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Abstract: Federated learning is a widely applied distributed machine learning method that effectively
protects client privacy by sharing and computing model parameters on the server side, thus avoiding
the transfer of data to third parties. However, information such as model weights can still be analyzed
or attacked, leading to potential privacy breaches. Traditional federated learning methods often
disturb models by adding Gaussian or Laplacian noise, but under smaller privacy budgets, the large
variance of the noise adversely affects model accuracy. To address this issue, this paper proposes
a Symmetric Partition Mechanism (SPM), which probabilistically perturbs the sign of local model
weight parameters before model aggregation. This mechanism satisfies strict ϵ-differential privacy,
while introducing a variance constraint mechanism that effectively reduces the impact of noise
interference on model performance. Compared with traditional methods, SPM generates smaller
variance under the same privacy budget, thereby improving model accuracy and being applicable to
scenarios with varying numbers of clients. Through theoretical analysis and experimental validation
on multiple datasets, this paper demonstrates the effectiveness and privacy-protection capabilities of
the proposed mechanism.

Keywords: federated learning; local differential privacy; privacy protection; deep learning

1. Introduction

Federated learning is a distributed machine learning approach that allows institutions
to collaboratively train models without sharing local data. This technology overcomes
the limitations of data silos, enabling multiple participants to cooperate while preserving
data privacy, thus improving the predictive performance and accuracy of the models [1–3].
Researchers are working to integrate various techniques such as secure multiparty compu-
tation, homomorphic encryption, group learning, and differential privacy with federated
learning to enhance data privacy protection. For example, Ma et al. [4] proposed a fed-
erated learning scheme that combines multi-key homomorphic encryption to optimize
computational efficiency while ensuring data privacy. In contrast, Park et al. [5] adopted
a method of directly applying homomorphic encryption to model parameters, allowing
the central server to perform computations on encrypted data without decryption, thereby
enhancing the security and practicality of federated learning. Additionally, blockchain
technology has also been widely applied to federated learning to enhance privacy and data
security. Specifically, AI-enhanced blockchain technology can improve data security and
transparency. For instance, Reference [6] reviews the opportunities for applications com-
bining blockchain and AI, while Reference [7] explores the use of blockchain in enhancing
federated learning security and discusses the challenges it faces. Although these techniques
provide assurance for data that is “computable but not visible”, they also significantly
increase the computational and communication burden on the system. Secure multiparty
computation relies on complex communication protocols, while homomorphic encryption
requires a large number of encryption operations, and clients still face the risk of privacy
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leakage during parameter uploads and downloads [5,8–13]. While blockchain technology
improves data security with its decentralized and tamper-resistant properties, its high
computational and storage costs are significant drawbacks. Blockchain networks require
validation and consensus for each transaction, which leads to increased system latency
and energy consumption, especially in resource-constrained IoT devices. Moreover, as the
number of nodes increases, the complexity of the consensus process can affect scalability
and system efficiency.

In contrast, differential privacy has emerged as an important research direction in fed-
erated learning due to its simplicity and robust privacy-protection capabilities. In particular,
Local Differential Privacy (LDP) offers higher security by adding noise locally without rely-
ing on the trustworthiness of the central server, effectively preventing server-side privacy
breaches. However, LDP also faces several challenges, particularly in the selection of the
number of clients. When the number of clients is small, there is often a lack of data diversity,
which reduces the model’s generalization ability and slows down the convergence rate.
Moreover, the individual data of a small number of participants is more easily inferred,
increasing the privacy risk. Conversely, while a larger number of clients can provide richer
data distribution, it significantly increases communication overhead, affecting system effi-
ciency, especially under bandwidth-constrained conditions. Additionally, the participation
of more clients can lead to instability in training, as anomalous data from a single client can
substantially impact the overall model. Therefore, balancing scenarios with both few and
many clients while maintaining stable and efficient performance presents a major challenge.

In addition, federated learning faces communication cost challenges, particularly in
Internet of Things (IoT) environments, where communication costs between devices are
high [14–16]. Federated learning relies on frequent parameter exchanges between clients
and the server, which is especially noticeable on resource-constrained devices. While
differential privacy techniques enhance privacy protection, they also increase communi-
cation overhead and training time. Therefore, how to reduce communication costs while
effectively protecting privacy remains a significant challenge in federated learning.

In response to the challenges in the aforementioned FL models, the contributions of
this paper are as follows:

• We propose a federated learning privacy-protection mechanism based on Local Differ-
ential Privacy (LDP)—the Symmetric Piecewise Mechanism (SPM). Unlike traditional
noise-adding methods, our mechanism perturbs the sign of the weights probabilis-
tically before uploading the model parameters, thereby ensuring strict differential
privacy. We comprehensively consider the expected value and variance of the per-
turbed model weights and introduce a variance constraint mechanism. By limiting
the bounds of the perturbation range, this mechanism minimizes the impact of the
perturbation on model accuracy. This mechanism enables the use of a smaller privacy
budget while ensuring the same level of privacy protection and preserving the utility
of the aggregated model, which closely matches that of the original model. This
reduces the impact of noise addition on model accuracy and communication overhead
in the federated learning process.

• We have validated the usability and privacy-protection capabilities of the mechanism
from both theoretical and empirical perspectives. From a theoretical standpoint, we
conducted mathematical derivations for the proposed variance constraint mechanism,
as well as the theorems and lemmas. In the experimental section, we used three
datasets: MNIST, Fashion-MNIST, and CIFAR-10, with two network models applied
to CIFAR-10. We conducted analysis in scenarios with varying numbers of clients,
focusing on multiple dimensions such as the mechanism’s usability, communication
overhead, time consumption, and its ability to defend against DLG attacks. All
derivations discussed in this paper can be found in the Appendix A.

The structure of this paper is as follows: Section 1 introduces the challenges in fed-
erated learning and privacy protection, as well as the main contributions of this work.
Section 2 provides an overview of the advantages and disadvantages of existing methods
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and highlights the benefits of the proposed approach. Section 3 explains the fundamental
concepts of federated learning and differential privacy. Section 4 presents a symmetric
partitioning mechanism (SPM) based on localized differential privacy, detailing its imple-
mentation process, the cited lemmas and theorems, and providing a theoretical analysis of
its privacy and utility. Section 5 discusses the experimental methods and results, including
an analysis of three datasets, the usability of the mechanism, and its ability to defend
against DLG attacks. Section 6 summarizes the main contributions and discusses future
research directions.

2. Related Work

• Applications and Challenges of Differential Privacy in Federated Learning

Differential privacy is widely applied in practice, for example, when medical re-
search centers develop COVID-19 diagnostic models that require collecting CT images
of patients [17]. Local differential privacy emphasizes control by data owners, who add
noise locally before uploading data to prevent privacy leaks. Tramèr et al. [18] argued
that applying differential privacy to model parameters is more appropriate, but the high
dimensionality of gradients in federated learning makes direct perturbation increase com-
munication overhead. Zhu et al. [19] found that capturing uploaded gradient data can
be used to reconstruct the training data. Yang et al. [20] successfully reconstructed fa-
cial images using an auxiliary training set. These studies suggest that protecting model
parameters and gradients from attacks is a significant challenge.

The main challenges of federated learning include the selection of the number of
clients and the impact of noise addition. The number of clients directly affects model
performance and privacy protection: with fewer clients, there may be insufficient data di-
versity, which could reduce the model’s generalization ability and convergence speed; with
more clients, although the data is richer, the amount of training data per client decreases,
affecting the training results. Furthermore, more clients increase communication over-
head, reducing system efficiency. To protect privacy, noise is often added to the uploaded
model parameters, which increases computational and communication overhead. This
is especially problematic in bandwidth-limited environments, where frequent parameter
exchanges can cause system delays and affect training efficiency. To address these issues,
blockchain technology has been introduced into federated learning to enhance security
and data protection. The blockchain-based federated learning framework proposed in
Reference [6] analyzes how to ensure data privacy in a decentralized environment while
reducing the risk of single points of failure. However, this approach faces challenges in
scalability and high energy consumption when dealing with a large number of nodes, as the
verification and consensus processes significantly increase the system’s computational and
communication burden.

