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Abstract: The increasing penetration of power electronics, such as grid-connected inverters and active
loads may cause power quality issues, which reduce the sensitivity of monitoring and control systems
due to measurement noises. This article presents an optimal singular value decomposition (SVD)
filtering method for grid-connected inverters to improve sampling accuracy against measurement
noises. First, the principle of this proposed method is based on the Hankel matrix theory, and then
the implementation process is explained, during which the relationship between the Hankel matrix
dimension and noise reduction is discussed. Furthermore, the optimal singular value is analyzed
and proposed to determine the reconstruction order. Then, the comparative analysis of the proposed
optimal SVD filtering method and difference spectrum method is given to explain the optimal
reconstruction order. Finally, simulation verifications are implemented to validate the effectiveness
of the proposed filtering method, considering the Hankel matrix dimension, reconstruction order,
and different signal–noise ratio (SNR). The verification results show that the proposed optimal SVD
filtering method can accurately identify the sampling current of grid-connected inverters, even
if severe harmonic noises and oscillation happen. The proposed method can reduce the effects of
harmonic disturbance on measurement accuracy and control performance of grid-connected inverters,
which can improve the robustness of grid-connected inverters.

Keywords: singular value decomposition (SVD); grid-connected inverter; reconstruction order;
oscillation; harmonic disturbance; measurement noises

1. Introduction

The increasing penetration of power electronic converters in renewable energy systems,
such as wind power, electric vehicles, active loads, etc., poses important challenges in
power quality, which further cause electromagnetic interference [1], harmonics, and inter-
harmonics [2–6]. Also, harmonic oscillation phenomena can be caused due to the interaction
of grid-connected inverters and time-varying grid impedance [7–10], etc. The power quality
issue and oscillation issue may mitigate the accuracy of sampling and detection systems so
that the performance of control systems is deteriorated [11,12]. The analysis in [13] shows
that harmonics and inter-harmonics significantly reduce the sensitivity of monitoring
systems and affect signal collection due to unexpected noises.

In grid-connected inverters of renewable energy system, noises from harmonics and inter-
harmonics can cause false readings and misinterpretations, which is difficult to accurately
analyze and interpret the information for control decision making and system management.
To address this challenge, significant efforts were made. For example, a sliding mode control
strategy was proposed in [14], which is further improved to handle the harmonic distortions
caused by uncontrolled rectifiers in [15]. And the system’s nonlinear modelling is simplified by
using harmonic analysis. Given these complexities, Figure 1 shows the diagram of harmonic
and oscillation sources in power electronic-dominated renewable energy systems. It can be
seen that the harmonics and resonance can be caused by nonlinear loads, switching dynamics,
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active loads, etc. Furthermore, the data-driven operation and control of renewable energies,
such as big data and artificial intelligence, etc. are becoming an important trend, such as
energy management and predictive maintenance [16], which tend to rely on precise data
sampling. Hence, the ability to ensure reliable signal sampling and interpretation is critical [17].
The noise reduction in harmonic signals is of great significance to ensure the safe and reliable
operation of renewable energy systems [18–20].
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1.1. A Review of SVD-Based Noise Detection and Suppression Methods

In modern electrical power systems, noise detection methods were previously pro-
posed [21–32]. Singular value decomposition (SVD)-based methods were important solu-
tions to realize noise detection and reduction [21]. In [22], singular spectrum analysis was
employed to analyze the wind power series, which are decomposed into harmonic series
and noise series. In [23], the SVD approach was used to selectively isolate characteristic
parameters from a low-frequency voltage signal in electrical vehicles to obtain battery incon-
sistency data. In [24], singular value decomposition was adopted to remove narrowband
interference in online partial discharge signals. A fault location method for MMC-HVDC
system was developed in [25], which used a dichotomizing recursion SVD to pinpoint
the arrival times of active pulses to determine the fault location in a modular multilevel
converter high voltage direct current (MMC-HVDC) system. In [26], the SVD method was
proposed to evaluate the dynamic virtual impedance on the virtual synchronous machine-
based grid-connected inverter. In [27], high-impedance faults occurring on distribution
lines were analyzed and detected by SVD. The aforementioned mathematic methods allow
for the decomposition of a dataset into singular vectors and singular values, which can be
used to effectively differentiate the signal and the noise components. The primary strength
of SVD relies on its ability to identify and isolate the dominant patterns within the data,
which are usually associated with the actual signal, while minimizing the less significant
components attributed to noise [22,23].

