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Abstract: As cyberattacks targeting industrial control systems continue to evolve, the development of
sophisticated technologies to detect these security threats becomes increasingly essential. In addition,
it is necessary to update adversarial information constantly. However, this process is complicated
by the deployment of heterogeneous equipment, which increases the number of indicators and
characteristics that must be analyzed by security administrators. Furthermore, security operation
centers often struggle to respond promptly to adversaries because of the high number of false alerts
caused by unreliable system labels. These challenges make it difficult to construct reliable detection
systems. To address these issues, we propose a robust unsupervised threat-identification method. Our
approach involves applying a preprocessing technique tailored to the various data types pertinent to
alerts, followed by classifying unlabeled alerts using an autoencoder (AE) model. Despite the presence
of numerous false positives, we verified that the proposed model could effectively distinguish
between different attack types and identify their relationships with only one round of training in
homogeneous and heterogeneous environments within industrial control systems. Moreover, our
model can filter and display data classified as actual attacks and generate relational tables.

Keywords: anomaly detection; autoencoder; heterogeneous environment; unsupervised learning

1. Introduction

To protect assets and data from cyber threats, firewalls, intrusion detection systems
(IDSs), and intrusion prevention systems (IPSs) play crucial roles in monitoring and block-
ing network entry points that could serve as attack paths. As cybersecurity threats grow
increasingly complex and sophisticated, new types of security equipment are constantly
being developed and the threat signatures within these systems require constant updates.
Moreover, several studies report cyber threats that penetrate the operational technology
(OT) area [1,2]. Accordingly, as uninterrupted operations are a priority in the industrial
domain, security solutions are deployed to safeguard industrial control systems (ICSs)
against targeted attacks by various security threats. For example, the National Institute
of Standards and Technology (NIST) is preparing guidelines for expanding the domain
from ICS to OT and applying the latest cyber security technologies (behavioral anomaly
detection, artificial intelligence, machine learning, and zero trust) [3]. As the critical infras-
tructure is operated over a wide area, security devices differ between vendors for each
operational site and alerts generated from each security device are analyzed individually.
The bulk of traditional industrial information constitutes time-series numeric data, such
as analog and digital signals. In contrast, security information consists of numeric and
categorical data (predominantly text-based categorical data as time-series data).

Recently, there have been efforts toward the consolidation of the heterogeneous infor-
mation generated from these various types, which can be achieved, for example, by the
implementation of a security information and event management (SIEM); thus, the amount
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of data has dramatically increased. Particularly, the need to analyze security alerts raised by
the security operation centers (SoCs) in heterogeneous security environments has increased.
However, it is challenging for security administrators to analyze large amounts of data and
provide timely responses because the data contain different types of alerts from numerous
devices. Furthermore, as the number of intelligent attacks increases, unnecessary alerts,
such as false alerts, overdetections, and nondetections, which occur owing to the perfor-
mance of security equipment, increase the security administrator’s workload. Among the
various available methods, machine learning is the key to exploring new solutions to
these problems. Machine learning specializes in processing big data, and its performance
is guaranteed in detecting and classifying abnormalities provided that sufficiently large
noiseless datasets are available.

Numerous datasets developed from testbeds or virtual simulation environments tar-
geting ICSs are publicly available [4]. Nevertheless, the alert data produced when security
equipment detects abnormal cases are insufficient, and most of the dataset targets are based
on network packet data collected by specific equipment (such as CICFlowMeter and Net-
Flow. CICFlowMeter, formerly known as ISCXFlowMeter, is an open-source tool developed
by Canadian Institute for Cybersecurity (CIC) at the University of New Brunswick (UNB)
in Canada. NetFlow was created by Cisco Systems in San Jose, CA, USA.). To overcome
this problem, we obtained security alerts generated by various devices and adopted an
unsupervised learning technique to resolve the issues of labeling and categorizing data in
practice. Figure 1 presents an overview of the proposed framework. First, we collect het-
erogeneous alerts from devices and adapt the data for use as deep-learning input through
data refinement. The results from the trained model are evaluated in three parts: anomaly
detection, alert filtering, and integrated relevance analysis (IRA).

Figure 1. Overview of the proposed framework.

In summary, the contributions of this study are as follows:

• Robust unsupervised detection model: We propose a novel method to remove false
alarms from the alerts for five types of attacks by converting multi-class classification
with an anomaly detection task.

• Application of optimal preprocessing: We apply an appropriate preprocessing method
while considering the characteristics of the features among the various methods.

• Filtering alerts to be analyzed: Using the proposed model, the data classified as
true alerts can be filtered from heterogeneous alert data and displayed. The security
administrator can respond by first analyzing the filtered data and then checking the
excluded data if necessary.

• Integrated relevance analysis: We analyze correlations to identify attacks and classify
attack types using IRA. This helps the security administrator to respond to occur-
ring attacks.

The remainder of this paper is organized as follows: Section 2 presents the related work.
Section 3 describes the methodologies used to implement our framework. In Section 4, we
introduce the experimental environment and present the performance of anomaly detection
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using the proposed model and IRA. The results and scope for future research are discussed
in Section 5. Section 6 concludes the paper.

2. Related Works

In this section, we review the datasets commonly used in research on network intrusion
detection systems (NIDS), as well as state-of-the-art anomaly detection and classification
techniques based on machine learning.

• Datasets: Representative datasets include KDD-CUP99 [5] and NSL-KDD. CTU-UNB
mixes the botnet-based datasets, CTU-13 [6] and UNB-ISCX-IDS 2012 [7]. UNSW-
NB15 [8] comprises network packet data collected by the IXIA PerfectStorm tool
and includes data pertinent to nine types of attacks, namely, fuzzers, analysis, back-
doors, denial of service (DoS), exploits, generic, reconnaissance, shellcode, and worms.
USTC-TFC 2016 [9] contains traffic data comprising ten types of both benign and mal-
ware traffic. CSE-CIC-IDS 2018 [10] generated data on web, brute force, DoS, botnet,
and distributed denial of service (DDoS)+PortScan attacks as B-profiles and M-Profiles.
CIC-DDoS 2019 [11] and CIC-DoS 20177 [12] are network traffic data based on DDoS
and DoS, respectively. UGR’16 [13] consists of data on real traffic and up-to-date
attacks collected by NetFlow v9 collectors. Most of these datasets comprise network
traffic data and not logs from security devices such as enterprise security management
(ESM) or SIEM log datasets collected from heterogeneous environments. Additionally,
they comprise single attack (for example, DDoS and botnet) data or the scale of the
attacks is small; thus, these datasets are limited in terms of the variety and sizes of
the attacks.