Scholars have introduced adaptive ideas into differential privacy to address gradient
adjustment [21–23]. Liu et al. [24] developed a differential privacy federated learning
algorithm that adaptively adjusts the gradient clipping threshold, making gradient clipping
more flexible in each communication round, thereby reducing the negative impact of
unreasonable thresholds on model performance. In contrast, Shen et al. [25] proposed an
algorithm called Performance-Enhanced Differential Privacy Federated Learning (PEDPFL),
which uses regularization techniques to improve the robustness and generalization ability
of the model, thereby enhancing the algorithm’s performance under privacy protection.
However, after processing the model gradients, these methods may result in slow global
convergence and a lack of stability. They do not fundamentally solve the noise issues
introduced by differential privacy but rather mitigate them from an external perspective.
Therefore, addressing the noise added by differential privacy at its internal source has
become a critical challenge that needs to be resolved.

In response, researchers have proposed several improvements. The two localized dif-
ferential privacy schemes based on mean statistics proposed in the literature [26,27] demon-
strated that their mechanisms produce less variance than traditional Laplacian noise under
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the same privacy budget. However, under smaller privacy budgets, directly perturbing the
model parameters still results in larger variance, and the aggregated model may experience
gradient explosion during backpropagation. Sun et al. [28], building on the work in [26],
improved the LDP mechanism by considering the value range of each layer’s weights for
the first time, thereby reducing the large variance issues of previous mechanisms. However,
in complex models, the adaptive adjustment of key parameters requires manual testing,
leading to weaker compatibility. Ren et al. [29] proposed the PNPM mechanism, which se-
lects the perturbation upper limit based on empirical testing and introduces a new variance
calculation formula, resulting in smaller variance. However, this mechanism has yet to
determine the optimal perturbation boundary, leaving substantial room for improvement
and warranting further exploration.

Although these methods have made some progress in enhancing privacy protection
and performance in federated learning, many limitations remain. In response to the afore-
mentioned issues and the shortcomings of mechanisms [27–29], this paper proposes a
novel Symmetric Piecewise Mechanism (SPM), which adapts to different client scenarios.
The mechanism aims to better address communication overhead, time consumption, and at-
tack defense challenges arising from the number of clients. Both theoretical and practical
validations have been conducted. The following section analyzes the superiority of the
SPM mechanism compared to other mechanisms, as detailed in Table 1.

Table 1. Comparison Analysis of the SPM mechanism and other federated learning privacy-
protection mechanisms.

Comparison
Dimension

Comparison
Mechanism

Other Mechanism
Algorithms SPM Mechanism Advantages of the Proposed

Mechanism

Model Weight
Perturbation Output
Method and
Perturbation Domain
Selection

PM [27]

Weights are directly
output as the
perturbation domain
t∗ ∈ [−C, C].

The absolute value of
model weights is
desensitized and
multiplied by the
perturbation coefficient
t∗ ∈ [−C,−1] ∪ [1, C],
and then output.

The SPM mechanism significantly
reduces the risk of model weights
outputting zero by multiplying with
perturbation parameters greater
than one in absolute value,
combined with symmetric inversion
to avoid more complex scenarios. It
represents an improvement over the
PM mechanism.

Adaptive Weight
Range Selection Sun et al. [28]

Adaptive hierarchical
perturbation based
on the range of model
weights.

Perturbation is applied
to all positive and
negative weights
(excluding 0),
with normalization
tracking to achieve
adaptive effects,
making it suitable for
both deep and shallow
networks.

Sun et al. [28] pointed out that their
mechanism has limited adaptability
to complex models, requiring
manual tuning and lacking adaptive
capabilities. In contrast, the SPM
mechanism can adapt to deep
networks, ensuring error-free weight
normalization, which is described in
detail in the experimental section.
This represents an improvement in
adaptability over the mechanism
proposed by Sun et al. [28]

Boundary Value
Selection for the
Perturbation Domain
and the Variance
Calculation Formula

PNPM [29]

Perturbation domain
boundaries are set
based on empirical
data, and variance is
calculated.

A variance constraint
mechanism is proposed
to theoretically limit
the boundaries of the
perturbation domain
and minimize the
calculated variance.

By using a variance constraint
mechanism to determine the
perturbation boundaries and
variance calculation formula,
the variance is minimized.
Theoretical analysis shows that the
variance of the SPM mechanism is
smaller than that of the PNPM and
PM mechanisms, allowing for the
use of a smaller privacy budget.
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3. Preliminary
3.1. Federated Learning

With the rapid development of artificial intelligence, high-quality data has become key
to improving the performance of machine learning models. However, the sensitivity and
high value of data make organizations and companies reluctant to share it, exacerbating
the issue of data silos. Federated learning emerged to provide a method for collaborative
training by sharing model updates instead of raw data, effectively protecting data privacy
and promoting cooperation between different entities. Federated learning is particularly
important in scenarios where data privacy regulations (such as GDPR) restrict cross-border
data transfers. By avoiding data centralization, federated learning reduces risks such as
data breaches and compliance issues. Federated learning can be divided into three main
types based on data distribution characteristics: horizontal federated learning, vertical
federated learning, and federated transfer learning [30]. In addition to protecting privacy,
federated learning also facilitates the integration of data value across different organiza-
tions. For instance, hospitals can jointly train diagnostic models without directly sharing
patient records, thereby enhancing diagnostic capabilities while preserving data privacy.
This privacy-preserving distributed approach ensures robust model performance and miti-
gates risks like single points of failure and large-scale data breaches faced by centralized
machine learning. In the federated learning framework, the system typically consists of
a central server and N clients, where each client Ci possesses its local dataset Mi, where
i ∈ {1, 2, . . . , N}. The total dataset across all clients is M, that is, ∑N

i=1 Mi = |M|. The server
collects and performs weighted aggregation of the local model parameters sent by the
clients to generate the global model parameters, which are used to optimize the overall
model performance.

ω =
1
N

N

∑
i=1

ωi (1)

3.2. Differential Privacy

Differential Privacy [31] is a technique that protects individual privacy by adding noise
to the statistical results of raw data, ensuring that the inclusion or removal of a single data
point does not significantly alter the output, thereby effectively safeguarding individual
information. The basic principle involves adding random noise so that the output of a
statistical query on a dataset remains almost the same whether a specific individual’s data
is included or not, making it difficult for an attacker to accurately infer the presence of
any specific data point. The applications of differential privacy are not limited to privacy
protection and statistical analysis; it also plays a role in several other areas. For instance,
in machine learning, differential privacy is used to protect data privacy during model
training, preventing the model from “memorizing” sensitive data, thereby avoiding the
exposure of personal information during the inference stage. Additionally, differential
privacy is used for generating synthetic data, allowing data scientists to perform modeling
and analysis without accessing raw data. It is also applied in recommendation systems,
where noise is added to user behavior data to protect individual privacy while improving
recommendation quality.

Definition 1. ϵ-differential privacy.

An algorithm R is said to satisfy ε-differential privacy if, for any two adjacent datasets
M and M1, and any output set S of the algorithm R, the output probabilities satisfy the
following inequality:

Pr[R(M) ∈ S] ≤ Pr[R(M1) ∈ S] · eϵ (2)

In the definition of differential privacy, the probability Pr[R(M) ∈ S] represents the
probability that the output of algorithm R, when run on dataset M, falls within the set
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S. The privacy parameter ε measures the output difference of the algorithm on adjacent
datasets, controlling the ratio of output probabilities. A smaller ε value indicates that the
algorithm produces nearly identical outputs on adjacent datasets, thus providing stronger
privacy protection, making it more difficult for an attacker to infer whether a particular
data point is included in the dataset.