The key problems in SVD are the selection of the Hankel matrix dimension and
the determination of reconstruction order. In [28], it was proven that a singular value
decomposition of a sample Hankel matrix can deal with the original signal as a linear
superposition of a series of components. In [29], the difference spectrum was introduced to
determine the sudden changes in singular values, allowing for the automatic selection of
effective singular values. The analysis in [29] showed that selecting the appropriate number
of rows and columns of the Hankel matrix can maximize noise removal. To determine the
optimal reconstruction order, intensive studies were performed. In [30], a singular value
ratio is used to determine the reconstruction order. Singular entropy was used to determine
the truncation order in [31]. In [32], it was proved that the rank of the Hankel matrix is twice
the number of effective frequency components, which provides theoretical guidance for
the accuracy of the order determination method. Under the condition that the amplitude
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difference in effective frequency components is too large, or the signal-to-noise ratio is low,
the order determination results given by the existing methods were not consistent with the
theoretical values. On this basis, fine tuning by manual order determination can realize
satisfactory noise reduction performance. However, how to determine the reconstruction
order in establishing a Hankel matrix should be further addressed.

1.2. New Contributions in This Work

Although the singular value noise reduction technique based on the Hankel matrix was
widely used in many fields of engineering, the dimensional structure and reconstruction
order of the Hankel matrix can directly affect the noise reduction performance. Therefore,
this article presents a new optimal SVD filtering method to reduce harmonic noise under
background noises and systematically analyze effects of the dimensional structure and
reconstruction order of the Hankel matrix, which is further applied in sampling noise
filtering of grid-connected inverters against background harmonics. To compare with the
previous work as listed in Table 1, the main contributions of this work are clarified as
the following: (1) An innovative SVD filtering method is proposed to reduce harmonic
noises, where the Hankel matrix construction method in the SVD process is proposed to
select the optimal matrix dimension. (2) A new method to determine the reconstruction
order is proposed. The proposed method can accurately identify the sampling current of
a grid-connected inverter system, even if the severe harmonic noises and high-frequency
oscillation phenomenon happen.

Table 1. A comprehensive comparison between previous research and this work.

Reference Adopted SVD Filtering Method Applied Object Effectiveness

[26] SVD with Hankel matrix Signal processing and noise
reduction in vibration signals

Highly effective in signal
decomposition, noise reduction, and
singularity detection compared to
wavelet transform

[27] SVD with difference spectrum Fault diagnosis in mechanical
systems, specifically headstock

Highly effective in isolating
fault-induced modulation features
and noise reduction

[28] SVD with singular value ratio
spectrum

Extraction of fetal ECG from
maternal ECG signal

Highly effective in separating
maternal and fetal ECG components
in real-time applications, despite
noise interference

[29] SVD with singular entropy theory Noise reduction in structural
vibration signals

Highly effective in improving
signal-to-noise ratio

[30] SVD with amplitude filtering
characteristics

Fault diagnosis in rotating
machinery, focusing on rotor
vibrations

Highly effective in extracting key
signal components and filtering noise,
with zero-phase shift and high
accuracy in identifying faults

This work
Optimal SVD filtering with Hankel
matrix and reconstruction order
optimization

Grid-connected inverters with
harmonic disturbances

Highly effective in reducing
harmonic and oscillation noise,
improving signal sampling accuracy
under severe noise conditions