• Anomaly classification based on machine learning: Anomaly-based classification
methods that detect intrusions through the identification and classification of attacks
have been studied extensively [14–17]. These studies aimed to increase the detection
rate and accuracy and lower the false alarm rate through the application of supervised
learning methods. However, a disadvantage of supervised learning is that only labeled
data can be inputted and learned. Most of the data used for training support labels;
however, in practice, it is difficult to label the collected data because various traffic or
logs can appear simultaneously, or an unseen attack to which a timely response is not
possible, such as a zero-day attack, may occur.

• Anomaly detection based on machine learning: Studies on various supervised
learning-based detection models include [7,9,18–22]. To solve the problem of labeled
data, an alternative solution is unsupervised learning, which does not require labels.
Unsupervised learning solutions [11,23–28] have implemented autoencoders, one-
class K-means, one-class scaled convex hulls, and isolation forests to identify threats.
Nguyen et al. [29] showed that the variational autoencoder can identify various attacks
through reconstructed errors when compared with the autoencoder and Gaussian-
based thresholding techniques. They adopted gradients as fingerprints to identify
or classify the attack types. The gradients identify each attack and show similar re-
sults for scan 11 and scan 44 attacks; thus, using this result for reconstructed errors
improves the performance. However, the data collected by NetFlow have limitations
because only traffic data and five types of attacks are included the following: DoS,
port scanning, botnet, spam, and blacklist. Rao et al. [30] proposed the bi-functional
autoencoder (BFAE) to reduce the dimensionality of time-series data using autoen-
coders capturing nonlinear relationships. The application of the BFAE demonstrated
superior dimensionality reduction results compared to traditional techniques such
as Principal Component Analysis (PCA), AE, and Functional Principal Component
Analysis (FPCA). The BFAE method focuses on reconstruction; thus, it is not relevant
to our research.

• Applications in different domains: Studies have been conducted in other domains
to detect outliers [31–33]. Zhang et al. [33] proposed an anomaly detection technique
based on unsupervised learning and attention techniques for time-series data. Choi
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and Kim [34] proposed anomaly detection using machine learning with a special focus
on the HIL-based augmented ICS (HAI) dataset using an autoencoder combining
Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) net-
works. The study involved two types of data: a synthetic dataset and a real-world
power plant dataset. Because both time-series datasets were composed exclusively of
numeric data, the direct application of the data as input to the deep learning model
was not complicated. However, in heterogeneous security equipment alerts, numerical
and categorical data are mixed. Moreover, even if security devices have the same
features, some devices use numeric labeling, whereas others use categorical labeling.
For example, device A indicates the level of the alert using numbers, whereas device
B uses character values such as low, medium, and high. Therefore, we need to account
for this heterogeneity by applying a method to convert categorical data to numeric
data, after which we can use the various models of anomaly detection regardless of
the domain.

3. Methodology

Our proposed framework consists of four parts: data generation, data preprocessing,
anomaly detection, and IRA. First, we collected datasets from heterogeneous security
devices under various attack scenarios. Second, alerts from heterogeneous security devices
were sent in various numerical and categorical formats. However, these alerts could have
different data formats or meanings, even when the same feature name is used, because of
the security device’s policy. Therefore, data transformation was required to normalize the
data type and meaning. After data preprocessing, our model can identify abnormal alerts
with an autoencoder, regardless of the attack types. Finally, we investigated the correlation
among data features using the Pearson correlation coefficient and chi-squared test.

3.1. Dataset Generation

As mentioned in Section 2, most open datasets comprise network traffic data captured
using NetFlow or Pcap. Generally, the security operation center builds its own security
system with various security devices, and security administrators analyze the network
state using information from these security devices. Therefore, we created a dataset using
an HAI testbed to handle real-world situations.

3.1.1. Testbed Construction for Generating Dataset

To collect various types of security alerts, we leveraged a testbed comprising five
types of commercial security equipment and two types of open-source network intrusion
detection systems, as summarized in Table 1. We built an environment including this
security equipment and monitoring systems using an elastic stack (https://www.elastic.
co/elastic-stack/ accessed on 13 October 2024), shown in Figure 2 [35], and then collected
data from this environment. To generate security information from seven different security
machines, the network traffic of the control system that is the target of the monitoring
exercise is required. We accomplished the surveillance of network traffic by mirroring
the configuration at the network switch in each control system based on availability. We
leveraged an aggregator capable of traffic aggregation, replication, and distribution to
transmit the mirrored traffic from each network switch to each security machine. When
the mirrored traffic from each network switch was delivered to the aggregator, it was
aggregated and duplicated such that all security machines received identical inputs.

https://www.elastic.co/elastic-stack/
https://www.elastic.co/elastic-stack/
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Figure 2. Structure of security data collection using an HAI testbed and security devices.

Table 1. Security alerts collected from seven machines.

ID Vendor Type Installation ACL Signature

I A IDS/IPS Physical ! !
II B IDS/IPS Physical ! !
III C IDS/IPS Physical ! !
IV C Firewall Physical !
V D IDS/IPS Physical ! !
VI Open-source Snort Virtual ! !
VII Open-source Suricata Virtual ! !

We also installed Ixia’s IxLoad-attack (https://www.keysight.com/us/en/products/
network-test/protocol-load-test/ixload.html accessed on 13 October 2024), an attack-traffic-
generating device, to reproduce the attack scenarios. The attacker and victim interface
settings were configured to reflect the testbed environment. When attack traffic was directly
injected into the network switch or the operation and management system in the testbed,
the testbed component might be placed in a critical state. Therefore, to eliminate the impact
of generating security alerts on the existing operating testbeds, the testbeds and attack-
traffic-generating network were physically separated, as shown in Figure 2. Although it
looks individually segmented, normal traffic and attack traffic from both networks, as with
network traffic generated from one network through the amplifier device, can be integrated
and delivered to security equipment.