Traditional differential privacy achieves privacy protection by adding noise to the out-
put of an algorithm. Its core idea is to obscure the influence of data through randomization,
ensuring that the presence or absence of any single data point does not significantly change
the output. Common noise mechanisms include the Laplace mechanism and the Gaussian
mechanism. The Laplace mechanism is used for strict ε-differential privacy, where noise
following a Laplace distribution is added to ensure that the output satisfies the differential
privacy probability inequality. For any two adjacent datasets, the algorithm’s probability
density is strictly controlled within the range of ε, providing a theoretically strong privacy
guarantee and making it more difficult for attackers to infer changes in the original data by
observing the output.

In contrast, the Gaussian mechanism is used for (ε, δ)-differential privacy, where
noise following a Gaussian distribution is added, allowing the privacy condition to be
relaxed with a probability tolerance of δ. This means that the algorithm has a small
probability of not satisfying the strict ε-differential privacy constraint, making it suitable for
scenarios where both privacy and utility are highly demanded. Although (ε, δ)-differential
privacy introduces more flexibility for privacy protection, strict ε-differential privacy is still
considered a more ideal choice in many applications because it provides stricter and more
explicit control over privacy leakage, offering a higher level of security assurance.

Our mechanism also uses strict ε-differential privacy to achieve privacy protection,
but it differs significantly from the methods mentioned above. This approach ensures that in
all cases, the algorithm’s output meets the strict constraints of differential privacy, providing
more reliable privacy protection for users’ data while avoiding potential information
leakage risks associated with looser privacy constraints.

4. SPM-FL: A Federated Learning Privacy-Protection Mechanism Based on Local
Differential Privacy

This section proposes a new federated learning protection mechanism based on local
differential privacy to enhance data security. As shown in Figure 1, the framework consists
of two main steps: client training and server aggregation. In each round of global iteration,
the server randomly selects a subset of clients to participate in training. The selected
clients update the model on their local data and apply probabilistic positive or negative
perturbations to the model weights to protect data privacy, then send the updated model
parameters to the server. The server collects these parameters, performs aggregation,
and updates the global model, gradually improving model performance while ensuring
data privacy. The specific process can be found in Algorithm 1.

(1) Clients download the initial model or the aggregated updated model from the
server and perform parallel training on local data to update the model parameters.

(2) Apply the SPM mechanism to the updated model parameters to add noise, thereby
enhancing privacy protection.

(3) Upload the perturbed model parameters to the server, which aggregates the pa-
rameters from all clients until the preset number of iterations is reached.

This framework effectively protects client parameters through the perturbation mech-
anism while maintaining the training effectiveness of federated learning, all under the
premise of ensuring data privacy.



Electronics 2024, 13, 4091 7 of 39

Algorithm 1 Federated learning algorithm with localized differential privacy protection.
Input: Initial model parameters ω, learning rate l, number of clients C, client sampling rate
q, communication rounds between clients and server T, number of local iterations on the
client E, batch size B, client data M.
Output: Processed model parameters ωt+1.

1: for t = 1 to T do
2: // Server-side aggregation phase
3: ω̃t ← 1

|C| ∑C
c=1 ω̃c

t // Aggregate and update the global model
4: Init ωt+1 ← ω̃t
5: // Local training phase
6: for c = 1 to C · q do
7: // Perform E local iterations
8: for e = 1 to E do
9: for each batch Bi in M do // i is an integer from 1 to ⌈M/B⌉

10: g← ∇L(ω, Bi)
11: ωt+1 ← ωt+1 − lg
12: end for
13: end for
14: // Apply perturbation to the model parameters
15: for each ωt do
16: ωt ← SPM(ωt)
17: end for
18: end for
19: end for

Figure 1. Federated learning framework with local differential privacy protection.

4.1. Symmetric Piecewise Mechanism

Unlike traditional noise addition methods in federated learning (such as Gaussian
noise or Laplacian noise), this paper adopts a mechanism based on probabilistic inversion
of the sign of model weights, which satisfies strict differential privacy requirements and
protects the privacy of model parameters. This method makes it difficult to distinguish
the sign of model weights, ensuring that even if an attacker gains access to the model
parameters, they cannot accurately determine the sign of the weights, thereby effectively
protecting privacy. Additionally, zero bias is introduced during the estimation of weight
means to ensure that the aggregated perturbed model is as close as possible to the original
model without noise. The specific operational steps are as follows (Algorithm 2):
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1. The sign of the model weights is labeled as t ∈ {−1, 1}, with positive numbers
marked as 1 and negative numbers as −1. Weights equal to 0 are not processed since they
do not provide meaningful information to the model.

2. Set the range of the perturbation coefficient C = eε+1
eε−1 as the boundary of the

perturbation domain.
3. Based on the directionality of the model parameters and the algorithm mechanism,

calculate the perturbation value t∗ ∈ [1, C]. Then apply symmetric inversion to obtain the
reverse perturbation domain t∗ ∈ [−C,−1]. The probability density functions p and eε

p are
set for the perturbation values to meet strict differential privacy requirements.

4. The absolute value of the model weights |ω| is desensitized, then multiplied by the
perturbation coefficient in probabilistic form to obtain the final uploaded model parameter
ω̄ = |ω| · t∗. This mechanism, through probabilistic inversion of the model weights, allows
the server to cancel out noise during the joint aggregation of perturbed model parameters
uploaded by the clients, thereby updating the global model parameters. This not only
satisfies strict differential privacy protection but also maintains the overall performance of
the model.

Algorithm 2 Symmetric piecewise mechanism.
Input: Privacy budget ε and model parameters ω.
Output: Perturbed model parameters ω̄.

1: Create mask with the same shape as ω
2: Create direction_matrix with the same shape as ω
3: Create t∗ with the same shape as ω and initialized to 0
4: threshold← eε

eε+1
5: for each parameter i in ω do
6: if parameter > 0 then
7: direction_matrix[i]← 1
8: else
9: direction_matrix[i]← −1

10: end if
11: Generate random number x between 0 and 1
12: if x < threshold then
13: mask[i]← 1
14: else
15: mask[i]← 0
16: end if
17: end for
18: C ← eε+1

eε−1
19: // Define vectorized computation for lt and rt
20: lt← (C+1)

2 · direction_matrix− (C−1)
2

21: rt← (C+1)
2 · direction_matrix + (C−1)

2
22: perturbation_lt_rt← [lt, rt]
23: perturbation_rt_lt← [−rt,−lt]
24: // Define the range for t∗

25: t∗[mask]← perturbation_lt_rt[mask]
26: t∗[¬mask]← perturbation_neg_rt_lt[¬mask]
27: ω̄ ← t∗ · |ω|
28: Return ω̄

As shown in Algorithm 2, in the SPM mechanism, the boundary value C of the per-
turbation domain is calculated through the left and right boundaries lt and rt. Regardless
of the sign of the model weights, the perturbation value always falls between the two
fixed value sets {1, C} and {−C,−1}. Therefore, it can be derived that the perturbation
value t∗ ∈ [−C,−1] ∪ [1, C]. Due to the design of the symmetric piecewise mechanism,
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the perturbation value cannot take values within the interval [−1, 1], meaning the model
weights will only be scaled proportionally in either the positive or negative direction.

As the boundary value of the perturbation domain, the appropriate selection of C de-
termines the range of the scaling factor for model weights. The probability density p, which
determines the perturbation value responsible for weight inversion (i.e., the probability of
falling in the positive or negative range), dictates whether the model weights will change
their sign. We found that the selection of the p value for the symmetric interval must meet
the strict differential privacy theorem (as proven in Theorem A2), meaning it must satisfy a
specific ratio and therefore cannot be arbitrarily modified. However, there is some flexibility
in the choice of C. During the model update process, if the weight of a certain sample
does not undergo probabilistic inversion, it only experiences coefficient scaling. In such
cases, appropriately constraining the size of C can control the range of the perturbation
domain and thereby reduce the absolute value of the perturbation. As the perturbation
domain narrows, the variance introduced by the perturbation mechanism (i.e., the degree
of dispersion of the perturbed model weights) will also decrease accordingly.