The rest of this article is organized as follows: In Section 2, the principle of singular
value filtering is introduced. In Section 3, the principle and implementation process of the
optimal SVD filtering method are proposed. In Section 4, a case study is given to validate
the proposed optimal SVD filtering method, where the effectiveness of the proposed
method is analyzed. The proposed method can reduce the effects of harmonic disturbance
on measurement accuracy and further improve the robustness of grid-connected inverters.
Finally, the conclusion is given in Section 5.
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2. The Principle of Singular Value Filtering

The singular value filter, an effective filtering method, operates by mapping the original
data onto a new set of bases that are determined from principal component analysis using
singular value decomposition. Figure 2 shows the diagram of a singular value decomposition
principle of a matrix, which is a factorization of any real or complex matrix A into a rotation,
followed by a rescaling followed by another rotation. As illustrated in Figure 2, V* first rotates
or reflects the input space. Then, Σ stretches or compresses the space along orthogonal axes.
And U performs another rotation or reflection on the result, completing the SVD process.
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If a sampled signal x̃(n) is a linear superposition of p harmonic and inter-harmonic
signals, it can be represented as (1)

x̃(n) =
p

∑
i=1

ai cos(2π finTs + φi) (1)

where ai, fi, φi, respectively, represent the amplitude, frequency, and initial phase of the ith
signal component, and Ts represent the sampling interval. Assuming that the noise e(n) is
white noise, the mean and variance are given as (2)

E[e(n)] = 0, D[e(n)] = σ2 (2)

Simultaneously, e(n) is not correlated with the signal x̃(n), and e(n) are not correlated as (3)

E(e(n1)e(n2)) =

{
0, n1 ̸= n2
σ2, n1 = n2

(3)

Then, the model for collecting harmonic and inter-harmonic signals x(n) under noise
background can be represented as (4) from (1)

x(n) = x̃(n) + e(n) =
p

∑
i=1

ai cos(2π finTs + φi) + e(n) (4)

The first step of the singular value filtering method is to construct the Hankel matrix.
Assuming that the dimension of signal x(n) is N, the Hankel matrix H with m row and l
column is constructed using all the sample values [x0, x1, · · · xN−1] as (5)

H = H̃ + E =


x0 x1 · · · xl−1
x1 x2 · · · xl
...

...
...

xm−1 xm · · · xN−1


m∗l

(5)
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where H̃ is the Hankel matrix constructed for effective harmonic and inter-harmonic signals
x̃(n), E is the Hankel matrix constructed for noise e(n), and m = N − l + 1.

Then, a singular value decomposition is performed for the matrix H constructed from
the signal x(n) as (6).

H = H̃ + E = UΣVT = U



σ1
. . . 0

στ

στ+1

0
. . .

σl
0 0


VT (6)

where U and V are orthogonal matrices of m×m, l× l, respectively, and Σ = [diag(σ1, σ2, · · ·σl); 0]
is a diagonal matrix composed of the singular values of the matrix. H introduces the concept
of subspace, assuming that the space Στ = diag(σ1, σ2, · · ·στ), where the first τ singular values
reside, corresponds to the signal subspace, and the space Σe = diag(στ+1, στ+2, · · ·σl), where
the remaining singular values reside, corresponds to the noise subspace. Then, the matrix Ĥ is
reconstructed with signal subspace Στ.

Ĥ = UτΣτVT
τ (7)

where Uτ is the first τ column of matrix U, and Vτ is the first τ column of matrix V. The
effective signal x̃(n) without noises can be extracted by (7).

3. The Proposed Optimal Singular Value Filtering Method
3.1. The Principle of Optimal SVD Filtering Method

According to the SVD singular value decomposition principle in Figure 2 and (7),
the reconstruction matrix Ĥ is the best approximation of the Hankel matrix H̃ of the
effective signal x̃(n), which depends on how to construct the Hankel matrix and determine
the reconstruction order τ based on the Hankel matrix. For the given N samples x(n),
this work aims to select the optimal Hankel matrix dimension so that the singular value
decomposition of sample matrix H in this dimension can minimize the influence of noise
on the singular value of signal subspace. Then, the optimal reconstruction order τ is
determined, so that the matrix H can realize the accurate separation of signal subspace and
noise subspace according to the parameter.

