spectral embedding. Each encoder
block comprises 4 self-attentive layers, 8 hidden layers of Multilayer Perceptrons (MLPs),
and a dropout layer that deactivates 10% of the neurons. (4) SpectralFormer is based on the
ViT model, enhanced with grouped spectral embeddings to improve local spectral details
and additional FC layers to encode spatial information of flat image blocks. The dimension
of each grouped spectral embedding is 64, and the grouped spectral nesting is set to 2.

2.2.7. Realization Details

All of our experiments were primarily based on Python 3.9 implemented in PyTorch
1.12.1 using a workstation with an Nvidia GeForce GTX 3060 Laptop GPU card. The number
of epochs was set to 300. An Adam optimizer was utilized to reduce the learning rate
by multiplying it with a decay factor of 0.9 every 30 epochs. The initial learning rate
was 5 x 1074,

3. Experimental Results
3.1. Ablation Study

To evaluate the performance of the network structure proposed in this paper, ablation
experiments were conducted on the Indian Pines dataset. The results are shown in Table 2.
The original Overall Accuracy (OA) was 73.73%. After the application of the Grammy
Corner Field, the OA increased to 74.91%, with a reduction of 114.18 parameters. This
improvement demonstrates the effectiveness of the Grammy Corner Field scheme, which
enhances the tight connections between channels and improves the network’s feature learn-
ing capability. This improvement may be due to the scheme’s ability to extract and transfer
local feature information more effectively, thus providing a richer context for classification.
The reduction in the number of parameters also indicates a decrease in model complexity,
which helps to reduce overfitting and improve generalization. The introduction of the CASE
attention mechanism further enhanced the classification accuracy. This is likely because it
can weight the key features within the network, emphasizing spectral information that is
more important for the classification task while suppressing irrelevant noise. The attention
mechanism allows the network to focus more on the subtle differences between land cover
types, thus improving the precision of classification. The integration of the Random Forest
with the CASE module resulted in an OA of 77.31%, confirming its advantage for hyper-
spectral image pixel classification. This indicates the effectiveness of the multimodel fusion
strategy. Random Forest, as a powerful ensemble learning method, can handle nonlinear
relationships and complex feature interactions in hyperspectral data, while the CASE mod-
ule enhances feature expression through attention mechanisms. The combination of both
may have improved the model’s ability to recognize the spectral and spatial heterogeneity
of different land cover types. However, when all modules were tested together, the OA
accuracy improved to 77.51%, an increase of 3.78%. The further improvement in overall
accuracy suggests a complementarity between these modules. Each module enhances the
model’s performance in different aspects: the Grammy Corner Field scheme optimizes
feature transfer, the CASE attention mechanism enhances feature significance, and the
Random Forest provides robust classification decisions. This multifaceted enhancement
works together to improve the model’s ability to parse complex scenes. Clearly, all modules
proposed in this paper are effective for agricultural land cover classification and address
the corresponding issues, thereby optimizing the overall classification accuracy.
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Table 2. Results of ablation experiments on Indian Pines dataset using RS-Net with different mod-
ule combinations.

Module Implementation
GADS + GADF x v x v x v
CASE x x v v v v
RF x x x x v v
OA (%) 1 73.73 7491 75.66 76.48 77.31 77.51
(+1.18) (+1.93) (+2.75) (+3.58) (+3.78)
AA (%) 1 81.57 83.12 82.59 84.98 84.70 85.34
(+1.55) (+1.02) (+3.41) (+3.13) (+3.77)
Kappa 1 0.7017 0.7137 0.7234 0.7334 0.7418 0.7455
(+0.0120)  (+0.0217)  (+0.0317)  (+0.0401)  (+0.0438)
F171 70.03 72.44 73.84 76.66 78.12 78.32
(+2.41) (+3.81) (+6.63) (+8.09) (+8.29)
params | 451.83 337.65 346.23 371.25 386.68 444.36
(—114.18) (—105.60) (—80.58) (—65.15) (—7.47)

The check mark represents the module used, the wrong mark represents the module
not used, the up arrow represents the larger the better, and the down arrow represents the
smaller the better. Bold font means the best effect in the same module.