Since C serves as the boundary of the perturbation domain, we introduced zero bias
during the mean estimation process. Therefore, when calculating the expected value, it
is necessary to account for the probability density p of the perturbation value. There is a
complex relationship between the C value, p value, and the privacy budget ε. Specifically,
by setting C and p to satisfy a certain relationship, we can ensure the zero bias condition
holds during the mean estimation of the weights. Thus, we ensure that the SPM mechanism
satisfies both strict differential privacy and zero bias during the mean estimation of the
weights. We conducted a mathematical analysis of the relationship between these three
factors and successfully established the maximum constraint on the C value within the
mechanism, ensuring C is the minimum possible value used in the SPM mechanism without
affecting other aspects. This approach results in significant improvement in the variance,
which is why this theorem is referred to as the “Variance Constraint Mechanism”. It is
worth noting that the detailed proofs of the lemmas and theorems discussed in this paper
are included in the Appendix A.

Theorem 1. SPM Mechanism and Differential Privacy. When the boundary C of the perturba-
tion coefficient and the probability density p of the perturbation value satisfy Equation (3), the SPM
mechanism can ensure that the model parameters uploaded by clients participating in federated
learning training meet ε-differential privacy. Moreover, this mechanism ensures zero bias during
mean estimation of the weights and minimizes the dispersion (variance) of the model weights after
being processed by the perturbation mechanism.

{
C = eϵ+1

eϵ−1

p = eϵ−1
2

(3)

For the direction of model weights, we propose two options, and for the perturbation
domain, there are also two probability choices. Therefore, the probability density function
should satisfy: 

pdf(t∗ = x | ti) =

{
p if x ∈ [l(t), r(t)], ti = 1
p
eϵ if x ∈ [−r(t),−l(t)], ti = 1

pdf(t∗ = x | ti) =

{
p
eϵ if x ∈ [l(t), r(t)], ti = −1
p if x ∈ [−r(t),−l(t)], ti = −1

(4)

where l(t) = C+1
2 · ti − C−1

2 and r(t) = C+1
2 · ti +

C−1
2 , with ti being the direction of the

model weight.
Notably, “zero bias” in statistics and machine learning refers to an estimation method

whose expected estimate equals the true value. In federated learning, the server generates
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a global model update by aggregating local model updates (such as gradients or weights)
from different clients. When the federated learning process satisfies “zero bias”, the
expected value of the global model parameters equals the true mean of the client model
parameters. This ensures that no systematic error is introduced during aggregation, making
the global model more representative and accurate.

As previously mentioned, introducing “zero bias” is based on combining differen-
tial privacy to maintain model efficiency while protecting privacy. In federated learning,
if only the general form of the SPM mechanism is used, it is possible to resist attacks
through probabilistic flipping of weights; however, it does not ensure model accuracy
(i.e., the relationships between parameters are not preserved, and a smaller value of C
strengthens privacy protection but may reduce model accuracy). Introducing zero bias
effectively addresses this issue, with both mechanisms complementing and constraining
each other. The variance constraint mechanism was derived through parameter constraints,
thus forming the SPM mechanism (Algorithm 2). The variance constraint mechanism
constrains relationships between parameters (such as the settings of C and p), minimiz-
ing the impact of the SPM mechanism while ensuring privacy protection. This allows
the federated learning process to achieve not only zero bias but also strict differential
privacy requirements.

Of course, theoretical proof alone is insufficient to verify its effectiveness. There-
fore, in Section 5, we further validate the mechanism’s effectiveness through experiments
across multiple dimensions. More details of the theoretical derivations can be found in
the Appendix A.

4.2. Usability and Privacy Analysis

This paper evaluates the usability and privacy of the SPM mechanism through
both theoretical and experimental approaches. For usability analysis, Lemma A1 is
proposed to support the theoretical part, and experimental analyses are conducted in
Sections 5.2.1– 5.2.3 and 5.2.5. For privacy analysis, Theorems A2 and A3 provide the theo-
retical proof, and the experimental Section 5.2.4 uses the traditional DLG attack to verify the
privacy-protection capability of the SPM mechanism, aiming to fully assess the robustness
of the mechanism.

In this section, we use theoretical proof to verify the mechanism’s usability, with vari-
ance as the evaluation metric. Similar to traditional noise perturbation in federated learning,
Gaussian noise and Laplacian noise produce irregular noise. We selected three advanced
differential privacy mechanisms in federated learning and compared their variances under
the same privacy budget, analyzing them alongside traditional noise-adding methods.
The following theorems and lemmas establish the advantages of the SPM mechanism
in terms of variance and the model’s usability. The proof of this lemma is provided in
the Appendix A.

Lemma 1. The variance of the SPM mechanism is strictly smaller than the variance of the Laplace
mechanism and the variances in the literature [27,29], and it is independent of the value of the
privacy budget ε.

Lemma A1 proves the usability of this mechanism, showing that the model weight
parameters, after being perturbed by the mechanism, still maintain high accuracy after
aggregation across clients. Compared to other algorithms, it has a smaller variance, mak-
ing the SPM mechanism more favorable than the Laplace mechanism and the solutions
presented in the literature [27,29]. See Figure 2.

Since the PM mechanism has already been proven to have a variance strictly smaller
than that of the Laplace mechanism, we only need to verify that the variance of the SPM
mechanism is strictly smaller than that of the other mechanisms. Figure 2 shows that
when the privacy budget is 1.5, the variance of SPM remains relatively stable, with a
maximum value of approximately 1, which is lower than that of DuChi et al. [26], the PM



Electronics 2024, 13, 4091 11 of 39

mechanism [27], and PNPM mechanism [29]. When the privacy budget is 0.6, although the
variance of SPM increases with the model weights, it remains significantly lower than
that of the other mechanisms. This reduces the impact of perturbation on model weights,
thereby enhancing the level of privacy protection. This indicates that the SPM mechanism
is more suitable for smaller privacy budgets, which will be further demonstrated in the
subsequent experimental design section.

Figure 2. The impact of model weights on variance under different privacy budgets [26].

Theorem 2. For any model weight input values t, t′ ∈ {1,−1} and perturbation coefficient
output value t∗ ∈

[
− eϵ+1

eϵ−1 ,−1
]
∪
[
1, eϵ+1

eϵ−1

]
, the SPM mechanism satisfies pdf(t∗ |t)

pdf(t∗ |t′) ≤
p
p

eϵ
= eϵ,

thereby ensuring ϵ-local differential privacy. Additionally, a zero bias is introduced in the mean
estimation of the weights to ensure that E[S̄(ω)] = ω̄, which means that the expected value of the
mean parameters of the aggregated perturbation model equals the mean parameters of the original
aggregated model.

Theorem A2 proves that this mechanism satisfies strict ε-localized differential privacy
and that the joint model after perturbation aggregation can effectively approximate the
utility of the original aggregated model, denoted as E[S(ω)] = ω̄. Based on this, we can
derive Theorem A3, which establishes the asymptotic error bound of S(ω). The proof of
this theorem is provided in the Appendix A.

Theorem 3. For all ω ∈W, there exists λ = O
(
|ω|

ε ·
√

ln(1/β)
n

)
such that the absolute difference

|S(ω)− ω̄| < λ with a probability of at least 1− β.

Theorem A3 establishes the accuracy guarantee of the SPM mechanism, where W
represents the set of model parameters. The proof of this theorem is provided in the
Appendix A. From the above theorems, it is clear that the model weight parameters,
after being perturbed by the SPM mechanism, undergo probabilistic sign inversion and

become indistinguishable. As shown by the variance Var[S(ω)] = |ω|2 · 3eε+ 1
3eε − 2

3
(eε−1)2 , as ω

increases, the variance of the mechanism also increases, leading to greater perturbation and
stronger privacy protection, effectively resisting membership inference attacks [32].

