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Abstract: Assessing the quality of arguments is both valuable and challenging. Humans often find
that making pairwise comparisons between a target argument and several reference arguments
facilitates a more precise judgment of the target argument’s quality. Inspired by this, we propose
a comparison-based framework for argument quality assessments (CompAQA), which scores the
quality of an argument through multiple pairwise comparisons. Additionally, we introduce an argu-
ment order-based data augmentation strategy to enhance CompAQA’s relative quality comparison
ability. By introducing multiple reference arguments for pairwise comparisons, CompAQA improves
the objectivity and precision of argument quality assessments. Another advantage of CompAQA is
its ability to integrate both pairwise argument quality classification and argument quality ranking
tasks into a unified framework, distinguishing it from existing methods. We conduct extensive
experiments using various pre-trained encoder-only models. Our experiments involve two argument
quality ranking datasets (IBM-ArgQ-5.3kArgs and IBM-Rank-30k) and one pairwise argument quality
classification dataset (IBM-ArgQ-9.1kPairs). Overall, CompAQA significantly outperforms several
strong baselines. Specifically, when using the RoBERTa model as a backbone, CompAQA outperforms
the previous best method on the IBM-Rank-30k dataset, improving Pearson correlation by 0.0203 and
Spearman correlation by 0.0148. On the IBM-ArgQ-5.3kArgs dataset, it shows improvements of 0.0069
in Pearson correlation and 0.0208 in Spearman correlation. Furthermore, CompAQA demonstrates a
4.71% increase in accuracy over the baseline method on the IBM-ArgQ-9.1kPairs dataset. We also
show that CompAQA can be effectively applied to fine-tune larger decoder-only pre-trained models,
such as Llama.

Keywords: argument analysis; argument quality assessment; comparison

1. Introduction

Recent years have witnessed significant and rapid advancements in computational
argumentation [1–3], where various tasks have been investigated, such as argument min-
ing [4–6], argumentative relation classification [7–9], and argument generation [10–12],
among others. As a critical facet in the field of computational argumentation, argument
quality assessment has received increasing attention [13–15]. Argument quality plays a cru-
cial role in many downstream applications, such as argumentative writing support [16,17],
argument search [18], automatic essay scoring [19,20], and debate systems [21,22].

Some existing studies focus on grading arguments on various quality dimensions [23,24],
while others aim to assess the overall quality of arguments [13,21]. Assessing the overall
argument quality is very useful in real-world applications because it directly tells a debater
which argument is better to use. This line of research primarily focuses on two types of
tasks: pairwise argument quality classification and argument quality ranking. The former
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compares the quality of a pair of arguments [21], while the latter assigns quality scores
to an individual argument [13]. Table 1 shows examples of both tasks. For the pairwise
argument quality classification task, the input consists of two arguments on the same topic,
while the argument quality ranking task takes a single argument as input. In the pairwise
argument quality classification example in Table 1, “Argument 2” is deemed higher quality
than “Argument 1” because it provides concrete evidence rather than simply stating a claim.
The argument quality ranking example in Table 1 demonstrates a high-quality argument
that articulates specific evidence and reasoning processes. As a result, it received a high
score of 0.80 in the IBM-ArgQ-5.3kArgs dataset [21].

Table 1. Examples of the pairwise argument quality classification task and the argument quality
ranking task from the IBM-ArgQ-9.1kPairs and IBM-ArgQ-5.3kArgs datasets [21]. In these examples,
the topic of all input arguments is “Gambling should be banned”. The pairwise argument quality
classification task is a binary classification problem, aiming to predict whether the first argument
(binary label: 1) or the second (binary label: 0) is of higher quality. In contrast, the argument quality
ranking task is a regression problem, aimed at assigning a quality score in the range of [0, 1] to a
single argument, where higher scores indicate better quality.

Task Input Output

Pairwise Argument
Quality Classification

Argument 1 : We should ban gambling because there is no benefit to
allowing it.

Binary Label: 0Argument 2: We should ban gambling because it preys on people
with addictions to make a few wealthy casino owners
richer.

Argument Quality
Ranking

Gambling doesn’t benefit society in that it doesn’t
produce anything in the way farms provide food or
engineers create new technologies or artists create
beauty.

Quality Score: 0.80

Previous methods typically address either the pairwise argument quality classification
or the argument quality ranking task independently [13,21,25], overlooking their inherent
connection and potential synergy. However, directly scoring the quality of an argument is
a highly subjective task, and it is difficult to provide an objective score without reference
standards. Intuitively, for a given argument, conducting pairwise quality comparisons
with multiple other arguments can lead to a more accurate quality score determination, as
these comparisons provide relative benchmarks and reduce subjectivity. In fact, in some
studies [25,26], the annotation of the argument quality ranking task, namely the quality
score of each argument, is achieved through pairwise annotation. Therefore, we contend
that pairwise comparisons between arguments should be considered a crucial factor when
developing methods for the argument quality ranking task.