3.2. Multimethod Comparison

In order to determine if the model proposed in this paper demonstrates high accuracy
and superior qualitative results for land cover classification of multiple satellite remote
sensing image products with universality and generalizability, our classification method
is applied to three hyperspectral datasets: the Houston dataset, Indian Pines dataset,
and Pavia University dataset. We compare our proposed model with other advanced and
representative models to produce qualitative results. The classification results of different
models on the Houston dataset are presented in Table 3.

Table 3. Classification Accuracy of Different Classification Models in the Houston Dataset. The best
results for each row are shown in bold.

Method
# Class
CNN RNN ViT SpectralFoemer RS-Net
1 Healthy grass 87.08 83.29 84.14 83.38 85.75
2 Stressed grass 96.33  98.12 92.76 97.37 96.89
3 Synthetic grass 99.20 99.41 98.81 99.41 99.80
4 Trees 93.84  98.11 96.12 97.92 98.10
5 Soil 97.25 95.08 96.40 97.25 96.96
6 Water 97.90 97.02 94.41 99.30 98.60
7 Residential 8143 76.49 76.77 75.40 88.43
8 Commercial 49.28 38.08 47.77 47.10 74.73
9 Road 62.32 71.67 72.99 68.84 77.90
10 Highway 71.33 66.41 47.68 52.32 73.06
11 Railway 69.25 75.33 80.46 80.55 85.38
12 Parking Lot 1 54.65 60.61 40.92 52.16 63.68
13 Parking Lot 2 57.54 51.58 4491 46.32 60.35
14 Tennis Court 99.19  100.00 99.19 97.17 98.78
15 Running Track 92.38 91.54 98.94 98.52 97.67
OA (%) 1 78.19 78.07 75.82 77.31 85.24
AA (%) 1 80.60 80.19 78.15 79.56 86.41
Kappa 1 0.7637  0.7625  0.7383 0.7541 0.8398
F11 98.12 97.65 92.76 98.21 97.84

Params | 128.22  151.44 226.16 328.31 276.94
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It can be concluded that, overall, VIT performs the worst. OA, AA, and Kappa
are lower than in other models. The classical recurrent neural networks, RNN, CNN,
and SpectralFormer, stand out more.

It can be concluded that, overall, the Vision Transformer (VIT) model performs the
worst in hyperspectral image classification tasks, showing a significant disadvantage in
accuracy metrics compared with other models. We speculate that this result may be
due to the VIT model’s insufficient adaptation to the small sample size characteristic of
hyperspectral datasets, as VIT models are more suited for handling large-scale datasets.
Consequently, in key evaluation metrics such as Overall Accuracy (OA), Average Accuracy
(AA), and Kappa coefficient, the performance of VIT is inferior to that of other models.
In contrast, classical models such as recurrent neural networks (RNN), Convolutional
Neural Networks (CNN), and SpectralFormer have shown more impressive performance
in hyperspectral image classification. These models are more effective at capturing the
spatiotemporal features within hyperspectral data, resulting in higher accuracy rates in
classification tasks. Particularly, SpectralFormer, with its unique spectral transformation
network structure, is able to delve deeper into the hierarchical nature of spectral infor-
mation, which is crucial for improving classification performance under small sample
conditions. Additionally, RNN and CNN models, thanks to their inherent capabilities in
sequence processing and spatial feature extraction, demonstrate strong robustness and
generalization abilities in the classification of hyperspectral images. These models handle
the dimensionality curse and spectral variability in hyperspectral data more effectively,
thus maintaining classification accuracy while also improving model efficiency. Overall,
the application potential of these traditional deep learning models on small hyperspectral
datasets provides valuable references and insights for future research. The RS-Net algo-
rithm proposed in our paper is able to better extract time-series information and spatial
features from spectral data. For classifications with a limited number of training samples,
its accuracy outperforms other methods. RS-Net exhibits superior performance capabilities.