3.1.2. Configuration of Attack Scenario

It is nearly impossible to account for all the attacks that could potentially target the
assets (i.e., IoT systems, workstations, and data centers) used in the infrastructure critical
to a diverse range of domains. Generally, an attacker identifies vulnerabilities applicable
to a specific ICS and develops an attack tool to compromise its target. Therefore, we
identified the functions and operational status of each control system within the testbed
and constructed realistic scenarios, including applicable attacks. For the sequence of attacks,
we assumed that a service-oriented attack was first conducted. If no service corresponds
to a vulnerability or if the attack fails, the attacker finally executes an availability attack.
To create such attacks, we composed applicable attacks on the testbed operated by the
function and operation state of each control system, as summarized in Table 2. In the case of
a service-specific attack, the target and method of the attack were determined. Particularly,
we selected 13 DDoS attacks by which an attacker could perform a specific attack on
the testbed.

https://www.keysight.com/us/en/products/network-test/protocol-load-test/ixload.html
https://www.keysight.com/us/en/products/network-test/protocol-load-test/ixload.html
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Table 2. Summary of vulnerability attacks.

Category Service Attack Type Attack Duration

Web HTTP 152 25 min 14 s
OS SMB 81 13 min 29 s
Remote procedure DCERPC 65 10 min 55 s
Database MySQL 18 2 min 21 s
DDoS Specific protocols 13 2 h 14 min 53 s

3.1.3. Summary of Dataset

Our data contained logs from a testbed with normal and abnormal situations captured
over 72 h. To prepare a dataset, we refined the data slightly by excluding alerts with the IP
addresses, which cannot appear as attackers and victims in our testbed. Figure 3 illustrates
the timeline of the dataset. To avoid the potential interference before an attack attempt,
we divided the dataset into training and test datasets 10 min before the attack occurred.
Moreover, we accounted for the delay involved in the transmission of the logs by the
individual machines by collecting all security alerts for an additional margin of 7 min from
the end of the DDoS attack. Table 3 lists the number of alerts per attack in the test, and the
total count for each machine in the collected dataset is listed in Table 4 datasets.

Figure 3. Timeline of dataset.

Table 3. Number of alerts according to attack class by machine in test datasets.

Class
Machine

I II III IV V Snort Suricata

Normal 6394 (39.4%) 11,944 (26.0%) 1901 (5.3%) 1448 (23.8%) 27 (0.4%) 2649 (3.8%) 546 (1.5%)
HTTP 4279 (26.4%) 16,565 (36.1%) 8891 (24.7%) 3422 (56.3%) 4579 (67.95%) 51,287 (74.3%) 2074 (5.9%)
MySQL 2222 (13.7%) 3313 (7.2%) 438 (1.2%) 328 (5.4%) - 589 (0.9%) 172 (0.5%)
SMB 1252 (7.7%) 2435 (5.3%) 861 (2.4%) 284 (4.7%) 3 (0.04%) 401 (0.6%) 98 (0.3%)
DCERPC 587 (3.6%) 1245 (2.7%) 676 (1.9%) 366 (6.0%) - 735 (1.1%) 248 (0.7%)
DDoS 1476 (9.1%) 10,360 (22.6%) 23,161 (64.5%) 232 (3.8%) 2130 (31.61%) 13,333 (19.3%) 32,286 (91.1%)

Table 4. Dataset summary.

Machine Train Data Test Data Subtotal

I 537,155 (96.5%) 19,421 (3.5%) 556,576 (100%)
II 1,012,399 (95%) 52,777 (5%) 1,065,176 (100%)
III 2,281,683 (91%) 226,882 (9%) 2,508,565 (100%)
IV 1,488,850 (90%) 165,969 (10%) 1,654,819 (100%)
V 4872 (41.4%) 6887 (58.6%) 11,759 (100%)
Snort 456,847 (85.2%) 79,304 (14.8%) 536,151 (100%)
Suricata 33,063 (48.2%) 35,507 (51.8%) 68,570 (100%)

Total 5,814,869 (90.8%) 586,747 (9.2%) 6,401,616 (100%)

False alerts can occur in both the normal and attack intervals. This is caused by
differences in the performance of the security equipment, which frequently occur in an
actual operating environment. In order to consider real-world scenarios where false alerts
are frequent, we did not eliminate the false alerts from the normal interval in this study.
Because the false alerts in the training set act as noise and help the model not to overfit
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the normal data, our model can eliminate the false alerts that appeared in the test dataset.
Furthermore, we demonstrated that distinctly different alarms exist because the difference
between the loss of true and false alarms was large.

3.2. Data Preprocessing

Security alerts contain a combination of numerical and categorical data. However,
the autoencoder uses numerical data as its input; thus, the conversion of categorical data
into numeric data is required. We adopted two methods to address this problem: labeling
and one-hot encoding.

As illustrated in Figure 4, we used the labeling method for data whose meaning
varied depending on the order and size. However, we applied one-hot encoding for data
whose meaning is the value itself, such as IP addresses and protocols. Table 5 shows
that the number of fields in the collected raw data ranges from a minimum of 20 to a
maximum of 69 per machine, including fields from the elastic stack. First, we removed
fields added by the elastic stack and fields that were deemed meaningless for each machine.
The remaining fields were classified as numerical or categorical based on their type and
meaning. For categorical data, we determined whether they were ordinal or nominal to
decide whether the appropriate encoding method would be label encoding or one-hot
encoding. After the encoding process, the number of fields increased to a maximum of 1122,
as shown in Table 5, and the data preprocessing was completed through a normalization
process. The next paragraph provides a detailed explanation of the data preprocessing for
Snort, an open-source IDS.

Figure 4. Preprocessing according to data type.

Table 5. Number of fields in data by machine.