For this purpose, in this paper, we introduce a comparison-based argument quality
assessment framework, CompAQA. This framework ranks argument quality by performing
multiple pairwise comparisons and is naturally applicable to the pairwise argument quality
classification task. To predict the quality score of an input argument, CompAQA first
selects a set of reference arguments from the training set. Then, multiple pairwise argument
quality comparisons are conducted to predict the argument quality score. Additionally,
we propose an argument order-based data augmentation strategy to enhance the pairwise
comparison results. This strategy aims to mitigate the biases introduced by the input order
of two arguments. CompAQA unifies the pairwise argument quality classification and
argument quality ranking tasks within a single framework, which is a significant advantage
over previous approaches.

Based on pre-trained encoder-only models (BERT [27], RoBERTa [28], and DeBERTa [29]),
we evaluate CompAQA on three datasets: one for the pairwise argument quality classi-
fication task (IBM-ArgQ-9.1kPairs [21]) and two for the argument quality ranking task
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(IBM-ArgQ-5.3kArgs [21] and IBM-Rank-30k [13]). The results demonstrate that our
method significantly outperforms strong baselines across all datasets. Using RoBERTa
as the base model, CompAQA surpasses the previous state-of-the-art approach on the
IBM-Rank-30k dataset, with improvements of 0.0203 and 0.0148 in Pearson and Spearman
correlations, respectively. For the IBM-ArgQ-5.3kArgs dataset, CompAQA exhibits en-
hanced performance, increasing the Pearson correlation by 0.0069 and Spearman correlation
by 0.0208. Additionally, when evaluated on the IBM-ArgQ-9.1kPairs dataset, our model
achieves a significant 4.71% increase in accuracy compared to the baseline approach. We
further demonstrate the versatility of CompAQA by applying it to larger decoder-only pre-
trained models, such as Llama, achieving promising results. Additionally, we extend our
analysis to evaluate the performance of ChatGPT, a large language model, on the argument
quality ranking task. It turns out that the performance of ChatGPT with in-context learning
is inferior to that of the smaller fine-tuned models.

We summarize our contributions as follows:

• We introduce CompAQA, a novel comparison-based framework for argument quality
assessments, which is applicable to both the pairwise argument quality classification
task and the argument quality ranking task.

• CompAQA enhances objectivity and accuracy in argument quality ranking through
a systematic approach of leveraging multiple pairwise comparisons with carefully
selected reference arguments.

• Extensive evaluations across multiple datasets and model architectures validate the
superiority and versatility of CompAQA.

The remainder of this paper is structured as follows: Section 2 discusses related work.
Section 3 presents a comprehensive description of our proposed method, CompAQA.
Section 4 details our experimental setup, including the datasets, evaluation metrics, imple-
mentation details, and baseline methods. Section 5 presents a detailed discussion of the
experimental results. Finally, Section 6 concludes our study.

2. Related Work

Assessing the quality of arguments is a highly challenging task, and has long been
the subject of much research [30]. Some early work focuses on specific aspects of ar-
gument quality, such as relevance [31], semantic aspects [32], structure [33], and suffi-
ciency [17], etc. Drawing from argumentation theories [34,35], Wachsmuth et al. [23]
developed a comprehensive framework for evaluating argument quality, encompassing
three aspects: logic, rhetoric, and dialectic. Wachsmuth and Werner [24] further explored
the assessment of the intrinsic argument quality across 15 fine-grained dimensions. Follow-
ing Wachsmuth et al. [23], Lauscher et al. [36] proposed a theory-based argument quality
assessment corpus and explored approaches based on pre-trained models.

While evaluating arguments on various quality aspects is valuable, assessing the
overall argument quality proves more practical for real-world applications, as it provides
debaters with clear guidance on which arguments are most effective. Therefore, there
has been an increasing focus on developing corpora and resources for assessing the overall
quality of arguments. Persing and Ng [37] designed a corpus for assessing argument strength,
representing an early exploration of overall argument quality. Habernal and Gurevych [25]
studied the convincingness of arguments sourced from the Web. Toledo et al. [21] collected
high-quality, human-written arguments and annotated them regarding both individual (IBM-
ArgQ-5.3kArgs) and pairwise (IBM-ArgQ-9.1kPairs) argument quality. Gretz et al. [13] con-
structed a large-scale argument quality ranking dataset, IBM-Rank-30k, comprising over 30k
arguments, each annotated with a quality score. Gienapp et al. [26] presented an argument
quality annotation framework that can efficiently convert pairwise judgments into trustworthy
quality scores. Skitalinskaya et al. [38] proposed a claim quality assessment dataset based on
the revision history of online debate websites. Joshi et al. [15] not only annotated argument
quality but also provided an analysis of each argument, explaining the rationale behind its
perceived veracity.
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With recent advances in pre-training techniques, an increasing number of meth-
ods based on pre-trained models have been proposed. Toledo et al. [21] presented an
early attempt at fine-tuning the pre-trained BERT model to assess argument quality.
Marro et al. [14] designed a model based on graph embeddings, incorporating both tex-
tual features and argument structure features. Favreau et al. [39] explored a series
of BERT-based ranking methods for evaluating argument quality, employing various
loss functions including point-wise and list-wise losses. Wang et al. [40] proposed a
model based on supervised contrastive learning to capture the complex interplay between
arguments. They also incorporated discourse relation knowledge to enhance argument
quality assessments. In addition to the aforementioned work directly assessing argument
quality, some studies explored this topic from other perspectives. Falk and Lapesa [41]
utilized adapter-based methods to examine the relationship among different aspects of
argument quality. Fromm et al. [42] investigated the connections between argument
quality assessment and other argument mining tasks, such as argument identification
and evidence detection.