4.3. Security Model

This section introduces the security model in federated learning. It begins with an
analysis of the threats faced by the system, followed by a clarification of the security
objectives, and concludes with corresponding defense strategies to ensure the system’s
privacy and integrity.
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4.3.1. Threat Model

Honest-but-curious server: The server operates according to the federated learning
protocol but attempts to extract additional information from user-uploaded gradients or
weights to infer training data features, leading to privacy leakage.

DLG attack (Deep Leakage from Gradients): An attacker intercepts the gradients
uploaded by clients and uses reverse optimization to gradually reconstruct the original
training data. Even without direct access to the data, privacy can be compromised through
gradient leakage.

Inference attacks: An attacker infers whether specific data was used in training by
analyzing the model’s output, particularly accumulating knowledge about the training set
over multiple interactions, threatening user privacy.

Reconstruction attacks: An attacker uses shared model updates (e.g., weights or
gradients) to reconstruct the original training data. This is particularly feasible when
the dataset is small, allowing the attacker to infer training data details from changes in
model parameters.

4.3.2. Security Objectives

Protect user privacy: Ensure that the server or other attackers cannot reconstruct the
original training data from the gradients or weights uploaded by clients, preventing the
leakage of sensitive information.

Resist gradient attacks: Ensure that even if an attacker obtains the uploaded gra-
dient information, it remains difficult to reconstruct the original training data through
reverse optimization.

Prevent membership inference: Reduce the attacker’s ability to infer whether a partic-
ular data point is part of the training set from the model’s output, thereby protecting the
privacy of the training data.

Defend against reconstruction attacks: Ensure that attackers cannot reconstruct the
original training data from shared model updates, especially by adding perturbations to
increase reconstruction difficulty.

Model integrity: Ensure that the final global model is not compromised by malicious
clients, maintaining the accuracy and robustness of the global model.

4.3.3. Defense Strategies

Symmetric Partition Mechanism (SPM) and Differential Privacy Application: In feder-
ated learning, clients use the SPM to probabilistically perturb the sign of weights before
uploading the model, which satisfies ϵ-differential privacy. By introducing noise through
this perturbation method, the likelihood of attackers inferring the original training data
from gradients or weights is significantly reduced, effectively defending against common
privacy threats such as inference attacks, DLG attacks, and reconstruction attacks.

Variance Constraint Mechanism: The perturbation process adheres to a variance
constraint mechanism to control the variance of the added noise without altering the
strength of privacy protection. This mechanism ensures that the model’s performance
does not degrade significantly due to excessive noise while maintaining data privacy.
By constraining the variance of the noise, it effectively reduces model fluctuation, allowing
it to remain both resistant to attacks and accurate.

Zero Bias Design: Zero bias is introduced in the federated learning process by ensuring
that the perturbed weights from each client remain statistically unbiased, meaning the
expected value of the weights does not change. This approach not only satisfies differential
privacy requirements but also minimizes the negative impact of perturbation on model ac-
curacy, ensuring that the global model achieves a good balance between privacy protection
and utility after aggregation.
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5. Experiments
5.1. Experiment Settings

• Datasets:

- MNIST Dataset: The dataset used for handwritten digit recognition contains images
of digits from 0 to 9. It consists of grayscale images with a resolution of 28 × 28 pixels,
with 60,000 images used for the training set and 10,000 images for the test set.

- Fashion-MNIST: The fashion classification dataset contains 70,000 grayscale images
in 10 categories. Each image has a resolution of 28 × 28 pixels. The entire dataset is
divided into two parts: 60,000 images form the training set, and 10,000 images are
used for the test set.

- CIFAR-10 Dataset: It consists of colored images in 10 categories, including ships,
airplanes, cars, trucks, birds, cats, deer, dogs, frogs, and horses, all with a resolution of
32 × 32 pixels. A total of 50,000 images are used for the training set, and 10,000 images
are used for the test set.

The reasons for selecting the MNIST, Fashion-MNIST, and CIFAR-10 datasets for the
study of federated learning and differential privacy are as follows:

(1) Diversity and Representativeness: These datasets cover image classification tasks
ranging from simple (MNIST, Fashion-MNIST) to complex (CIFAR-10), allowing the pro-
posed method to be validated in terms of adaptability and performance across tasks of
varying difficulty.

(2) Wide Usage and Recognition: These datasets are widely used in the field of machine
learning, and selecting them facilitates comparison with existing research, demonstrating
the effectiveness and improvement of the proposed method.

(3) Federated Learning and Differential Privacy Verification: MNIST and Fashion-
MNIST are suitable for testing basic privacy-protection effects, while CIFAR-10 is used to
evaluate the performance and robustness of the method in handling more complex data.

(4) Standard Benchmark: As classic benchmark datasets, using these three datasets en-
hances the reproducibility of experimental results and adds reference value to the research.

• Models:

For simple datasets such as MNIST and Fashion-MNIST, the network model first
flattens the 28 × 28 pixel images into a 784-dimensional vector. Then, a fully connected
layer maps the 784 input features to 256 dimensions, with a ReLU activation function
applied to the output of this layer to introduce nonlinearity. For the more complex CIFAR-
10 dataset, we used two models: (1) The first model contains two convolutional layers,
which map the input features to 64 and 128 channels, respectively, and are processed by
ReLU activation functions and max-pooling layers. The feature maps are then flattened into
a vector and passed through three fully connected layers, transforming the features from a
shape of “128 channels, 8 height, 8 width” to 384 and 192 dimensions, and finally outputting
the classification result for 10 categories. (2) The second model uses the ResNet18 network.

• Experimental setup:

The experiments were conducted using the PyTorch (Torch1.10.0 Py3.8(ub20.04) Cu113)
framework running on an NVIDIA GeForce RTX 4090 server, with a CPU consisting of 16
vCPUs Intel(R) Xeon(R) Gold 6430.

5.2. Experimental Results and Analysis

Model accuracy reflects the model’s classification ability on the test dataset, i.e., the
proportion of correctly classified samples. Higher accuracy indicates good classification
performance on the test set, directly representing the overall performance of the model.
Analyzing model accuracy under different client numbers can effectively assess the ro-
bustness of the algorithm. Since the total dataset size remains constant, changes in the
number of clients lead to different allocations of the training dataset. Therefore, the ability
of the model to maintain high accuracy under varying training samples is a key challenge
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in federated learning. To evaluate the impact of different client numbers in federated
learning on model accuracy, communication overhead, and strategies for handling attacks,
the experimental design in this paper is divided into two parts, analyzed from different
perspectives, with each section interconnected.

Part 1: We compare the SPM mechanism with the basic federated learning algorithm
without differential privacy (NoDP-FL) [30] and three advanced differential privacy mech-
anisms: (1) the PM mechanism [27], (2) the mechanism by Sun et al. [28], and (3) the PNPM
mechanism [29]. In Sections 5.2.1 and 5.2.2, we verify the model accuracy of different
mechanisms in scenarios with varying client numbers to comprehensively analyze the
robustness of each mechanism. In the first part of Section 5.2.3, we conducted a usability
analysis, comparing the privacy budget consumption of each mechanism in achieving the
same model accuracy. In the second part of Section 5.2.3, we selected representative client
numbers of 30 and 300 to analyze the usability of the SPM mechanism under different
privacy budgets and explore its maximum model accuracy under the same configuration.

Part 2: We will further explore the SPM mechanism. In Section 5.2.4, we examine
the robustness of the mechanism and its defense strategies when facing gradient attacks.
In Section 5.2.5, we investigate the impact of local iteration count on communication
overhead in federated learning. In our analysis, in addition to evaluating the robustness of
the algorithm, we also conducted a comprehensive assessment of the mechanism’s usability,
privacy-protection capability, and defense performance in attack scenarios.

These analyses help us gain a comprehensive understanding of the mechanism’s
performance and applicability in real-world applications.