Category
Machine

I II III IV V Snort Suricata

Raw data 20 48 52 38 30 21 69
Encoded data 63 179 99 38 75 144 1122

An example of the data collected from Snort is presented in Table 6. The total number
of fields was 21, and the field names beginning with “@” were derived from an elastic stack.
The original data from Snort were in the form of raw alerts, and each field was converted
from raw alerts into individual features. Further, timeSent as a time field, was meaningless
because the collected alerts were stacked in sequence. Thus, @version, @timeStamp, original,
and timeSent were eliminated from the list of relevant fields, leaving 17 fields. Among the re-
maining features, both numerical and character types existed. Most character-type features
were categorical values, whereas some numeric features also had categorical meanings. We
considered the meaning of the field and classified numerical data such as levelRisk, portVic-
tim, portAttacker, id_generator, and id_revision, whereas the other features were considered
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categorical. As an example of the increased overhead with one-hot encoding, when the
value count of portAttacker is 13,862, the feature count increases from 1 to 13,862 features
when portAttacker is included.

The growing feature size increases the operational time and leads to a memory over-
flow. The number of ports set by the protocol was a numeric value between 0 and 65,535.
LevelRisk was categorical data consisting of numbers that were processed as numeric data
because each number could be classified into the 0-low, 1-medium, 2-high, or 3-severe
categories. The protocol feature was categorical and had four values: “udp”, “tcp”, “icmp”,
and “igmp” without priority; thus, one-hot encoding was applied. The protocol features
increased to four in total: protocol_udp, protocol_tcp, protocol_icmp, and protocol_igmp. The fea-
tures could only have a value of zero or one, depending on the existence or absence of
the feature value. If the four features were listed in the order [protocol_udp, protocol_tcp,
protocol_icmp, protocol_igmp], then one of these is selected in the form of [1,0,0,0], [0,1,0,0],
[0,0,1,0], and [0,0,0,1] based on the values stored in the protocol features. For example, if the
protocol value of an alert was “icmp”, then [0,0,1,0] were allocated to each feature in order.

In a real-world situation, a new value for the IDS/firewall has not been observed before
the generation of an alert during a cyber-attack; hence, normalizing both the training and
testing datasets together is unsuitable. To manage this condition, we added an extra process
to make it more practical as follows: (1) To maximize the case where values from the training
dataset did not appear within the test dataset, only the training dataset was normalized.
(2) The min–max value of each feature was stored and used for the normalization of the
test dataset. (3) The test dataset was normalized to a value over the range of the training
dataset. Further, as mentioned above, if a predefined range existed, as in portAttacker and
portVictim, we reflected this in the normalization.

Table 6. Data type of fields in raw data from machine Snort. E: Excluded from preprocessing; N:
Numerical data; C: Categorical data.

Field Data Type Unique Value Instance

timeSent E 82,626 ‘2020-08-21T07:45:54.000Z’, ‘2020-08-21T07:46:04.000Z’, ...
@version E 1 1

@timestamp E 98,972
‘2020-08-21T07:45:55.295Z’, ‘2020-08-21T07:46:05.295Z’,
‘2020-08-21T07:46:05.296Z’, ...

original E 950,484
‘08/21-16:45:54.143014 {[}**{]} {[}1:1234567892:0{]} home
-\textgreater external {[}**{]}{[}Priority: 0{]} {UDP}
a.b.c.d:### -\textgreater a.b.c.d:###’

levelRisk N 4 0, 1, 2, 3
portVictim N 890 138, 1947, 137, 67, 5355, 3991, ...
portAttacker N 13,862 138, 49157, 56856, 49811, 137, 49155, 60130, 68, 51509, ...
id_generator N 1 1
id_revision N 21 0, 1, 18, 9, 17, 13, 10, 5, 7, 11, 8, 2, 6, 3, 15, 4, 12, 22, 16, 14, 25
id_signiture N 95 1234567892, 1234567893, 41701, 1234567891, 2381, 40046, ...
IPAttacker C 43 Mixed IPv4, IPv6
IPVictim C 28 Mixed IPv4, IPv6
location.lat C 1 latitude
location.lon C 1 longitude
nameMachine C 1 ‘Snort IPS System’

nameAttack C 92
‘home -\textgreater external’, ‘External -\textgreater external’,
‘SERVER-IIS cmd.exe access’, ...

protocol C 4 ‘udp’, ‘tcp’, ‘icmp’, ‘igmp’
nameOperator C 1 ‘A’
nameUnit C 1 ‘c’
type C 1 ‘snort’

categoryModule C 14
nan, ‘Potential Corporate Privacy Violation’, ‘Attempted
Administrator Privilege Gain’, ‘Web Application Attack’, ...



Electronics 2024, 13, 4061 9 of 20

3.3. Anomaly Detection

We focused on the characteristics of the autoencoder, such as data compression and
data restoration without noise, to distinguish between normal and abnormal alerts owing
to the problem described in Section 3.1.3. The encoder and decoder used in this study
consisted of four fully connected layers. The feature size of the first layer output was
100, and as the layers were sequentially connected, their output sizes were reduced to
50, 30, and 10, respectively. Essentially, the feature finally encoded through the encoder
became a feature vector with a dimension of 10. The decoder decoded the characteristics in
the reverse order of the encoder, and the final output was a vector that was the same as
the input.

We set hyperparameters for the learning model as follows: a batch size varying with
the volume of data, five epochs, and 0.001 as the learning rate. The optimizer used was
Adam with default parameters. As we intended to proceed with anomaly detection for
every event, we applied the mean absolute error (MAE) to obtain the loss for individual
events as in Equation (1)

1
n

b

∑
i=1

n

∑
j=1

∣∣x̂ij − xij
∣∣ (1)

where b is the batch size and n is the feature size.
We selected the maximum and average values of the training loss as static thresholds in

individual machines to capture an abnormal alert. The reason for selecting two thresholds
is that a value larger than the largest loss learned during training can be considered a
definite anomalous alert. However, when the maximum loss of the training dataset is
higher than that of other losses produced by outliers, it degrades the performance of the
model. Therefore, we selected the average of the losses to solve this problem. Consequently,
the model tended to become more sensitive when treating a normal packet as an attack;
however, the detection ratio for the actual attacks improved.