Among the aforementioned methods, the works most closely related to ours are those
of Toledo et al. [21], Favreau et al. [39], and Wang et al. [40], as they share the same task
objective and utilize identical datasets. Toledo et al. [21] employed a basic fine-tuning
approach with BERT, without considering comparisons between arguments or any shared
references. Although Favreau et al. [39] and Wang et al. [40] attempted to address a com-
parison of arguments through ranking and contrastive learning loss functions, respectively,
their approach to achieving this goal remained implicit, relying solely on loss functions.
Consequently, the models may not acquire a sufficient ability to compare argument quality
effectively. In contrast to these works, our proposed method achieves explicit argument
quality comparisons by directly encoding pairs of arguments together using a pre-trained
model. This approach enables our method to better construct argument quality compar-
isons, thereby more accurately predicting quality scores. Moreover, our method can be
applied to solve the pairwise argument quality classification task, a capability that previous
methods lack.

3. Method

We introduce CompAQA, a comparison-based framework designed for evaluating
argument quality. The architecture of CompAQA is illustrated in Figure 1. To predict
the quality score of a given target argument, CompAQA first selects several reference
arguments from the training set to form multiple comparison pairs. Next, a pairwise
comparison module evaluates each argument pair to analyze the relative quality between
the target argument and each reference. Through joint encoding of the target and reference
arguments using pre-trained models, the pairwise comparison module can directly cap-
ture complex semantic interactions between the two arguments. This enables an explicit
modeling of their relative quality. As a result, CompAQA can predict the quality score if
each target argument more accurately by considering multiple reference arguments. To fur-
ther improve the robustness of CompAQA, the pairwise comparison module is enhanced
through an argument order-based data augmentation strategy, which mitigates potential
biases stemming from the input order of the two arguments. Moreover, compared to
previous approaches [21,39,40], our method offers a notable advantage by integrating both
pairwise argument quality classification and argument quality ranking tasks into a single,
unified framework.
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Figure 1. The architecture of CompAQA. For the sake of simplicity, we omit the topic corresponding
to each argument. Here, we assume that the quality of the “Target Argument at” is superior to that of
the “Reference Argument ar

i ”.

3.1. Problem Definition

As shown in Table 1, for the argument quality ranking task, the input is a single
argument at with topic tt, and the output is a quality score ys ∈ [0, 1], where a higher score
indicates a better quality of at. For the pairwise argument quality classification task, the
input consists of two arguments, a1 and a2, along with their corresponding topics t1 and t2.
The output is a binary label yc ∈ {0, 1}, where 1 and 0, respectively, indicate whether a1 or
a2 is of better quality.

In the following sections, we mainly describe how our proposed CompAQA addresses
the argument quality ranking task. The pairwise comparison module of CompAQA can be
directly used to solve the pairwise argument quality classification task.

3.2. Constructing Comparison Pairs

For the input target argument at, CompAQA first selects m reference arguments
{ar

1, ar
2, . . . , ar

m} from the training set for subsequent comparisons. Intuitively, the quality
scores of reference arguments should be uniformly distributed across the valid score range.
This distribution would better reflect the scoring criteria, clearly distinguishing between
low-quality and high-quality arguments. Therefore, we designed a sampling method
that can select reference arguments from the training set with scores that are uniformly
distributed across the quality spectrum.

Specifically, we first determine m sampling ranges. For the i-th reference argument to
be sampled, its corresponding sampling range ϵi is as follows:

ϵi = [µi − l, µi + l], (1)

µi =
1.0

m + 1
· i. (2)

where i ∈ {1, 2, . . . , m}, l is a hyperparameter used to control the size of the range. To avoid
overlap between different ranges, it must be strictly ensured that l < 1.0

m+1 /2. The impact of
the hyperparameters m and l is discussed in detail in Section 5.4. For instance, if we set
m = 3 and l = 0.05, then µ1 = 0.25, µ2 = 0.50, and µ3 = 0.75. The three intervals would
be ϵ1 = [0.20, 0.30], ϵ2 = [0.45, 0.55], and ϵ3 = [0.70, 0.80], representing the score ranges for
low-, medium-, and high-quality arguments, respectively.

Once the m sampling ranges are determined, we randomly sample one reference
argument from each range, thereby obtaining m reference arguments. Importantly, these m
reference arguments remain constant throughout the entire training and inference process.
In other words, all input target arguments are evaluated through comparison with this
fixed set of m reference arguments. This approach ensures consistency in the training



Electronics 2024, 13, 4088 6 of 15

and inference processes, and allows for standardized comparisons across different target
arguments.

The two-step process of first determining m sampling intervals and then selecting
arguments from each interval ensures that the quality scores of the sampled reference argu-
ments are distributed as uniformly as possible. Consequently, this approach better reflects
the standards for argument quality evaluation, enabling a more accurate determination of
the target argument’s quality.