A visualization example of the evaluation metrics data is presented, demonstrating
how various chart types can be utilized to present and analyze the data. Each chart serves a
specific purpose, such as heatmaps for displaying data matrices, box-and-whisker plots for
illustrating distributions, scatter plots for showing relationships between variables, and 3D
scatter plots for visualizing three-dimensional data, as depicted in Figure 4.

Heatmap Box Plot for OA

e RNN RS-Net SpectralFoemer wiT
algorithm

algorithm
Scatter Plot for OA vs AA 3D Scatter Plot

algorithm

. o

 RNN

o RSNet

o spectralFoemer
viT

Figure 4. Evaluating indicator data visualization at Houston HS.

Figure 5 illustrates the color images, transformations, test labels, and classification
maps obtained through the comparison method on the Houston HS dataset.
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Figure 5. Illustration of color images, transformation and test labels, and classification maps obtained
by comparative methods on the Houston HS dataset.

Table 4 presents the classification results of various models on the Indian Pines dataset.

Table 4. Classification Accuracy of Different Classification Models in Indian Pines Dataset. The best
results for each row are shown in bold.

Method
# Class

CNN RNN ViT SpectralFoemer RS-Net
1 Brocoli_green_weeds_1 62.64 73.63 47.98 60.04 64.95
2 Brocoli_green_weeds_2 42.73 42 .98 38.90 70.02 78.31
3 Fallow 89.67 27.72 71.74 89.13 93.47
4 Fallow_rough_plow 82.10 24.38 76.06 89.26 91.72
5 Fallow_smooth 82.64 79.91 72.45 77.90 80.63
6 Stubble 96.13 97.27 95.67 88.61 94.53
7 Celery 72.98 6.97 57.52 81.48 80.82
8 Grapes_untrained 65.22 42.18 30.07 66.99 67.82
9 Soil_vinyard_develop 65.07 18.44 25.18 57.80 76.06
10 Corn_senesced_green_weeds 96.91 91.98 95.68 98.76 98.76
11 Lettuce_romaine_4wk 91.88 93.89 69.21 90.75 90.91
12 Lettuce_romaine_bwk 62.42 26.06 18.48 53.63 68.18
13 Lettuce_romaine_6wk 100.00 97.78 95.56 100.00 100.00
14 Lettuce_romaine_7wk 74.36 28.21 17.95 89.74 97.43
15 Vinyard_untrained 63.64 18.18 45.45 90.90 81.81
16 Vinyard_vertical_trellis 100.00 80.00 40.00 100.00 100.00
OA (%) 1 71.74 53.27 50.64 73.73 77.51
AA (%) 1 78.03 53.10 56.12 81.57 85.34

Kappa 1 0.6787 0.4673 0.4486 0.7017 0.7455
F11 50.89 36.99 38.90 70.03 78.32

Params | 160.96 151.44  337.65 451.83 346.23

It can be concluded that, overall, the VIT still performs the worst, but there has been
a decline across all algorithms this time. We suspect this is due to the complexity of the
dataset’s categories and the high degree of similarity among the types of ground objects.
Even the classic RNN algorithm does not seem to be very efficient. We speculate that this
may be because RNNs have limited capabilities in extracting complex spectral features
and spatial information from hyperspectral images, which has impacted their classification
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performance when faced with diversified and highly similar types of ground objects. CNNs
and SpectralFormer, however, have still demonstrated high performance, which we guess
is mainly due to the following reasons. In terms of feature extraction capability, CNNs can
effectively extract local features from images through their convolutional layers, which are
crucial for distinguishing similar types of ground objects. SpectralFormer may be able to
better capture spectral information due to its unique spectral attention mechanism, thus
maintaining high classification accuracy in complex datasets. In terms of spatial context
understanding, both CNNs and SpectralFormer can better understand the spatial relation-
ships between pixels, which is particularly important for hyperspectral image classification
because the spatial distribution of ground objects often provides additional classification
information. The model architectures of CNNs and SpectralFormer may be more suitable
for handling high-dimensional data, such as hyperspectral images, and they can effectively
reduce the impact of the curse of dimensionality while maintaining classification task per-
formance. Therefore, they have maintained a good effect. As for the model we proposed, it
combines their advantages without exception, so naturally, the effect is the best. Figure 6
illustrates color images, transformed and tested labels, and classification maps of various
classification models obtained by comparing methods on the Indian Pines HS dataset.