3.4. Integrated Relevance Analysis

We defined the IRA to suggest a method for classifying attacks through an integrated
analysis, regardless of the data types, because the data obtained in the real world are not
only numeric and categorical data. The chi-squared test has two purposes: testing the
goodness of fit and determining the dependence between two variables. Thus, we adopted
the chi-squared test to determine the independence of the categorical data. To apply the
chi-squared test, the numerical data were transformed into categorical data. Numerical
values were converted directly to categorical values or converted into grades with each
interval containing a range of values being classified as a categorical value.

However, with the chi-squared test, it is possible to confirm the existence of a relation-
ship between each variable, but it is not possible to determine whether the relationship
is strong or weak. Therefore, we used Cramér’s V to measure the degree of association
between two features. The advantage of Cramér’s V technique is its ability to obtain the cor-
relation coefficient between features divided into two or more categorical values, and this
is independent of the continuity of variables or the distribution of their values. Further, we
applied the Pearson correlation coefficient (PCC) to verify the correlation between the val-
ues for each feature. Using PCC, it became possible to check whether a feature value existed
in the attack type and the positive or negative correlations between values. In summary,
the IRA aimed to analyze the correlations and identify attacks using the results.

The chi-squared test was performed using Equation (2), where X is the observed value,
X is the expected value, k is the number of categories, and i is the “i-th” position in the
contingency table.

X2 =
k

∑
i=1

(Xi − Xi)
2

Xi
. (2)
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Cram ér’s V was calculated using Equation (3),

ϕc =

√
χ2

N(k − 1))
, (3)

where χ2 is the chi-squared test value, N is the number of observations, and k is min(r − 1,
c − 1), where r and c are the numbers of rows and columns in the contingency table,
respectively. PCC was computed as in Equation (4), where cov is the covariance, σX is the
standard deviation of X, and σy is the standard deviation of Y

ρXY =
cov(X, Y)

σXσY
. (4)

4. Experimental Results

Through experiments, we demonstrated the results of the methodology described in
Section 3. The results of IRA were obtained using two datasets. We created a confusion
matrix and compared the number of detected alerts, and we collected alerts to evaluate
the performance of our model. The distinction between the total number of alerts col-
lected and the number of attack alerts filtered through the model showed that the number
of unnecessary alerts was reduced, and the correlation for the attack type was verified
using IRA.

4.1. Experimental Environment

The detection model was trained on a server with an Xeon CPU E5-2630 v4, it is
manufactured by Intel Corporation in Santa Clara, California, USA @ 2.20 GHz and six
Titan Xp GPUs constructed Nvidia Corporation in Santa Clara, CA, USA. We built the
model with Python 3.6 and PyTorch, which is an open-source machine learning library
developed primarily by Facebook’s AI Research lab (FAIR) in Menlo Park, California,
USA. Our model used an unsupervised learning algorithm and our collected dataset was
unlabeled, sharing the same disadvantage of most IDS/Firewall datasets. Furthermore, it
was important to consider the time padding before and after an attack because of the policy
of sending alerts, that is, whether the machine sends alerts immediately as they are created,
5 min after the fact, or when the buffer of the log is full.

4.2. Anomaly Detection
4.2.1. Results of Individual Machines

While metrics such as accuracy and F1 score are important in evaluating model
performance, False Positive Rate (FPR) and False Negative Rate (FNR) are equally critical.
A lower FPR indicates that the model accurately identifies normal behavior, whereas a
lower FNR means it is less likely to misclassify actual attacks as benign. In the context of
network intrusion detection, minimizing False Negatives, where attacks go undetected, is a
bigger concern than False Positives, where normal data are mistakenly flagged as malicious.

To benchmark state-of-the-art anomaly detection methods, we conducted experiments
using PCA and LSTM autoencoder. The highest values for each metric are presented in
bold, the second-highest are underlined, and the lowest FPR and FNR values are marked in
yellow. As shown in Table 7, when the threshold is set to the maximum loss, PCA performs
well in terms of FPR. However, it lags behind other models in F1 score and shows signifi-
cantly higher FNR values on certain machines. The autoencoder and LSTM autoencoder
deliver comparable results across most metrics, with the autoencoder achieving the lowest
FNR overall.

As observed in the confusion matrix in Table 7, most of the precision and recall values
of our model have high scores. However, some machines have low accuracy because of
false positives or false negatives. As can be observed in the previous tables, most devices
exhibited higher results when the threshold was the average value. When the threshold is
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adjusted to the average loss, a similar trend is observed. However, with a lower threshold,
normal instances are more frequently misclassified as false positives, resulting in a higher
FPR. For LSTM, only minor differences are observed compared to the regular autoencoder,
suggesting that the time-series nature of the data does not have a significant impact
on performance.

Further analyzing the autoencoder’s performance, Table 8 lists the number of detection
alerts per machine for each attack based on the threshold value and dataset type. Based on
this table, Machine I exhibits extreme differences depending on the threshold. Machines III
and IV show 100% detection performance when using the average threshold. In the case
of Machine I using the average threshold, our model detected almost 80% of both SMB
and DCERPC attacks in the dataset. However, when we adopted the maximum threshold,
the detection rate was only approximately 30%. Most of the alerts collected in SMB and
DCERPC attacks, excluding detected alerts with high loss value as an attack, were likely to
be false alerts because their loss values were close to the thresholds. Therefore, the detection
rate increased because of false alerts that exceeded the threshold.

Table 7. Confusion matrix with the threshold varying for each machine.