After obtaining m reference arguments {ar
1, ar

2, . . . , ar
m}, we pair each with the target

argument at to form m comparison argument pairs {(at, ar
1), (at, ar

2), . . . , (at, ar
m)}. In the

training phase, we determine the binary classification labels {yc,1, yc,2, . . . , yc,m} for each
argument pair based on the ground-truth quality scores of the two arguments. Here, the
ground-truth quality score refers to the manually annotated quality score provided in the
training dataset. For instance, for an argument pair (at, ar

i ), if the ground-truth quality
score of at is higher than or equal to the quality score of ar

i , then its binary classification
label is 1; otherwise, it is 0.

3.3. Pairwise Comparison Module

By feeding each of the m comparison argument pairs into the pairwise comparison
module, we can derive m predicted quality scores for the target argument at, each from the
perspective of a different reference argument.

3.3.1. Text Encoding

For a pair of input arguments (at, ar
i ), the purpose of text encoding is twofold. First,

it aims to obtain an overall vector representation p for this pair. Second, it generates
individual vector representations at and ar

i for each argument. Subsequently, p will be
utilized for pairwise argument quality classification, while at and ar

i will be used to predict
individual quality scores for each argument.

Specifically, for pre-trained encoder-only models like BERT [27], we formalize the pair
(at, ar

i ) as the following sequence:

S = “ [CLS] at | tt [SEP] ar
i | tr

i [SEP] ”. (3)

where tr
i and tt is the topic of ar

i and at. S is then fed into a pre-trained model to encode
each token as a contextual embedding vector. Here, we use the embedding of “[CLS]” as
the argument pair representation p. Then, we perform max pooling on the embeddings
of all tokens in “at | tt” and “ar

i | tr
i ” to capture the most salient features, resulting in the

representations at and ar
i for the first and second arguments, respectively.

Unlike previous methods [39,40], which encode arguments separately, our approach
encodes the target argument and reference argument together through a pre-trained model.
This joint encoding enables the better capture of semantic interactions between the two
arguments, potentially leading to more nuanced quality comparisons.

3.3.2. Pairwise Classification

During training, we classify each argument pair (at, ar
i ) with a binary classification

label yc,i. This classification task aims to strengthen the pairwise comparison module’s
understanding of the relative quality between two arguments. Intuitively, the more accu-
rately the model captures relative quality differences, the more precise its predictions of
absolute quality scores become. Concretely, the argument pair representation p is utilized
for predicting yc,i via a binary classifier fp(·). Subsequently, we compute the cross-entropy
loss Lp for pairwise argument quality classification:

Lp = −[yc,i log( fp(p)) + (1 − yc,i) log(1 − fp(p))]. (4)
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3.3.3. Quality Score Prediction

Here, we predict the quality scores for both the target argument at and the reference
argument ar

i in each input pair. To be specific, two regressors fs1(·) and fs2(·) are used to
individually predict the quality scores of the two arguments, and the mean absolute error
(MAE) loss is employed for optimization:

ŷt
s = fs1(at), (5)

ŷr
s,i = fs2(ar

i ), (6)

Ls =
1
2
(
|yt

s − ŷst|+ |yr
s,i − ŷr

s,i|
)
. (7)

where yt
s and yr

s,i represent the ground-truth quality scores of the target and reference
arguments, while ŷt

s and ŷr
s,i are their predicted scores.

To further enhance the pairwise comparison module’s ability to learn the relative
quality of multiple arguments, we introduce a margin ranking loss:

Lm = max(0,−δ ∗ (ŷt
s − ŷr

s,i) + γ). (8)

where δ is 1 when yt
s is greater than or equal to yr

s,i, and -1 when yt
s is less than yr

s,i. γ is
the margin hyperparameter, which enforces a minimum difference between the predicted
scores of the compared arguments. By incorporating this margin ranking loss, we ensure
that the model not only predicts accurate scores but also maintains appropriate relative
rankings between arguments of varying quality.

The total loss L during training is the weighted sum of Lp, Ls, and Lm:

L = λpLp + λsLs + λmLm. (9)

where λp, λs, and λm are hyperparameters that control the relative importance of each loss
component.

In this manner, the pairwise comparison module can simultaneously learn to achieve
two objectives: (1) to compare the relative quality of two arguments through Lp and Lm,
and (2) to predict the specific scores of individual arguments through Ls.

3.4. Order-Based Data Augmentation

Pre-trained language models can produce biased encoding representations due to the
order of elements in input or output sequences [43–45]. In our framework, the same issue
arises. Specifically, when encoding the sequence S in Section 3.3 using pre-trained language
models, we consistently place the target argument before the reference argument. However,
there should not be such an order relation between the target and reference arguments.
Therefore, to alleviate this issue, we propose an argument order-based data augmentation
strategy.

Specifically, we create a new data sample S′ by swapping the order of “at | tt” and
“ar

i | tr
i ” in S:

S′ = “ [CLS] ar
i | tr

i [SEP] at | tt [SEP] ”. (10)

Consequently, the binary classification label of S′ is the opposite of S; that is, 0 be-
comes 1, and 1 becomes 0. This order-based data augmentation strategy reduces the
pairwise comparison module’s sensitivity to the order of arguments, thereby enhancing its
robustness.

3.5. Inference

Recall that we constructed m argument pairs for each target argument in Section 3.2.
With our order-based data augmentation strategy, each argument pair produces two distinct
data samples for the pairwise comparison module. As a result, during inference, each
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target argument receives 2m predicted scores. We take the average of all these scores as the
final predicted score for the target argument.