The m × l Hankel matrix H̃ constructed by using the effective signal x̃(n) is represented as (8)

H̃ =


x̃0 x̃1 · · · x̃l−1
x̃1 x̃2 · · · x̃l
...

...
...

x̃m−1 x̃m · · · x̃N−1

 = ŨΣ̃Ṽ (8)

According to [30], the relationship between the rank of matrix H̃ and the number of
single frequency signals p satisfies (9), when the number of columns l of matrix H̃ is higher
than twice p, that is, l ≥ 2p.

R(H̃) = 2p (9)

A set (A =
{

H̃|l ≥ 2p
}

) is built that contains all matrices H̃ with columns satisfying
l ≥ 2p form, and the rank of all matrices in set A is 2p. The SVD of all matrices is constrained
to the first 2p singular values in the matrix Σ̃, which provides a theoretical basis for the
dimension optimization of the Hankel matrix.

For the N-point effective signal sequence [x̃0, x̃1, · · · , x̃N−1], it may be assumed that
N is odd (when N is even, the endpoints are discarded), and the dimension of the Hankel



Electronics 2024, 13, 4087 6 of 15

matrix H̃ is m × l. When m ≥ l, since m = N − l + 1, the number of columns of the matrix
in set A should meet (10)

2p ≤ l ≤ (N + 1)/2 (10)

when m ≤ l, the row number of the new matrix after transposing the matrix H̃ is higher
than the number of columns, and its singular values are unchanged so that it can be
equivalent to the case of m ≥ l.

The key problem to be solved by the Hankel matrix dimensional structure is to find the
matrix H̃opt with the best noise reduction performance in set A, so that the effective signal
has maximum energy representation, while the noise has minimum energy representation.

For this purpose, the matrix H̃ composed of x̃(n) containing p single frequency signals
is represented in a column vector form as (11).

H̃ =
[
x̃0 x̃1 · · · x̃l−1

]
(11)

where x̃i =
[
x̃i x̃i+1 · · · x̃i+m−1

]T (0 ≤ i ≤ l − 1) represents a column vector consisting
of m consecutive sampling points starting from the i sample point.

Define the singular value of matrix H ˜ as (σ̃1, σ̃2, · · · , σ̃l), then (σ̃2
1 , σ̃2

2 , · · · , σ̃2
l ) is

the eigenvalue of H̃
T

H̃, and the relationship between the eigenvalue and the trace can be
obtained as (12)

tr(H̃
T

H̃) = σ̃2
1 + σ̃2

2 + · · ·+ σ̃2
l (12)

It can be seen from (9) that only the first 2p terms of the singular value of matrix H̃ are
non-zero so that Equation (12) is rewritten as (13)

tr(H̃
T

H̃) = σ̃2
1 + σ̃2

2 + · · ·+ σ̃2
2p (13)

From (11), tr
(

H̃
T

H̃
)

can be represented as (14)

tr(H̃
T

H̃) = tr




x̃T
0

x̃T
1

x̃T
l−1

[ x̃0 x̃1 · · · x̃l−1
]


= tr




< x̃0, x̃0 > < x̃0, x̃1 > · · · < x̃0, x̃l−1 >
< x̃1, x̃0 > < x̃1, x̃1 > · · · < x̃1, x̃l−1 >
...

...
. . .

...
< x̃l−1, x̃0 > < x̃l−1, x̃1 > · · · < x̃l−1, x̃l−1 >




=
l−1
∑

i=0
< x̃i, x̃i >

(14)

where < x̃i, x̃i >=
m−1
∑

j=0
x̃2

i+j−1 is the inner product of the column vector x̃i, representing the

energy of the signal of that vector.
It can be derived by combining (13) and (14) as (15)