Threshold Method Metric
Machine

I II III IV V Snort Suricata

Maximum of
training loss

PCA

Accuracy 0.5645 0.7015 0.9477 0.7712 0.1186 0.9758 0.9832
Precision 0.9723 1.0000 0.9904 1.0000 1.0000 0.9956 0.9972
Recall 0.2891 0.5964 0.9541 0.6997 0.1150 0.9792 0.9858
F1-Score 0.4457 0.7472 0.9719 0.8233 0.2063 0.9873 0.9914
FPR 0.0127 0.0000 0.1657 0.0000 0.0000 0.1091 0.1795
FNR 0.7109 0.4036 0.0459 0.3003 0.8850 0.0208 0.0142

AE

Accuracy 0.8952 0.9739 0.9626 0.7776 0.9960 0.9815 0.9913
Precision 0.9654 0.9662 0.9813 0.9881 0.9960 0.9928 0.9951
Recall 0.8577 0.9996 0.9793 0.7168 1.0000 0.9879 0.9961
F1-Score 0.9083 0.9826 0.9803 0.8308 0.9980 0.9903 0.9956
FPR 0.0472 0.0992 0.3346 0.0276 1.0000 0.1782 0.3132
FNR 0.1423 0.0004 0.0207 0.2832 0.0000 0.0121 0.0039

LSTM-AE

Accuracy 0.8949 0.9741 0.9626 0.7776 0.9960 0.9817 0.9913
Precision 0.9660 0.9666 0.9813 0.9881 0.9960 0.9936 0.9951
Recall 0.8566 0.9995 0.9791 0.7168 1.0000 0.9873 0.9961
F1-Score 0.9080 0.9828 0.9802 0.8308 0.9980 0.9905 0.9961
FPR 0.0463 0.0981 0.3340 0.0276 1.0000 0.1582 0.3132
FNR 0.1434 0.0005 0.0209 0.2832 0.0000 0.0127 0.0039

Average of
training loss

PCA

Accuracy 0.5769 0.7243 0.9470 0.7574 0.1186 0.9686 0.9833
Precision 0.6479 0.8121 0.9687 0.8099 1.0000 0.9786 0.9909
Recall 0.6599 0.8161 0.9756 0.8905 0.1150 0.9890 0.9922
F1-Score 0.6539 0.8141 0.9721 0.8483 0.2063 0.9838 0.9915
FPR 0.5505 0.5362 0.5650 0.6685 0.0000 0.5428 0.5824
FNR 0.3401 0.1839 0.0244 0.1095 0.8850 0.0110 0.0078

AE

Accuracy 0.6590 0.9518 0.9632 0.7618 0.9960 0.9719 0.9901
Precision 0.6459 0.9388 0.9687 0.7618 0.9960 0.9831 0.9928
Recall 0.9671 0.9999 0.9932 1.0000 1.0000 0.9879 0.9972
F1-Score 0.7745 0.9684 0.9808 0.8648 0.9980 0.9854 0.9950
FPR 0.8140 0.1850 0.5739 1.0000 1.0000 0.4266 0.4634
FNR 0.0329 0.0001 0.0068 0.0000 0.0000 0.0121 0.0028

LSTM-AE

Accuracy 0.8317 0.8393 0.9582 0.7618 0.9960 0.9732 0.9883
Precision 0.8461 0.8217 0.9671 0.7618 0.9960 0.9732 0.9905
Recall 0.8826 0.9995 0.9895 1.0000 1.0000 0.9925 0.9976
F1-Score 0.8640 0.9019 0.9782 0.8648 0.9980 0.9862 0.9941
FPR 0.2465 0.6157 0.6023 1.0000 1.0000 0.5108 0.6099
FNR 0.1174 0.0005 0.0105 0.0000 0.0000 0.0075 0.0024

The highest values for each metric are presented in bold, the second-highest are underlined.

Table 8. Number of detected alerts with the dataset with the average and maximum threshold varying
for each machine.

Threshold Class
Machine

I II III IV V Snort Suricata

Maximum of
training loss

HTTP 4279 (100%) 16,565 (100%) 8369 (94.13%) 2954 (86.32%) 4579 (100%) 51,267 (99.96%) 2064 (99.52%)
MySQL 2188 (98.47%) 3311 (99.94%) 292 (66.67%) 0 (0%) - 204 (34.63%) 104 (60.47%)
SMB 391 (31.23%) 2435 (100%) 823 (95.59%) 0 (0%) 3 (100%) 0 (0%) 42 (42.86%)
DCERPC 128 (21.81%) 1234 (99.12%) 676 (100%) 366 (100%) - 735 (100%) 245 (98.79%)
DDoS 1433 (97.09%) 10,360 (100%) 23,161 (100%) 0 (0%) 2130 (100%) 13,333 (100%) 32,286 (100%)

Average of
training loss

HTTP 4279 (100%) 16,565 (100%) 8763 (98.56%) 3422 (100%) 4579 (100%) 51,267 (99.96%) 2064 (99.52%)
MySQL 2222 (100%) 3311 (99.94%) 374 (85.39%) 328 (100%) - 204 (34.63%) 123 (71.51%)
SMB 1056 (84.35%) 2435 (100%) 823 (95.59%) 284 (100%) 3 (100%) 0 (0%) 58 (59.18%)
DCERPC 460 (78.36%) 1245 (100%) 676 (100%) 366 (100%) - 735 (100%) 248 (100%)
DDoS 1476 (100%) 10,360 (100%) 23,161 (100%) 232 (100%) 2130 (100%) 13,333 (100%) 32,286 (100%)
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4.2.2. Results of Individual Machines with Snort

We compared the changes in performance when using only the alert information of a
single security device to detect anomalies by combining the detection event results of other
security devices. For this experiment, because the same security device had to be used for
comparison, we selected Snort, which is the open-source IDS with the largest number of
detected events (i.e., responded the most to attacks). Table 9 summarizes the performance
of each machine when the machine is used with or without Snort. An operational advan-
tage was obtained by combining Snort with security machines with significantly lower
performance, such as machines I and IV. In particular, a marked reduction in the FNR was
observed, indicating an enhanced sensitivity of the security machines. This enhancement
significantly bolsters the machine’s capability to accurately detect and identify attacks with-
out omissions, thereby improving the overall reliability of the security measures in place.
However, for the remaining machines with performance similar to Snort, no improvement
in performance was observed.

Table 9. Comparison of metrics of individual machines with or without Snort.