5.2.1. Model Accuracy Analysis in Scenarios with Few Clients

In this section of the experiment, we ensure that the parameter configurations and
privacy budgets for each mechanism remain consistent, selecting a client count of 5 to 50
for the limited client scenario, in which two network models are used with the CIFAR-10
dataset. The specific settings are as follows: a sampling rate of 0.6 (with a sampling rate
of 1 for the two models in the CIFAR-10 dataset), a local iteration count of 3 (with the two
models in the CIFAR-10 dataset set to 5 and 7 iterations, respectively), a batch size of 64
(with a batch size of 32 for CIFAR-10 Model 2), and a global communication round count
of 50. The selection of these parameters is based on a comprehensive consideration of
communication and time overhead. In Section 5.2.4, we will discuss in detail how to slightly
enhance model performance by increasing local computation time while maintaining the
same privacy budget, and simultaneously reducing global communication costs appro-
priately. Next, we will analyze the model accuracy performance of different mechanisms
under each dataset.

The MNIST dataset uses a privacy budget of 0.3. As shown in Table 2, there are
significant differences in the performance of various algorithms under different client
counts. First, in terms of overall accuracy, the NoDP algorithm exhibits the best model
accuracy across all client counts, consistently maintaining over 90% accuracy with mini-
mal fluctuation as the number of clients increases. This is because it does not introduce
noise perturbations, resulting in weaker privacy protection; it will serve as our baseline
comparison mechanism for this section. In contrast, the SPM mechanism closely follows,
demonstrating model accuracies near that of NoDP, especially with client counts of 10 and
20, where SPM achieves accuracies of 89.48% and 89.66%, nearly matching NoDP. This in-
dicates that SPM can still provide privacy protection without significantly reducing model
accuracy, which is its advantage over other privacy-protection mechanisms. The accuracies
of mechanisms like PNPM and those by Sun et al. [26] are relatively low, particularly when
the number of clients is small. While the mechanism by Sun et al. [26] performs poorly with
a small number of clients, it shows improvement when the client count reaches 30. The PM
mechanism clearly performs the worst, especially with a client count of 5, achieving an
accuracy of only 52.73%, which is significantly lower than other algorithms, indicating that
this mechanism is not suitable for scenarios with a privacy budget.
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Table 2. Model accuracy data for different mechanisms under the limited client scenario of the
MNIST dataset.

Algorithm C = 5 C = 10 C = 20 C = 30 C = 40 C = 50

NoDP 90.35 90.39 90.55 90.42 90.48 90.28
SPM 89.4 89.48 89.66 89.25 89.21 88.92

PNPM 85.37 86.42 85.53 84.45 84.04 82.88
Sun et al. [26] 79.64 81.27 79.8 80.89 79.39 78.74

PM 52.73 66.58 75.73 63.26 57.89 67.78

Figure 3 illustrates the trend of model accuracy under different mechanisms on the
MNIST dataset. From the figure, it can be observed that the NoDP mechanism maintains a
relatively stable model accuracy as the number of clients increases, while other mechanisms
exhibit varying degrees of decline, with SPM showing the slowest decrease, indicating
that this mechanism is more suitable for limited client scenarios. In contrast, other mecha-
nisms perform poorly when the number of clients reaches 50. This is due to the inverse
relationship between the number of clients and the amount of training data allocated to
each client; the reduction in the training dataset leads to a decline in the model accuracy of
these mechanisms.

Figure 3. Comparative analysis of model accuracy for different mechanisms under the limited client
scenario of the MNIST dataset [26].

The Fashion-MNIST dataset uses a privacy budget of 0.6. As shown in Table 3,
the NoDP mechanism maintains stable model accuracy across different client counts, while
SPM, although slightly lower, is close to NoDP, particularly with 5 to 10 clients, where
SPM’s accuracies are 83.78% and 83.99%, with a difference of less than 1%. In contrast,
the mechanisms by PNPM and Sun et al. [26] show a significant decline in accuracy as the
number of clients increases, especially with PNPM dropping to 80.71% when the client
count reaches 50. The PM mechanism performs poorly with a limited number of clients,
achieving an accuracy of only 56.05%. Although it improves subsequently, the performance
remains unstable.

Table 3. Model accuracy data for different mechanisms under the limited client scenario of the
Fashion-MNIST dataset.

Algorithm 5 10 20 30 40 50

NoDP 84.47 84.56 84.54 84.55 84.54 84.58
SPM 83.78 83.99 83.64 83.28 82.93 82.62

PNPM 81.89 81.56 81.05 81.14 80.56 80.71
Sun et al. [26] 80.71 80.67 81.08 80.95 80.62 80.97

PM 56.05 64.20 70.46 69.85 64.25 71.88
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Figure 4 illustrates the trend of model accuracy under different mechanisms on the
Fashion-MNIST dataset. It can be observed that the model accuracy of all mechanisms
shows a slight decline as the number of clients increases, but remains relatively stable at
client counts of 5 and 10. Notably, the SPM mechanism, when the client count reaches 50,
has an accuracy that is 1.96% lower than NoDP, yet still surpasses the accuracy of other
mechanisms, demonstrating the advantages of the SPM mechanism.

Figure 4. Comparative analysis of model accuracy for different mechanisms under the limited client
scenario of the Fashion-MNIST dataset [26].

In the CIFAR-10 dataset (Model 1), a privacy budget of 1.9 is used (NaN indicates
gradient explosion under this privacy budget, preventing convergence). As shown in
Table 4, the NoDP mechanism performs steadily with client counts of 5 to 10, consistently
maintaining an accuracy of over 81%. The SPM mechanism experiences a slight decline
in accuracy as the number of clients increases, yet still maintains an accuracy of 75.14%
with 50 clients, which is higher than that of other mechanisms. In contrast, the PNPM and
Sun et al. [26] mechanisms exhibit lower accuracies and demonstrate a noticeable decline in
performance as the number of clients increases. The PM mechanism performs poorly with
a limited number of clients. This indicates that under a lower privacy budget, the SPM
mechanism can maintain high performance.

Table 4. Model accuracy data for different mechanisms under the limited client scenario of the
CIFAR-10 dataset (Model 1).

Algorithm 5 10 20 30 40 50

NoDP 81.19 81.44 79.50 76.42 79.25 77.66
SPM 80.19 80.41 79.36 76.08 75.01 75.14

PNPM 68.49 67.73 64.18 65.09 66.04 63.29
Sun et al. [26] 58.39 58.76 54.79 54.96 55.37 55.46

PM NaN NaN NaN NaN NaN NaN

Figure 5 illustrates the trend of model accuracy under different mechanisms on the
CIFAR-10 dataset (Model 1). We observe that with 5 to 30 clients, SPM maintains a model
accuracy similar to that of NoDP. However, with 40 to 50 clients, all mechanisms show
a significant decline in model accuracy. This may be related to the CIFAR-10 dataset
consisting of color three-channel images, which increases training complexity; however,
this trend differs from the performance observed in other datasets. To further investigate
this situation, we employed a second network architecture for this dataset, which will be
analyzed comprehensively in Model 2.
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Figure 5. Comparative analysis of model accuracy for different mechanisms under the limited client
scenario of the CIFAR-10 dataset (Model 1) [26].

As shown in Table 5, in the CIFAR-10 dataset (Model 2), we set the privacy budget
to 3.9. We found that in a more complex network (ResNet18), the lower privacy budget
of 1.9 could not yield optimal performance for the mechanisms, so we made a moderate
increase in the privacy budget. With a client count of 5, all mechanisms achieved high
model accuracy, with the lowest being 78.33%. This phenomenon can be attributed to the
limited number of clients, allowing each client to utilize a more sufficient training set, along
with the ability of deep networks to extract more useful information. However, as the
client count increases to 40 to 50, the reduction in the local training set leads to a decline in
the model accuracy of all mechanisms, while the SPM mechanism still maintains a high
accuracy of 84.53%, with a difference of 2.93% compared to NoDP.