4. Experiments
4.1. Datasets

We evaluated CompAQA on three datasets, namely IBM-ArgQ-9.1kPairs, IBM-ArgQ-
5.3kArgs [21], and IBM-Rank-30k [13]. IBM-ArgQ-9.1kPairs is designed for pairwise
argument quality classification, while IBM-ArgQ-5.3kArgs and IBM-Rank-30k were created
for argument quality ranking. IBM-ArgQ-9.1kPairs and IBM-ArgQ-5.3kArgs both contain
arguments from 11 different topics, with each sample annotated by 15 to 17 annotators to
ensure data quality. IBM-Rank-30k is a larger dataset, comprising 30k arguments spanning
71 different topics. Following the recommendation of Gretz et al. [13], we used the weighted-
average score as the ground-truth quality score for each argument, as it demonstrated
higher agreement in its annotations. In both the IBM-Rank-30k and IBM-ArgQ-5.3kArgs
datasets, argument quality scores are normalized to the range [0, 1], with higher scores
indicating higher quality.

As there is no official data split for IBM-ArgQ-9.1kPairs and IBM-ArgQ-5.3kArgs,
we randomly selected seven topics as the training set. The remaining four topics were
evenly divided, with two topics assigned to the validation set and two to the test set. For
IBM-Rank-30k, we adhered to the original data split proposed by Gretz et al. [13], utilizing
data samples from 49, 7, and 15 topics for training, validation, and testing, respectively.

4.2. Evaluation Metrics

For the argument quality ranking task, we primarily used Pearson and Spearman cor-
relations as the evaluation metrics, following previous work [13,21]. Additionally, we incor-
porated Kendall’s Tau (TAU) and Normalized Discounted Cumulative Gain (NDCG@15),
in line with recent studies [40]. Given that argument quality ranking is essentially a regres-
sion task, we also reporedt the Mean Absolute Error (MAE) to provide a direct measure of
prediction accuracy. For the pairwise argument quality classification task, we used accuracy,
F1 score, and area under curve (AUC).

4.3. Implementation Details

Our main experiments were conducted based on BERT-base, RoBERTa-base, and DeBERTa-
base. We set the learning rate to 5 × 10−6 for pre-trained layers, while, for other layers,
the rate was 5 × 10−4 for BERT, 5 × 10−5 for RoBERTa, and 1 × 10−5 for DeBERTa. We
used a batch size of 32 and a warm-up ratio of 0.05, with all dropout rates consistently
set to 0.1. For the loss function weights, we set λp = 0.01, λs = 1.0, and λm = 1.0. The γ
parameter in Equation (8) was set to 0 for all experiments. For optimization, we employed
AdamW [46] with a weight decay of 0.1. The binary classifier fp(·) and regressors fs1(·)
and fs2(·) were implemented as single-layer Multi-Layer Perceptrons (MLPs). All of the
pre-trained language models were obtained from HuggingFace’s Transformers library [29].
To construct comparison pairs, we set m = 3 and l = 0.05. That is, we randomly sampled a
reference argument from each of the following three intervals: [0.20, 0.30], [0.45, 0.55], and
[0.70, 0.80]. We selected the best checkpoint based on the Pearson correlation score on
the validation set. All experiments were carried out five times and the mean scores were
reported.

For experiments involving ChatGPT, we utilized the gpt-3.5-turbo-instruct model from
OpenAI’s official API.

4.4. Compared Methods

For the argument quality ranking task, we compared our proposed model with the
following baselines:

• SVM BOW [13] is a support vector regression ranker with an RBF kernel and bag-of-
words features.
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• Bi-LSTM GloVe [13] is a Bi-LSTM model with self-attention mechanism, utilizing
GloVe embeddings [47].

• BERT, RoBERTa, and DeBERTa refer to pre-trained language models fine-tuned on
each dataset. The specific fine-tuning process followed the work of Gretz et al. [13]
and Toledo et al. [21]. After confirmation with the authors, we learned that Toledo
et al. [21] did not use a validation set in their BERT-based experiments on IBM-
ArgQ-9.1kPairs and IBM-ArgQ-5.3kArgs. Therefore, based on our own data split, we
replicated the BERT baseline on IBM-ArgQ-9.1kPairs and IBM-ArgQ-5.3kArgs using
the hyperparameters provided by Toledo et al. [21]. Note that the inputs of these
models all include the topic of each argument.

• TFR-BERT [39] is an ensemble method. It ensembles multiple BERT models fine-tuned
with various ranking losses.

• CI-BERT/RoBERTa/DeBERTa [40] enables contextual interaction via supervised con-
trastive learning and introduces external discourse knowledge via a Discourse-Aware
Graph Network [48].

• ChatGPT is evaluated using in-context learning in few-shot settings. Specifically, we
conducted tests on 0-shot, 2-shot, and 4-shot settings.

For the pairwise argument quality classification task, the following baselines were
compared:

• BERT/RoBERTa/DeBERTa-Pair-CLS directly applies pre-trained language models
for sentence pair classification. Notably, CompAQA distinguishes itself from these
baselines by incorporating an order-based data augmentation strategy.