SpcetralFoemer

Com  [GrasPatire | GraseTrees

Woods BuildingGrTrDri  StoSteTower

SoybeanNotill _

GrassPaMove Oats

Figure 6. Illustration of color images, transformation and test labels, and classification maps obtained
by comparative methods on the Indian Pines HS dataset.

Table 5 presents the classification results of various models on the Pavia Univer-
sity dataset.

The learning skill of deep learning is powerful, and the classical Convolutional Neural
Network (CNN) has shown comparable classification accuracy to the RS-Net algorithm
proposed in this paper on the Pavia University dataset. Figure 7 illustrates the color images,
transformed and tested labels, and classification maps of various classification models
obtained through the comparative method on the Pavia University HS dataset.
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Table 5. Classification Accuracy of Different Classification Models in the Pavia University Dataset.
The best results for each row are shown in bold.

Method
# Class
CNN RNN ViT SpectralFoemer RS-Net
1 Asphalt 73.89 79.92 64.70 75.21 86.80
2 Meadows 82.04 72.21 65.74 69.43 76.52
3 Gravel 66.94 63.47 53.11 71.46 83.41
4 Trees 95.88 98.11 96.02 97.91 96.77
5 Painted metal sheets 99.37 98.47 99.28 99.01 99.46
6 Bare Soil 72.35 78.26 51.66 67.61 87.31
7 Bitumen 93.58 82.10 91.34 92.15 94.08
8 Self-Blocking Bricks 91.97 87.51 77.50 77.44 81.03
9 Shadows 99.87 96.48 99.87 99.50 87.79
OA (%) 1 81.93 78.35 68.83 74.95 82.84
AA (%) 1 86.21 84.05 77.69 83.30 88.14
Kappa 1 0.7628  0.7223 0.6018 0.6797 0.7787
F11 82.92 71.56 64.60 68.82 83.37
Params | 127.18 151.44 167.77 261.68 201.19

False-color Image Training Testing CNN RNN VIiT SpcetralFoemer  RS-Net

Figure 7. Illustration of color images, transformation and test labels, and classification maps obtained
by comparative methods on the Pavia University HS dataset.

3.3. Land Cover Classification Analysis

On the Houston dataset, our algorithm demonstrates superior classification perfor-
mance for categories such as Road, Highway, and Parking Lot 1 and 2, as evidenced by the
more accurate predictions in the prediction maps. In the Indian Pines dataset, our overall
land cover classification outperforms other experimental algorithms. Similarly, on the Pavia
University dataset, our algorithm achieves notable improvements in classifying Asphalt,
Gravel, and other categories compared with other algorithms. This clearly indicates that
our algorithm reduces misclassification errors in land cover classification tasks, providing
a more precise classification, which is a critical capability for land classification analysis
and detection tasks.

4. Discussion

The RS-Net algorithm proposed in this paper excels in hyperspectral image classifi-
cation tasks, particularly in the context of land cover classification. The proposed RS-Net
algorithm effectively mitigates challenges related to high-dimensional hyperspectral data,
spectral variability, and classification errors. The results of ablation experiments demon-
strate that the introduction of the combination of Gramian Angular Field (GASF and
GADF) algorithms significantly improves classification accuracy while reducing model
parameters, highlighting the advantages of GASF and GADF in feature extraction for land
cover analysis.