We further analyzed the reasons for the significant decline in Model 1 when the
client count was between 40 and 50. Compared to Model 1, Model 2 has a greater depth,
enabling it to extract more information across a larger number of clients (e.g., 50 clients).
Additionally, the lower privacy budget used in Model 1 is also a contributing factor to the
decline. Since deep networks learn more information when learning sample features, a very
low privacy budget (such as 1.9 in Model 1) may lead to overfitting in the early stages of
training, thus preventing convergence. Meanwhile, a smaller privacy budget can also alter
the features learned by the model in the early stages during aggregation. In Section 5.2.4,
we will explore how to enhance model accuracy through other means while maintaining
the privacy budget unchanged.

Table 5. Model accuracy data for different mechanisms under the limited client scenario of the
CIFAR-10 dataset (Model 2).

Algorithm 5 10 20 30 40 50

NoDP 87.78 86.95 87.79 86.77 86.87 87.46
SPM 86.99 86.94 85.61 85.08 84.68 84.53

PNPM 82.87 83.43 83.17 79.97 80.50 83.07
Sun et al. [26] 78.98 72.99 71.91 71.39 68.75 67.60

PM 78.33 79.06 75.31 53.52 54.44 58.93

Figure 6 illustrates the trend of model accuracy under different mechanisms on the
CIFAR-10 dataset (Model 2).
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Figure 6. Comparative analysis of model accuracy for different mechanisms under the limited client
scenario of the CIFAR-10 dataset (Model 2) [26].

5.2.2. Model Accuracy Analysis in Scenarios with Many Clients

In the previous experiment, we explored the model accuracy of various mechanisms
in a limited client scenario; however, in real-world applications, the number of clients
often varies dynamically due to communication costs and resource constraints. Therefore,
the robustness and adaptability of mechanisms in multi-client scenarios are particularly im-
portant to ensure that the model maintains good performance across different environments.
Hence, our mechanisms need to be adapted to multi-client scenarios.

In this section, we selected a client count ranging from 100 to 500 as the multi-client
scenario. The CIFAR-10 dataset also employs two network models. The specific settings are
as follows: a sampling rate of 0.6 (the sampling rate cannot be 1 in multi-client scenarios
to prevent excessive local noise from interfering with global model aggregation), local
iterations set to 3 (with 15 and 10 iterations for the two models in the CIFAR-10 dataset,
and 10 iterations for the Fashion-MNIST dataset), a batch size of 64 (with a batch size of
32 for CIFAR-10 Model 2), and 50 global communication rounds (with 20 for the Fashion-
MNIST dataset). Next, we will analyze the performance of different mechanisms in terms
of model accuracy for each dataset.

The privacy budget for the MNIST dataset is set to 0.3. As shown in Table 6, in the
multi-client scenario, we find that the model accuracy of NoDP on the MNIST dataset does
not decline. This is because the dataset is relatively simple and easy to train. With a client
count of 100, the accuracy of SPM is 88.37%, which is 1.63% lower than NoDP’s 90; with a
client count of 500, SPM’s accuracy is 84.31%, differing by 5.85% from NoDP. Nevertheless,
SPM’s accuracy remains higher than that of other mechanisms, further validating the
effectiveness of our algorithm.

Table 6. Model accuracy data for different mechanisms under the multi-client scenario of the
MNIST dataset.

Algorithm 100 200 300 400 500

NoDP 90.00 90.44 90.63 90.18 90.16
SPM 88.37 87.11 85.88 85.34 84.31

PNPM 80.76 79.92 78.45 76.00 76.42
Sun et al. [26] 73.75 69.03 70.04 67.05 57.82

PM 55.46 36.86 33.90 25.74 19.41

Figure 7 illustrates the trend of model accuracy under different mechanisms on the
MNIST dataset.
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Figure 7. Comparative analysis of model accuracy for different mechanisms under the multi-client
scenario of the MNIST dataset [26].

The privacy budget for the Fashion-MNIST dataset is set to 0.9. Compared to the
limited client scenario, we slightly increased the privacy budget in the multi-client scenario
because the increase in the number of clients leads to a reduction in the training set allocated
to each client, consequently reducing the available feature information. A moderate increase
in the privacy budget can effectively reduce noise, preventing the model from experiencing
gradient explosion due to noise interference. As shown in Table 7, among all clients,
the model accuracy of the SPM mechanism differs from that of the NoDP mechanism by at
least 0.06% and at most 1.87%. Except for the PM mechanism, the model accuracies of the
other mechanisms are relatively high, indicating that in the multi-client scenario, the SPM,
PNPM, and Sun et al. [26] mechanisms can all demonstrate good performance.

Table 7. Model accuracy data for different mechanisms under the multi-client scenario of the Fashion-
MNIST dataset.

Algorithm 100 200 300 400 500

NoDP 82.64 81.66 81.87 80.97 80.46
SPM 82.60 81.60 80.40 79.74 78.59

PNPM 79.77 78.94 77.66 78.89 75.06
Sun et al. [26] 77.51 78.28 77.16 76.77 74.99

PM 67.45 54.83 68.17 55.81 39.76

Figure 8 illustrates the trend of model accuracy under different mechanisms on the
Fashion-MNIST dataset.

Figure 8. Comparative analysis of model accuracy for different mechanisms under the multi-client
scenario of the Fashion-MNIST dataset [26].
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The privacy budget for the CIFAR-10 dataset (Model 1) is set to 2.9. For this relatively
complex dataset, our privacy budget is slightly increased compared to the limited client
scenario. As shown in Table 8, with a client count of 100, the SPM mechanism differs
from NoDP by 1.74%, outperforming other mechanisms. However, as the client count
increases, the reduction in the training set leads to an expanding gap between SPM and
NoDP, with similar performance trends observed for other mechanisms. With a client count
of 500, the accuracy of NoDP is 67.27%, while the accuracies of SPM, PNPM, Sun et al. [26],
and PM are 57.83%, 54.01%, 50.71%, and 45.16%, respectively. Nevertheless, SPM still
maintains the highest accuracy among all mechanisms.

This indicates that in multi-client scenarios, shallow network models struggle to
handle more useful information for complex datasets. If we aim to improve model accuracy,
a moderate increase in the privacy budget may be necessary, though this could also reduce
the privacy-protection capability of the mechanism. In this regard, we analyze the usability
of our algorithm under different privacy budgets in Section 5.2.2.

Table 8. Model accuracy data for different mechanisms under the multi-client scenario of the CIFAR-
10 dataset (Model 1).

Algorithm 100 200 300 400 500

NoDP 76.46 74.69 71.46 67.67 67.27
SPM 74.72 70.39 65.55 59.85 57.83

PNPM 65.70 56.51 56.45 55.21 54.01
Sun et al. [26] 61.19 55.30 50.62 51.23 50.71

PM 53.36 49.82 49.37 50.49 45.16

Figure 9 illustrates the trend of model accuracy under different mechanisms on the
CIFAR-10 dataset (Model 1).

Figure 9. Comparative analysis of model accuracy for different mechanisms under the multi-client
scenario of the CIFAR-10 dataset (Model 1) [26].

The privacy budget for the CIFAR-10 dataset (Model II) is set to 3.9, similar to the low
client scenario. As shown in Table 9, we find that the performance of the SPM and PNPM
mechanisms is nearly consistent across clients, with only minor differences. For example,
with 100 clients, the accuracy of SPM is 83.58%, while that of PNPM is 82.47%, indicating
that SPM slightly outperforms PNPM. However, with 500 clients, the accuracy of PNPM
(77.56%) surpasses that of SPM (76.64%). The accuracy of other mechanisms is relatively
low. Based on the above experimental analysis, we conclude that in deeper network models,
the accuracy of all mechanisms generally improves, demonstrating superior performance
compared to shallow models. Even with a larger number of clients (500), the accuracy of
SPM and PNPM is similar to that of NoDP. This indicates that deep models can learn more
useful information from relatively smaller training sets, thereby enhancing model accuracy,
although their training time cost is significantly higher than that of shallow models.
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Table 9. Model accuracy data for different mechanisms in the multi-client scenario of the CIFAR-10
dataset (Model 2).