5. Results and Discussions
5.1. Main Results

The main experimental results for the argument quality ranking task on IBM-ArgQ-
5.3kArgs and IBM-Rank-30k are shown in Table 2. First, we compared CompAQA with
baselines that do not incorporate any external knowledge. It is evident that CompAQA
outperforms the BERT/RoBERTa/DeBERTa baselines on both datasets in terms of the
Pearson, Spearman, and TAU metrics. Furthermore, we can see that although CI-BERT/CI-
RoBERTa integrates discourse knowledge through an additional graph network, CompAQA
still outperforms it in most metrics. For NDCG@15, CompAQA is either on par with or
slightly worse than the baselines. Since NDCG@15 focuses solely on the top 15 arguments
ranked by ground-truth quality score in the test set, we argue that this metric cannot provide
a comprehensive evaluation of models’ overall performance. Although CompAQA’s
predictions for the quality scores of the top 15 arguments are slightly inferior to some
baselines, all other metrics demonstrate its overall advantage across the entire test set.

Regarding ChatGPT’s performance, we observe that both the Pearson and Spearman
correlations decrease as the number of examples increases. Wang et al. [40] also observed
a similar phenomenon, where an increase in the number of examples leads to a decrease in
performance. Their explanation posits that as the number of examples grows, ChatGPT
tends to repeat the content of the examples from the prompt, resulting in diminished
performance. We observed a similar phenomenon, lending credence to this explanation.

CompAQA can be easily adapted for the pairwise argument quality classification task
by simply removing the quality score-related losses, namely Ls and Lm, while retaining
only the pairwise classification loss Lp. Here, we conducted experiments on the IBM-ArgQ-
9.1kPairs dataset, with the results presented in Table 3. Compared to the basic sentence pair
classification using pre-trained language models, CompAQA exhibits a significantly better
performance in terms of accuracy, F1 score, and AUC metrics. Furthermore, employing
DeBERTa as the base model enables CompAQA to achieve the best overall performance.
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Table 2. The main results for the argument quality ranking task. “Pear.” and “Spear.” are short
for “Pearson” and “Spearman”. The best scores for each type of pre-trained model are highlighted
in bold. † indicates results that we replicated using the same hyperparameters as in the original
studies. “MAE” stands for mean absolute error. “↓” indicates that a lower “MAE” value is better.
Additionally, we mainly compared our method against the SOTA baselines that we replicated (“CI-
BERT/RoBERTa”) using the official source code from Wang et al. [40]. For reference, we also list the
results reported in the original study by Wang et al. [40] at the bottom of the table.

Model
IBM-ArgQ-5.3kArgs IBM-Rank-30k

Pear. Spear. TAU MAE ↓ NDCG@15 Pear. Spear. TAU MAE ↓ NDCG@15

SVM BOW [13] - - - - - 0.3200 0.3100 - - -
Bi-LSTM GloVe [13] - - - - - 0.4400 0.4100 - - -

TFR-BERT [39] 0.3500 0.3400 0.2300 - 0.6600 0.5200 0.4700 0.3200 - 0.8800
BERT [13] - - - - - 0.5200 0.4800 - - -
BERT † 0.3902 0.3755 0.2597 0.1560 0.7565 0.5201 0.4794 0.3301 0.1328 0.9300
CI-BERT † 0.4101 0.3959 0.2703 0.1544 0.7388 0.5230 0.4845 0.3380 0.1330 0.9487
CompAQA-BERT (Ours) 0.4563 0.4417 0.3064 0.1580 0.8097 0.5282 0.4830 0.3390 0.1311 0.9635

RoBERTa [40] - - - - - 0.5283 0.4858 - - 0.9427
RoBERTa† 0.4132 0.3908 0.2716 0.1533 0.7729 0.5311 0.4872 0.3545 0.1348 0.9507
CI-RoBERTa† 0.4612 0.4377 0.3013 0.1633 0.7385 0.5439 0.5056 0.3554 0.1339 0.9668
CompAQA-RoBERTa (Ours) 0.4681 0.4585 0.3165 0.1517 0.7630 0.5642 0.5204 0.3670 0.1299 0.9543

DeBERTa 0.4181 0.4030 0.2777 0.1562 0.7497 0.5604 0.5154 0.3643 0.1667 0.9481
CompAQA-DeBERTa (Ours) 0.4657 0.4536 0.3127 0.1652 0.7352 0.5797 0.5373 0.3794 0.1371 0.9500

CI-BERT (Reported) [40] - - - - - 0.5375 0.4949 - - 0.9388
CI-RoBERTa (Reported) [40] - - - - - 0.5604 0.5174 - - 0.9648

ChatGPT-0-Shot 0.3720 0.4043 0.2890 0.2353 0.7148 0.2496 0.2464 0.1749 0.2109 0.8217
ChatGPT-2-Shot 0.3466 0.3178 0.2194 0.1996 0.7304 0.2421 0.2335 0.1591 0.2081 0.8524
ChatGPT-4-Shot 0.3394 0.3126 0.2166 0.1997 0.6893 0.2315 0.2357 0.1608 0.2107 0.8522

Table 3. The main results for the pairwise argument quality classification task.