σ̃2
1 + σ̃2

2 + · · ·+ σ̃2
2p =

l
∑

i=1
< x̃i, x̃i >

= x̂2
0 + 2x̂2

1 + · · ·+ (l − 1)x̂2
l−2

+l
(

x̂2
l−1 + x̂2

l + · · ·+ x̂2
N−l

)
+(l − 1)x̂2

N−l+1 + · · ·+ 2x̂2
N−2 + x̂2

N−1

(15)
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Therefore, tr
(

H̃
T

H̃
)

characterizes the sum of energies of l signals x̃i (0 ≤ i ≤ l − 1)

of length m, and the problem of solving the optimal matrix H̃opt is converted to solve the

trace maximization problem of matrix H̃
T

H̃ as (16)

max
l

(σ̃2
1 + σ̃2

2 + · · ·+ σ̃2
2p)

s.t 2p ≤ l ≤ (N + 1)/2
(16)

For the fixed number of sampling points N, in the interval 2p ≤ l ≤ (N + 1)/2,
σ̃2

1 + σ̃2
2 + · · ·+ σ̃2

2p increases monotonically with respect to l so that the dimensionality of

the optimal matrix H̃opt column can be represented as (17)

l = (N + 1)/2 (17)

The energy distribution of white noise e(n) under the condition of Equation (16)
is analyzed. The spectrum of white noise is full band equivalent distribution, and all
frequency components contribute the same degree to noise e(n). Therefore, all singular
values σei of the Hankel matrix constructed by noise e(n) are equal. When l = (N + 1)/2, l
is the maximum value satisfying the construction of the Hankel matrix, so each singular
value σei (0 ≤ i ≤ l − 1) is the minimum value, the noise is the minimum sum of squares
of the first 2p singular values, and the noise energy is reduced to the lowest value in the
reconstruction scale.

Therefore, when a Hankel matrix of size m × l is constructed with dimension l = (N + 1)/2,
the energy of signal x̃(n) is constrained to the first 2p singular values in Σ̃ matrix, while the energy
of noise e(n) at the first 2p singular values is reduced to the lowest value.

3.2. The Effects of Reconstruction Order

Determination of the reconstruction order is a critical step. In [27], a singular value
difference spectrum method is proposed to estimate the reconstruction order, which is
often smaller than the actual reconstruction order when the amplitude of the frequency
component has a certain difference.

On this basis, the singular threshold difference spectrum method is proposed by
using the characteristic of noise power attenuation of 3 dB with double the number of
sampling points, which is described as follows. For noise with a −10 db superposition of
signals containing two effective frequency components, 1000, 2000, 4000, and 8000 sample
points are, respectively, collected within the same interval length, and spectrum analysis is
performed as shown in Figure 3.
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This equation means that the average power of the noise can be decreased by 3 dB if 
the number of sampling points is doubled. Then, the amplitude of the frequency spectrum 
can be decreased by 1

2 . 
The analysis in [30] shows that if the amplitude of a certain frequency in the 

amplitude spectrum is larger, the corresponding two singular values will become higher, 
which will inevitably produce an obvious jump between the singular value of noise and 

0 100 200 300 400 500
Frequency

0

1

2

3

N=1000

0 500 1000
Frequency

0

1

2

3

4
N=2000

0 500 1000 1500 2000
Frequency

0

1

2

3

4
N=4000

0 1000 2000 3000 4000
Frequency

0

1

2

3

4
N=8000

Figure 3. Frequency (Hz) multiplication sampling amplitude characteristics.
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It can be seen from Figure 3 that, with the number increase in sampling points in a
fixed interval, the amplitude of the effective frequency component has a small fluctuation,
and the noise amplitude decreases significantly.

The amplitudes of N-point and 2N-point noise are (A1, A2, · · · , AN) and (B1, B2, · · · , B2N),
respectively. Through a statistical analysis of the total power of noise frequency points, it is
derived as (18)

N

∑
i=1

A2
i =

2N

∑
i=1

B2
i (18)

It shows that the total energy of noise in a fixed interval is constant. Assuming that
the average powers of N-point and 2N-point noise are PN and P2N , it can be derived as

PN =
N
∑

i=1
A2

i /N and P2N =
2N
∑

i=1
B2

i /2N. Therefore, it can be represented as (19)

P2N =
PN
2

(19)

This equation means that the average power of the noise can be decreased by 3 dB if
the number of sampling points is doubled. Then, the amplitude of the frequency spectrum
can be decreased by 1/

√
2.