Furthermore, the incorporation of the CASE module enhances the model’s ability
to identify crucial features and mitigates the semantic gap issue, which is particularly
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beneficial for distinguishing between different land cover types. The RS-Net algorithm’s
ability to capture feature relationships at different scales is validated through its supe-
rior performance compared with other deep learning methods, such as CNNs, RNNSs,
and Transformer, on several publicly available datasets. Notably, RS-Net shows a higher
classification accuracy and better generalization ability, especially for categories with small
sample sizes, indicating its effectiveness in handling unbalanced datasets common in land
cover classification tasks.

GASF and GADF effectively map the target information embedded in one-dimensional
signals to features in two-dimensional images, which are accurately extracted and recog-
nized by back-end network algorithms. The recognition accuracy of the fused GASF/GADF
generated images is higher than that of direct recognition using only the original 1D se-
quence signals, proving the effectiveness of the GASF/GADF method in enhancing land
cover classification.

However, the Gramian Angular Field method, while effective in characterizing one-
dimensional sequences into two-dimensional images and aiding in the adaptation of current
network algorithms for signal processing tasks, has some limitations. The construction
of GASF/GADF involves specific computational time costs that must be considered in
the system’s overall processing, leading to additional delays in interactive output at the
back-end. During the GASF/GADF conversion process, some signal detail information
may be lost, which could impact the fine-grained classification of land cover types. Addi-
tionally, the data captured by many complex systems may not be simple one-dimensional
sequences, limiting the applicability of GASF/GADE.

Therefore, exploring the application of Generalized Autoregressive Conditional Het-
eroskedasticity (GAF) in signal analysis across various scales to unveil more detailed
relationships and patterns, and closely integrating it with current deep learning techniques
is a significant future direction for signal processing researchers, particularly in the context
of land cover and land use analysis. This approach could lead to more nuanced and accu-
rate land cover classification, supporting sustainable land management and environmental
conservation efforts. Additionally, the MSNAT extracts features at different scales to cap-
ture the multiscale information in hyperspectral images. This means it can simultaneously
attend to the fine-grained details and broader contextual information within the images.
This concept inspires us to conduct further research in this area, and we plan to carry out a
study in this direction in the future [45].

5. Conclusions

After comprehensive research and experimental validation, we have successfully
developed the RS-Net algorithm, which has demonstrated outstanding performance in
hyperspectral image classification tasks. RS-Net effectively addresses the challenges of di-
mensionality curse, spectral variability, and classification ambiguity in hyperspectral image
processing by integrating random forests with the SpectralFormer network architecture,
along with the Gram Angular Field (GASF and GADF) algorithms and the CASE module.
Overall, compared with other algorithms, the Vision Transformer (VIT) underperforms in
hyperspectral image classification, particularly when dealing with complex and similar
ground object types. The decline in performance across all algorithms indicates the chal-
lenges posed by the complexity of the dataset. While recurrent neural networks (RNNs)
struggle with extracting complex spectral and spatial features, Convolutional Neural Net-
works (CNNs) and SpectralFormer show strong adaptability due to their effective feature
extraction and spatial context understanding capabilities. CNNs excel at capturing local
image features, while SpectralFormer improves classification accuracy with its spectral at-
tention mechanism. Both architectures are well suited for handling high-dimensional data,
mitigating the impact of the dimensionality curse. Our proposed model, which integrates
the strengths of CNNs and SpectralFormer, achieves the best performance, demonstrating
the superiority of a combined approach in hyperspectral image classification. RS-Net
has outperformed existing models on multiple public datasets, providing an innovative
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solution for the classification of hyperspectral remote sensing images with significant
application value, especially in the field of land cover classification.
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Abbreviations

The following abbreviations are used in this manuscript:

HS hyperspectral

RS-Net Random Forest and SpectralFormer network
GASF Gramian Angular Field

GADF Gramian Angular Difference Field

CASE Contextual and Structural Encoding

CNNs Convolutional Neural Networks

RNN Recurrent Neural Network

ViT Vision Transformer

MSI Multispectral Instrument

NCALM  NSF-funded Center for Airborne Laser Mapping
Aviris Airborne Visual Infrared Imaging Spectrometer
OA Overall Accuracy

AA average accuracy
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