Model
IBM-ArgQ-9.1kPairs

Acc. F1. AUC.

BERT-Pair-CLS 74.26 73.99 82.88
CompAQA-BERT (Ours) 77.49 77.41 85.69

RoBERTa-Pair-CLS 75.29 75.11 84.21
CompAQA-RoBERTa (Ours) 80.00 79.98 88.03

DeBERTa-Pair-CLS 78.78 78.59 87.59
CompAQA-DeBERTa (Ours) 81.17 81.16 88.83

5.2. Ablation Study

Table 4 presents the results of our ablation study for the argument quality ranking
task. Removing any of the components—Ls, Lm, or the order-based data augmentation
(ODA) strategy—results in a decrease in CompAQA’s performance to varying degrees.
Notably, ODA has the most significant impact on overall performance. This demonstrates
that the bias introduced by the order of input arguments can indeed negatively impact
performance, and our proposed ODA effectively mitigates this issue. Furthermore, we
present the results of removing either two or all three of the components: Ls, Lm, and ODA.
In these scenarios, the overall performance of CompAQA declines even further.
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Table 4. Ablation results for the argument quality ranking task. ODA is short for the order-based
data augmentation strategy.

Model
IBM-ArgQ-5.3kArgs IBM-Rank-30k

Pear. Spear. TAU MAE ↓ NDCG@15 Pear. Spear. TAU MAE ↓ NDCG@15

CompAQA-BERT (Ours) 0.4563 0.4417 0.3064 0.1580 0.8097 0.5282 0.4830 0.3390 0.1311 0.9635
w/o Lp 0.4472 0.4344 0.3015 0.1561 0.8035 0.5257 0.4795 0.3363 0.1321 0.9588
w/o Lm 0.4475 0.4337 0.3009 0.1823 0.7987 0.5230 0.4790 0.3358 0.1314 0.9681
w/o ODA 0.4235 0.4096 0.2830 0.1558 0.7916 0.5169 0.4716 0.3305 0.1333 0.9477
w/o Lp and Lm 0.4401 0.4240 0.2939 0.1543 0.8134 0.5227 0.4761 0.3339 0.1322 0.9768
w/o Lp and ODA 0.4189 0.4049 0.2802 0.1560 0.8236 0.5136 0.4705 0.3300 0.1331 0.9659
w/o Lm and ODA 0.4168 0.4027 0.2801 0.1566 0.8147 0.5127 0.4700 0.3283 0.1325 0.9601
w/o Lp and Lm and ODA 0.4030 0.3971 0.2629 0.1590 0.7755 0.5095 0.4640 0.3227 0.1323 0.9577

CompAQA-RoBERTa (Ours) 0.4681 0.4585 0.3165 0.1517 0.7630 0.5642 0.5204 0.3670 0.1299 0.9543
w/o Lp 0.4550 0.4480 0.3074 0.1553 0.7399 0.5647 0.5192 0.3661 0.1319 0.9589
w/o Lm 0.4626 0.4470 0.3084 0.1510 0.7385 0.5601 0.5125 0.3610 0.1301 0.9325
w/o ODA 0.4646 0.4492 0.3108 0.1491 0.7558 0.5605 0.5167 0.3643 0.1310 0.9584
w/o Lp and Lm 0.4541 0.4448 0.3059 0.1644 0.7417 0.5572 0.5092 0.3589 0.1286 0.9234
w/o Lp and ODA 0.4603 0.4453 0.3067 0.1498 0.7813 0.5589 0.5155 0.3633 0.1319 0.9697
w/o Lm and ODA 0.4580 0.4435 0.3063 0.1527 0.7743 0.5567 0.5052 0.3559 0.1287 0.9386
w/o Lp and Lm and ODA 0.4548 0.4430 0.3014 0.1507 0.7223 0.5506 0.5047 0.3530 0.1312 0.9276

CompAQA-DeBERTa (Ours) 0.4657 0.4536 0.3127 0.1652 0.7352 0.5797 0.5373 0.3794 0.1371 0.9500
w/o Lp 0.4625 0.4512 0.3109 0.1700 0.7376 0.5768 0.5328 0.3758 0.1355 0.9367
w/o Lm 0.4478 0.4370 0.3001 0.1663 0.7465 0.5737 0.5299 0.3736 0.1360 0.9367
w/o ODA 0.4068 0.3919 0.2702 0.1557 0.7293 0.5632 0.5205 0.3665 0.1527 0.9517
w/o Lp and Lm 0.4377 0.4278 0.2930 0.1683 0.7103 0.5728 0.5271 0.3714 0.1420 0.9557
w/o Lp and ODA 0.4013 0.3896 0.2673 0.1679 0.7334 0.5603 0.5117 0.3597 0.1494 0.9781
w/o Lm and ODA 0.4008 0.3888 0.2666 0.1574 0.7145 0.5631 0.5172 0.3646 0.1844 0.9508
w/o Lp and Lm and ODA 0.3953 0.3806 0.2595 0.1616 0.7165 0.5562 0.5037 0.3591 0.1387 0.9404

5.3. Results of Fine-Tuning Decoder-Only Pre-Trained Models

CompAQA is also applicable to decoder-only pre-trained models such as Llama. To
adapt it, we only need to replace the Text Encoding part in Section 3.3 with the following
method. Specifically, we employ the prompt shown in Figure 2 to derive the argument pair
representation p and the individual argument representations at and ar

i .