The analysis in [30] shows that if the amplitude of a certain frequency in the amplitude
spectrum is larger, the corresponding two singular values will become higher, which will
inevitably produce an obvious jump between the singular value of noise and the singular
value of the active component, and the singular value of noise will become flatter. The
above results indicate the principle of the reconstruction order determination. In other
words, for a certain threshold, the sampling number is increased by a multiple of two until
the singular value of the noise is lower than the threshold value, and the singular value of
the effective frequency component is significantly higher than the threshold value.

The specific steps for reconstruction order determination for singular value decompo-
sition (SVD) are clarified as follows:

(1) Select the initial sample number N, and construct the sample matrix with the optimal
dimension l = (N + 1)/2:

H =


x0 x1 · · · x(N−1)/2
x1 x2 · · · x(N+1)/2
...

...
...

x(N−1)/2 x(N+1)/2 · · · xN−1

 (20)

(2) Perform singular value decomposition H = UΣVT for the sample matrix H in (20),
where the diagonal matrix Σ = diag(σ1, σ1, · · · σ(N+1)/2) is used to calculate the
singular value difference spectrum as (21)

ςi = σi − σi+1, 1 ≤ i ≤ (N − 1)/2 (21)

Given the threshold parameter ς, the set D =
{

ς l̂

∣∣ς l̂ > ς
}

containing spectral compo-
nents greater than ς is built. And the reconstruction order τ should satisfy (22)

τ = max{Index(ςi)}, ςi ∈ D (22)

where Index(ςi) means the subscript i of ςi; and max{Index(ςi)} means taking the
largest i value of all ςi ∈ D subscripts as the estimate of the reconstruction order τ.

(3) Then, increase the number of sample points to 2N, and repeat steps 1–3. If the obtained
reconstruction order τ changes, the number of sample points can be increased to 4N,
until the reconstruction order τ obtained by each calculation is constant.
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3.3. Filtering Error Analysis

To measure the noise reduction effect of singular value decomposition, this paper intro-
duces the overall relative error q as an evaluation index, which is normalized by solving the
total error energy of the filtered curve and the reference curve. It is represented as (23)

q =

N−1
∑

i=0
[x̂(i)− xc(i)]

2

N−1
∑

i=0
x2

c (i)
(23)

where x̂(i) is the filtered data, and xc(i) is ideal data.

4. Case Study

To validate the performance of the proposed SVD filtering method of grid-connected
inverters against harmonics and resonance, the case studies are implemented considering
different harmonics, oscillation, and noise strength. Figure 4 shows the diagram of the grid-
connected inverter system with the proposed SVD filtering method. In practical operation,
the sampled voltage and current of the inverter can be disturbed by sampling noises due to
background harmonics, sampling circuit ageing, high-frequency oscillation, etc.
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In this work, the grid-connected inverter in a wind turbine is adopted to exemplify
the proposed method. A two-level PWM converter with an L filter is applied in this
grid-connected wind turbine. Figure 4 shows the diagram of a grid-connected inverter
with the proposed SVD filtering method, where the current signals with harmonic and
oscillation information should be accurately collected and feedbacked to the control system
for harmonic and oscillation mitigation in practical operation.