Threshold Cooperation Metric
Machine

I II III IV V Suricata

Maximum of
training loss

Without Snort

Accuracy 0.8952 0.9739 0.9626 0.7776 0.9960 0.9913
Precision 0.9654 0.9662 0.9813 0.9881 0.9960 0.9951
Recall 0.8577 0.9996 0.9793 0.7168 1.0000 0.9961
F1-Score 0.9083 0.9826 0.9803 0.8308 0.9980 0.9956
FPR 0.0472 0.0992 0.3346 0.0276 1.0000 0.3132
FNR 0.1423 0.0004 0.0207 0.2832 0.0000 0.0039

With Snort

Accuracy 0.8754 0.9278 0.9001 0.9302 0.9090 0.8708
Precision 0.9911 0.9805 0.9878 0.9858 0.9946 0.9945
Recall 0.8755 0.9347 0.9074 0.9312 0.9104 0.8708
F1-Score 0.9298 0.9570 0.9459 0.9577 0.9506 0.9285
FPR 0.1269 0.1148 0.2923 0.0753 0.1274 0.1295
FNR 0.1245 0.0653 0.0926 0.0688 0.0896 0.1292

Average of
training loss

Without Snort

Accuracy 0.6590 0.9518 0.9632 0.7618 0.9960 0.9901
Precision 0.6459 0.9388 0.9687 0.7618 0.9960 0.9928
Recall 0.9671 0.9999 0.9932 1.0000 1.0000 0.9972
F1-Score 0.7745 0.9684 0.9808 0.8648 0.9980 0.9950
FPR 0.8140 0.1850 0.5739 1.0000 1.0000 0.4634
FNR 0.0329 0.0001 0.0068 0.0000 0.0000 0.0028

With Snort

Accuracy 0.9603 0.8632 0.9647 0.8490 0.9751 0.9732
Precision 0.9713 0.8628 0.9647 0.8490 0.9879 0.9803
Recall 0.9870 1.0000 1.0000 1.0000 0.9862 0.9922
F1-Score 0.9791 0.9264 0.9820 0.9184 0.9871 0.9862
FPR 0.4711 0.9820 0.9588 1.0000 0.3082 0.5339
FNR 0.0130 0.0000 0.0000 0.0000 0.0138 0.0078

4.3. Filtering the Alerts

To accurately recognize and respond to security threats with limited human resources,
alerts should be managed by an administrator within a cognitive load range. Thus, for effi-
cient monitoring, it is necessary to filter out false positives in normal situations and select
only relevant alerts during an attack. We confirmed the application effect of the proposed
model in terms of alert filtering for the analysis. For this, the ratio of the remaining alerts
after filtering the alert (ct) that exceeded the threshold and the total alert (bt) by the security
device during the normal and attack intervals (t) was calculated as follows:

γ =
t

∑
i=0

(bt − ct)

ai
, where t ≥ 0. (5)

Here, γ represents the cumulative ratio of alerts that were not estimated as abnormal
by the attack detector (AD) of the proposed model to the total alerts. When γ is 1, no alerts
are filtered as exceeding the threshold because the number of alerts that do not exceed the
threshold matches the total number of alerts in each time window. Fundamentally, not all
the alerts should be analyzed by the administrator. However, when γ is 0, all alerts exceed
the threshold in each time window, and the administrator should analyze all the alerts.
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Therefore, as γ approaches 1, the number of target alerts that the administrator should
analyze approaches 0, and the reverse holds true. As shown in Figure 5, the range of γ
increased from 0.016 (Suricata) to 0.6 (Machine III) when the AD threshold of the proposed
model was the maximum value of learning loss and from 0 (Machine IV) to 0.33 (Machine I)
when the average value of learning loss was calculated. This demonstrates that the overall
filtering effect was identified.

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5. Ratio of security alerts exceeding thresholds in each machine. (a) Machine I, (b) Machine II,
(c) Machine III, (d) Machine IV, (e) Machine V, (f) Snort, (g) Suricata.
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As the F1-score of the AD was significantly high (between 0.96 and 1), and relatively
few alerts could be filtered, the alert filtering effect of Machine V, Snort, and Suricata was
insignificant. However, in other security devices, γ was extremely high when filtering was
based on learning loss, and the gap widened more when the raw alerts were compared
with refined alerts. During the attack period, the alerts determined to be related to the
attack were not filtered out; hence, γ remained approximately constant, and it continued
to increase in other sections, confirming that it can help manage the cognitive load of the
administrator. This phenomenon is most clearly observed in Machine II.

4.4. Integrated Relevance Analysis

As explained in Section 3.4, we present the correlation between features through
the IRA and illustrate the possibility of classifying attack types. Our model succeeded in
identifying attack types; however, it was not possible to analyze attacks within an attack
type because we tested various attacks in a short time. In addition, we demonstrated that
each attack could be classified using the NSL–KDD dataset. The NSL–KDD dataset is
divided into four types of attacks and consists of a total of 39 labeled attacks and normal
data. The number of attacks and the number of alerts included in each type are listed in
Table 10. There are 42 NSL–KDD attributes; eight attributes are categorical data whereas the
rest are numeric data. Even in categorical data, only class, protocol_type, service, and flag are
character types. class is used only for data classification, and protocol_type, service, and flag
are preprocessed with one-hot encoding for PCC.

The visualization of Cramér’s V calculations for different attack types using Snort
device data are shown in Figure 6a–d. By identifying variables with a high correlation
across all attacks through the Cramér’s V results, these variables can be used as indicators
to assess whether new input data represent an attack. Additionally, variables that exhibit
different correlations depending on the type of attack can help in determining the specific
nature of the attack. For example, the correlation between portVictim and portAttacker
remains below 0.5 for most attacks, but for DDoS attacks, the value approaches 0.7. This
suggests that a high correlation between portVictim and portAttacker within a certain range
could be an indicator of a DDoS attack. However, it should be noted that Cramér’s V can
only be calculated for categorical variables and does not provide insights into relationships
at the individual category level. To address this limitation, one-hot encoding is applied to
the categorical variables, followed by the calculation of Pearson Correlation Coefficients
(PCC). The results are displayed in Figure 6h–k, enabling a deeper understanding of
correlations between specific variable values. For instance, if a DDoS attack is detected
and PCC is applied to data within the attack window, it can reveal which specific ports
between portVictim and portAttacker are correlated. If there is a high correlation between
portVictim-3389 and portAttacker-6001, this would indicate that the attack is targeting
port 3389, allowing security analysts to respond by either closing port 3389 or blocking
connections originating from port 6001. This approach enhances the ability of security
teams to respond to threats effectively.