Given two arguments and their corresponding topics, your task is to
evaluate and compare the quality of the arguments, then assign a quality
score to each argument.

Argument 1: at

Topic 1: tt

Argument 2: ar
i

Topic 2: tr
i

### Evaluation:

The quality of Argument [label] is better.
Quality Score of Argument 1: [score 1]
Quality Score of Argument 2: [score 2]

Figure 2. Prompt for fine-tuning decoder-only language models.

Here, we use the mean-pooled vector representation of the “[label]” tokens as the
argument pair representation p. Similarly, the representations obtained from “[score 1]” and
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“[score 2]” serve as the individual argument representations at and ar
i , respectively. We then

calculate Lp, Ls, and Lm for fine-tuning, following the method described in Section 3.3.
For the implementation details, we fine-tuned the Llama-3-8B-Instruct model using

LoRA [49]. We set the learning rate to 2 ×10−4, trained for a single epoch with a batch size
of 32, employed a warm-up ratio of 0.1, and used a weight decay of 1 ×10−4. For the LoRA
configuration, we used a rank (r) of 64 and an alpha of 16. The LoRA dropout rate was set to
0.1. We adjust λp, λs, and λm to 0.1, 1.0, and 0.1, respectively. All other experimental settings
remained consistent with those described in Section 4.3. As a baseline for comparison, we
also simply fine-tuned Llama-3-8B-Instruct using only MSE loss. Another baseline for
comparison, CI-Llama, is our implementation of the method proposed by Wang et al. [40],
which is also based on Llama-3-8B-Instruct.

The results of fine-tuning Llama are shown in Table 5. As is evident from the results,
CompAQA demonstrates an excellent performance when applied to Llama, showing
significant improvements over both the baseline Llama and CI-Llama.

Table 5. Results of fine-tuning Llama on the IBM-Rank-30k dataset.

Model
IBM-Rank-30k

Pear. Spear. TAU MAE ↓ NDCG@15

Llama 0.6103 0.5658 0.4035 0.1343 0.9252
CI-Llama 0.6178 0.5738 0.4095 0.1322 0.9555
CompAQA-Llama (Ours) 0.6270 05881 0.4190 0.1313 0.9521

5.4. Hyperparameter Analysis

When constructing comparison pairs, CompAQA relies on two important hyperpa-
rameters: m and l. Here, m represents the number of reference arguments sampled for
each target argument, while l controls the score range during sampling. We conducted
separate experimental analyses on different values of m and l, with the results presented
in Tables 6 and 7, respectively. The results indicate that CompAQA is not particularly
sensitive to changes in the hyperparameters m and l, as the performance fluctuations were
relatively small. Based on these results, setting m to 3 and l to 0.05 appears to be a good
choice for overall performance.

Table 6. The performance of CompAQA-DeBERTa on the IBM-Rank-30k dataset under the influence
of different l in Equation (1). We conducted this experiment on DeBERTa, as it was the best-performing
pre-trained model in the main experiment (Table 2).

CompAQA-DeBERTa
IBM-Rank-30k

Pear. Spear. TAU MAE ↓ NDCG@15

l = 0.025 0.5810 0.5356 0.3780 0.1292 0.9461
l = 0.05 0.5797 0.5373 0.3794 0.1371 0.9500

l = 0.075 0.5776 0.5334 0.3763 0.1323 0.9496
l = 0.1 0.5781 0.5342 0.3768 0.1309 0.9448

Table 7. The performance of CompAQA-DeBERTa on the IBM-Rank-30k dataset under the influence
of different m, with the number of reference arguments corresponding to each target.

CompAQA-DeBERTa
IBM-Rank-30k

Pear. Spear. TAU MAE ↓ NDCG@15

m = 2 0.5739 0.5313 0.3749 0.1320 0.9501
m = 3 0.5797 0.5373 0.3794 0.1371 0.9500
m = 4 0.5770 0.5323 0.3759 0.1281 0.9308
m = 5 0.5768 0.5335 0.3765 0.1267 0.9432
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5.5. Threats to Validity

Despite the efficacy of our proposed method, it is important to acknowledge certain
limitations:

• Generalizability: When applied to new datasets, our method may require parameter-
tuning to achieve optimal performance. Specifically, the values of l and m might need
adjusting to accommodate different data characteristics.

• Computational Complexity: Our method necessitates comparing a target argument
with multiple reference arguments to predict its quality score. This multi-comparison
approach, while effective, inherently demands a higher computational cost.

These limitations present opportunities for future research, potentially focusing on
developing more robust methods and optimizing the computational efficiency of the
comparison process.

6. Conclusions

In this paper, we propose CompAQA, a comparison-based framework for argument
quality assessment. This framework evaluates the quality of target arguments through
multiple pairwise comparisons. Additionally, we propose an argument order-based data
augmentation strategy to enhance the comparison ability of CompAQA. The effectiveness
of CompAQA is validated on two argument quality ranking datasets and one pairwise
argument quality classification dataset. Notably, CompAQA achieves promising results,
regardless of whether it is based on encoder-only or decoder-only pre-trained models.
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