4.1. Case I: Filtering Performance in Grid-Connected Inverters

In long-term operation, harmonic noise amplification caused by sampling errors or pa-
rameter perturbations may weaken control system performance of grid-connected inverters.
Especially under low-current operation, the sampling current is subject to harmonic noises
or resonance. Thus, the proposed method aims to accurately identify the current from mea-
surement noises and improve control system accuracy. In this case, the filtering performance
under a different dimension of the Hankel matrix is validated. The current of the grid-
connected inverter is disturbed with high-frequency sampling noises. The original current
waveform with harmonic noises can be modelled as x(t) = cos((2π ∗ 50)t + 60◦) + e(t),
the sampling frequency is fs = 100 kHz, the sampling number is N = 3999, and the SNR of
the case study is 0 dB. The sample sequence is constructed with dimensions l = 10, 100, 2000,
respectively. The filtering performance of the proposed method in different dimensions are
shown in Figure 5.
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Figure 5a shows a sampled current waveform before filtering, where the sampled
current with noisy signals and ideal current are marked in green and red, respectively.
Figure 5b–d shows the current of the grid-connected inverter by applying the proposed
singular value filtering method with a sampling frequency of 100 kHz, where the filtering
results of the Hankel matrix with different dimensions are shown. Under the same data
sampling points, the overall relative error q is 55.16%, 18.32%, and 2.51% when dimension l
is selected as 10, 100, and 2000, respectively. It means that the component size of noise in
signal subspace can be suppressed as the increase in the Hankel matrix dimension. When
dimension l = (N + 1)/2 = 2000, the optimal filtering result is realized, where the blue
curve accurately matches the red curve.

To further validate the effectiveness of this proposed method in a grid-connected
inverter based on wide bandgap devices with a high switching frequency, the higher
sampling frequency fs = 400 kHz is given. Figure 5e shows a sampled current waveform
before filtering, where the sampled current with noisy signals and ideal current are marked
in green and red, respectively. Figure 5f–h shows the current of grid-connected inverters by
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applying the proposed singular value filtering method with sampling frequency 400 kHz,
where filtering results of the Hankel matrix with different dimensions are shown.

The verification results in Figure 5 show that the proposed method is applicable for
grid-connected inverters with a sampling frequency of 400 kHz.

4.2. Case II: The Analysis for Reconstruction Order

High-frequency oscillation issues of grid-connected inverters were reported in previ-
ous work [7–10]. The accurate sampling feedback of oscillations signals with high-frequency
oscillation information is important for a control system to mitigate the high-frequency
oscillation phenomena. This case aims to validate sampling capability of the proposed
method against harmonic noises. When the high-frequency oscillation happens, the sam-
pled current signal of the grid-connected inverter can be represented as (24).

x(t) = 10 cos((2π ∗ 50)t + 60◦)
+2 cos((2π ∗ 150)t + 45◦)
+2 cos((2π ∗ 1000)t + 30◦) + e(t)

(24)

The output current contains both integer multiple harmonics and inter-fractional har-
monics, where the sampling frequency is fs = 100 kHz with the sampling number N = 9999,
and the signal-to-noise ratio in case study is 0 dB. The Hankel matrix is constructed with the
sample sequence in dimension l = 5000, and the results of the singular value decomposition
and difference spectrum calculation are shown in Figure 6.
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Figure 6. The results about singular value decomposition and difference spectrum calculation.
(a) Singular value. (b) Singular value difference spectrum.

Figure 6 shows the calculation results of the first 25 singular values and their difference
spectrum. It can be seen that the singular values show the characteristic of flat attenuation
from the seventh serial number. Figure 6b shows the singular value difference spectrum
method, where the maximum spectrum peak occurs at the serial number 2. Thus, the
reconstruction order τ is given as two. Different from the difference spectrum method, the
proposed method as shown in Figure 6a derives a serial number, where all the spectrum
components at these serial numbers are higher than 100. Hence, the reconstruction order
τ can be defined as six. It can be seen that the theoretical reconstruction order τ is six
according to the relationship between frequency components and the rank of the Hankel
matrix. However, the result given by the singular value difference spectrum method is



Electronics 2024, 13, 4087 12 of 15

2-order. And the result given by the proposed method is consistent with the theoretical
value.