The results of the IRA from the NSL–KDD dataset are shown in Figure 6e–g,l–n
according to the chi-squared test and Cramér’s V results, where the Apache2 attack shows a
high correlation of logged_in feature with duration and flag features. In the case of a multihop
attack, similar to Apache2, there is a high correlation with 15 features, including duration
and logged_in; however, the flag feature does not appear. In a snmpguess attack, protocol_type
and service show the same color association, and both features have a high correlation with
the following features: dst_host_same_src_port_rate, dst_host_count, and dst_host_srv_count.



Electronics 2024, 13, 4061 15 of 20

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 6. Cont.
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(h) (i)

(j) (k)

(l) (m)

(n)

Figure 6. Results of Chi-squared test, Cramér’s V and PCC applied to Snort and NSL-KDD. (a) HTTP,
(b) MySQL, (c) DCERPC, (d) DDoS, (e) Apache2, (f) Multihop, (g) Snmpguess, (h) HTTP, (i) MySQL,
(j) DCERPC, (k) DDoS, (l) Apache2, (m) Multihop, (n) Snmpguess.
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Table 10. NSL-KDD dataset summary.

Class Distinct Attack Dataset

Train Test Subtotal

Normal - 67,343 9711 77,054
DoS 11 45,927 7460 53,387
Probe 6 11,656 2421 14,077
R2L 15 995 2885 3880
U2R 7 52 67 119

Total 39 125,973 22,544 71,463

We also examined multihop and snmpguess attacks, which show different patterns
despite having the same R2L attack type. Nevertheless, in the PCC results, more than one
service value exists in both the multihop and snmpguess attacks, but it is not observed in
the Apache2 attack. Instead, a flag feature can be found in the Apache2 attack. Multihop
and snmpguess attacks can be assumed to be of the same type because the service feature
appears in both attacks. Furthermore, the presence or absence of a variable value uniquely
appearing in the service feature and the values that are not visible in the PCC result of the
snmpguess can be used to distinguish between the two types of attacks.

5. Discussion

• Limitation of the dataset to evaluate performance: Based on the experimental results,
our model detects five different attack situations with one round of training using only
normal data. According to Table 9, the model combined with Snort maintains an FNR
between 0 and 0.12. Therefore, we expect that this model will be able to detect even
the emergence of new attacks. However, as our model was trained on normal data,
the performance of the model may vary depending on the state and volume of normal
data and the difference between normal and attack data. It is important to collect high-
quality normal data or refine the data to increase their quality. In our preprocessing
steps, we applied various approaches such as removing IP addresses, which cannot
represent attackers or targets, dropping meaningless fields, and determining numeric
and categorical fields for data encoding. In addition, our dataset lacks a variety of
attack cases, such as multiple attacks of the same type or different types of attacks
occurring simultaneously. Furthermore, we could not distinguish attack types because
the period between attacks was extremely short. Even if there was a difference in the
density of attacks, further research is required to confirm whether the same level of
performance can be maintained.

• Heterogeneous machines and domains: If a device is located in the outermost part of
the network, it generates more logs than those located inside, or if different machines
exist in the same location, a different number of logs can be generated depending
on the device’s policy. Thus, the volume of data can vary because the size of data
generation varies according to the devices and locations of the machines set up in
the industrial domain. Therefore, we manually set the batch size by checking the
corresponding volume; however, we also needed to determine a suitable batch size
and the criteria for small data.

• Static threshold for anomaly detection: Because we used a static threshold that
linearly separates the normal and abnormal as the average and maximum values
of the training loss, false alerts were sometimes considered true alerts. As shown in
Table 7, the performance differs depending on the threshold; specifically, Machine I
shows a difference of approximately 2.0. Some solutions for handling this phenomenon
are as follows: (1) Sampling the alerts appearing in the normal interval between attacks
for training. (2) Choosing an optimal threshold to minimize false alerts and maximize
the detection of actual alerts, for example, by using the median or assigning weights
with a histogram of training losses. Additionally, we plan to find a method for the
model to optimize batch size and thresholds regardless of the dataset.
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• Operation time: In a situation where real-time detection is important, a long training
time causes problems. In this study, the training time differed depending on the size
of the dataset for each machine. In addition, the operation time was affected by both
the dataset size and input size. As presented in Table 5, after data preprocessing,
the number of fields at least doubles for all machines except Machine IV. When other
machines are combined with Snort, the number of fields increases in proportion with
the size of Snort, leading to an increase in operation time. When more than two
machines are combined, the number of fields increases even further. To address this
problem, a more efficient model should be developed or fields that have been proven
to have low relevance to attacks should be removed, either through IRA or deep
learning analysis.

• Comparative analysis to create a naive autoencoder: In this study, we used a naive
autoencoder to examine the possibility of its application and to use it as a baseline for
future work. It is also necessary to compare its performance with other state-of-the-art
models, such as the VAE, Conv-AE, or attention techniques. To implement anomaly
detection, we adopted the loss of the batch and, by checking the loss of individual
fields in the batch, we also observed that the loss in specific fields had some effect;
however, this was not addressed in this study. In future research, we aim to extract the
pattern of each attack by combining the IRA and the loss results of individual fields.

6. Conclusions

In this paper, we introduced a method that can detect abnormal situations and classify
attack types by targeting alert information from heterogeneous environments. The proposed
method preprocesses various types of data from heterogeneous security machines to
provide a robust detection model for the actual environment, while also reducing the
number of false alerts. This model not only detects abnormal situations but also assists in
identifying alerts that require intensive analysis. Therefore, any SoC can detect and respond
to incidents in a timely manner based on attacks by drastically reducing the immense
volume of alerts. Moreover, we verified that this method is capable of identifying the types
of abnormal situations.
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