Figure 7 shows the current sampling results of grid-connected inverters with different
reconstruction order τ = 2 and τ = 6, respectively. Figure 7a shows the current sampling
results under a difference spectrum calculation, where the reconstruction order is calculated
as 2-order. It can be seen that the sampled current would be a sinusoidal waveform (blue
curve), where the original high-frequency oscillation information is completely missing.
It means that the sampling method under a difference spectrum calculation reduces the
accuracy of the practical current, which fails to implement high-frequency oscillation
detection and mitigation. Figure 7b shows the current sampling results under the proposed
SVD filtering method, where the reconstruction order is defined as six orders. The sampled
current (blue curve) accurately matches the practical current (red curve), where the high-
frequency oscillation information can be completely detected and further used to design
oscillation mitigation methods.
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Figure 7. The sampled current of grid-connected inverter with different reconstruction methods.
(a) The sampled current under difference spectrum calculation. (b) The sampled current under the
proposed SVD filtering method.

This case study shows that the proposed SVD filtering method is able to accurately
identify the inverter current with measurement noises even if a high-frequency oscillation
phenomenon happens. And the high-frequency oscillation information can be accurately
collected, which is important for oscillation suppression in a control system.

4.3. The Effect Analysis of Different Noise Strengths

To further analyze the effects of different noise strengths, this case study is imple-
mented, where the sinusoidal currents with different frequency and amplitudes are given.
The sampled current signal of a grid-connected inverter can be represented as (25)

x(t) = 2.1 cos((2π ∗ 50)t + 60◦)
+2.5 cos((2π ∗ 73)t + 45◦)
+1.3 cos((2π ∗ 83)t + 30◦) + e(t)

(25)

The SNRs in this case study are given as 20 dB, 10 dB, 0 dB, and −10 dB, respectively.
The sample sequence is constructed with dimension l = 5000 to establish the Hankel matrix.
Figure 8 shows the sampled current under the proposed SVD filtering method in this work.
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Figure 8. The sampled current with different SNRs under the proposed SVD filtering method. (a) SNR
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It can be seen from Figure 8 that with the reduction in signal-to-noise ratio, the practical
current signal (red curve) can still be accurately collected from different noises, even if the
extremely harsh noises with a SNR of −10 dB occurs (black curve). Hence, the proposed
method exhibits a satisfied filtering performance under different noise strengths.

4.4. The Performance Analysis of Grid-Connected Inverters with Current Variation

In practical operation, the current of a grid-connected inverter can be changed accord-
ing to different nature features such as wind speed or solar irradiance. Figure 9 shows the
current of a grid-connected inverter considering current variation, where the measurement
noises deteriorate the signal sampling quality. It can be seen that the proposed SVD filter-
ing method can accurately identify the sampled current (green curve) even if the inverter
current is changed, where the current is decreased at 0.033 s and increased at 0.066 s to
analyze the dynamic performance. This case validates the effectiveness of the proposed
method under current variation.
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Therefore, the above case studies show that the proposed SVD filtering method can
accurately identify current signals in the presence of harmonic noises. In particular, the
high-frequency oscillation information can be accurately captured in the presence of a grid
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oscillation phenomenon, which is essential for the control system to damp the oscillation
phenomenon and improve the robustness of grid-connected inverters in renewable energy
generators. The availability of this proposed method in a large-scale wind power plant
with multiple paralleled inverters will be further investigated in future work.

5. Conclusions

This article presents an optimal singular value decomposition (SVD) filtering method
for grid-connected inverters to improve sampling accuracy in the presence of measurement
noises. The principle of this method is first proposed based on the Hankel matrix theory.
Furthermore, the effects of the matrix dimension and reconstruction order on SVD filtering
results are analyzed. The case studies are given to validate the effectiveness of the proposed
method. Also, the comparative analysis of the proposed optimal SVD filtering method
and difference spectrum method is given to explain the optimal reconstruction order.
This analysis shows that the proposed filtering method can accurately reconstruct the
inverter current, especially high-frequency oscillation information, which can be identified
in the presence of harmonic oscillation. Compared with the traditional difference spectrum
method, a more accurate reconstruction order can be obtained by the proposed SVD filtering
method, which can accurately reconstruct practical current signals of a grid-connected
inverter in the presence of high-frequency oscillation, current variation, etc. The proposed
optimal SVD filtering method can improve signal sampling accuracy of grid-connected
inverters against harmonic disturbances, which is important for control system design and
stability enhancement.
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