Algorithm 100 200 300 400 500

NoDP 84.28 82.33 81.56 80.74 79.29
SPM 83.58 81.45 79.24 78.74 76.64

PNPM 82.47 81.22 78.58 78.64 77.56
Sun et al. [26] 74.56 68.58 64.05 63.14 59.25

PM 67.91 60.91 60.39 69.32 59.87

Figure 10 illustrates the variation trend of model accuracy for different mechanisms
under the CIFAR-10 dataset (Model 2).

Figure 10. Comparative analysis of model accuracy for different mechanisms in the multi-client
scenario of the CIFAR-10 dataset (Model 2) [26].

5.2.3. Usability Analysis

In this section, we will analyze the usability of the mechanisms, with the experimental
scenario specifically designed in two parts, which we will elaborate on below.

Part One: Usability Analysis of Mechanisms.
We will compare the performance of the SPM mechanism with other federated learn-

ing privacy-protection mechanisms across three datasets, primarily examining the pri-
vacy budget used to achieve maximum model accuracy. This analysis aims to compare
privacy-protection capabilities while ensuring model performance. A smaller privacy
budget indicates stronger privacy-protection capabilities. For the low and high client
scenarios, we selected median quantities as representatives, specifically 30 and 300, to val-
idate performance under different scenarios. The parameters used for each mechanism
remain consistent with those in the previous two sections, with specific values detailed in
Tables 10 and 11.

In the low client scenario, there are significant differences in the privacy budgets
required by each mechanism to achieve similar model accuracies. The SPM mechanism
requires the lowest privacy budget, followed closely by PNPM, indicating that both mecha-
nisms are suitable for scenarios with smaller privacy budgets. The Sun et al. [26] mechanism
also performs well on the MNIST and Fashion-MNIST datasets, while the PM mechanism
fails to achieve the model accuracy of other mechanisms on the CIFAR-10 dataset, and is
therefore replaced with NaN. Furthermore, on other datasets, the privacy budget of the
PM mechanism is excessively high, indicating that it is not suitable for low privacy budget
scenarios. Under small privacy budgets, although the performance differences among
the mechanisms are minor, they still reveal significant gaps, further demonstrating the
advantages of the SPM mechanism in terms of privacy protection.
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Table 10. Comparison of effectiveness of different mechanisms in the low client scenario
(model accuracy).

Algorithm MNIST Fashion-MNIST CIFAR-10 (Model 1) CIFAR-10 (Model 2)

PM 88.57 (ϵ = 9) 79.42 (ϵ = 13) Nan 80.12 (ϵ = 10)
PNPM 88.97 (ϵ = 1) 82.38 (ϵ = 1.5) 77.64 (ϵ = 2.9) 86.22 (ϵ = 6)

Sun et al. [26] 88.09 (ϵ = 2) 83.99 (ϵ = 2) 74.87 (ϵ = 3.9) 85.09 (ϵ = 7.5)
SPM 89.25 (ϵ = 0.3) 83.28 (ϵ = 0.6) 76.08 (ϵ = 1.9) 85.08 (ϵ = 3.9)

In the multi-client scenario, we find that the privacy budgets required by each mech-
anism are generally larger, especially on the CIFAR-10 dataset. This is primarily due to
the complexity of this dataset compared to others, necessitating smaller noise perturba-
tions to maintain model performance. For the CIFAR-10 dataset, in Model I, the privacy
budget required by the SPM mechanism is 2.9, while the minimum privacy budget for
other mechanisms must reach 5.5. In Model II, the privacy budgets of the mechanisms are
close, with SPM at 3.9, PNPM at 4.5, and Sun et al. at 8.5. This indicates that, compared to
privacy budgets below 3, the differences among budgets exceeding 3 are not significant,
and the privacy-protection capabilities provided are relatively weak. This further validates
the effectiveness of our algorithm.

Table 11. Comparison of effectiveness of different mechanisms in the multi-client scenario
(model accuracy).

Algorithm MNIST Fashion-MNIST CIFAR-10 (Model 1) CIFAR-10 (Model 2)

PM 82.41 (ϵ = 15) 77.59 (ϵ = 15) Nan 79.29 (ϵ = 10)
PNPM 86.63 (ϵ = 0.9) 79.62 (ϵ = 1.2) 60.19 (ϵ = 5.5) 78.69 (ϵ = 4.5)

Sun et al. [26] 84.20 (ϵ = 1.5) 81.20 (ϵ = 1.5) 62.34 (ϵ = 7.5) 78.76 (ϵ = 8.5)
SPM 85.88 (ϵ = 0.3) 80.4 (ϵ = 0.9) 65.55 (ϵ = 2.9) 79.24 (ϵ = 3.9)

Part Two: Usability Analysis of the SPM Mechanism.
In this section, we will explore the usability analysis of the SPM mechanism. As de-

scribed in Sections 5.2.1 and 5.2.2, the parameters used in these sections are based on a
comprehensive selection of privacy-protection capabilities. This section will examine the
differences between the SPM mechanism and the NoDP mechanism without noise process-
ing when the privacy budget is appropriately increased, to demonstrate the usability of the
SPM mechanism. We will use the NoDP values from the previous section and maintain
the client numbers consistent with those in Part One of this section, selecting 30 and 300 as
representatives. By comparing the performances of SPM and NoDP under different privacy
budgets, we aim to reveal the balance between privacy protection and model accuracy in
the SPM mechanism. We will analyze each dataset separately below.

For the MNIST dataset, we selected a privacy budget of 0.3 in Sections 5.2.1 and 5.2.2.
In this section, our privacy budgets are set as follows: 0.1 to 0.4 for the low client scenario
and 0.3 to 2.4 for the multi-client scenario. This is because in the multi-client scenario, small
increases in the privacy budget do not lead to significant performance improvements, so
the maximum privacy budget we selected is the minimum value that allows the model
accuracy to approach that of NoDP.

As shown in Figure 11, in the low client scenario, selecting a privacy budget of
0.4 allows the performance of the SPM mechanism to approach that of NoDP. However,
in the multi-client scenario, the privacy budget needs to be set to 2.4. We infer that in the
multi-client case, selecting a privacy budget of 2.4 is a reasonable choice, but it also implies
a decrease in privacy-protection capability. We will further evaluate the privacy-protection
capability of the privacy budget values used in this section in Section 5.2.4.
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(a) Low Client Scenario

(b) Multi Client Scenario

Figure 11. Variation trend of model accuracy under different privacy budgets in different client
scenarios for the MNIST dataset.

In the Fashion-MNIST dataset, as shown in Figure 12, we selected a privacy budget
range of 0.6 to 2.1 in the low client scenario. However, with a privacy budget of 2.1,
the model accuracy of the SPM mechanism still shows a 1% gap compared to NoDP, but is
significantly higher than the accuracy at 0.6, which is acceptable. Although we did not
continue to increase the privacy budget, a moderate increase does improve model accuracy.
Therefore, for this scenario, selecting a privacy budget of 2.1 can provide better performance,
but it also reduces privacy-protection capability.

(a) Low Client Scenario
Figure 12. Cont.
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(b) Multi Client Scenario

Figure 12. Variation trend of model accuracy under different privacy budgets in different client
scenarios for the Fashion-MNIST dataset.

In the multi-client scenario, we selected a privacy budget range of 0.6 to 1.8. We found
that when the privacy budget is 1.8, the performance of the SPM mechanism approaches
that of NoDP, and the overall accuracy shows an upward trend with increasing privacy
budgets. This indicates that selecting a privacy budget of 1.8 is a good choice in the multi-
client scenario. This is because, compared to the low client scenario, there are fewer locally
allocated datasets in this scenario, so the chosen number of local iterations (set to 10) is
adjusted to accommodate this change.

In CIFAR-10 (Model 1), as shown in Figure 13, due to the model being a shallow
network, we set the privacy budget range as follows: 1.3 to 2.1 for the low client scenario
and 2.9 to 4.9 for the multi-client scenario. In the low client scenario, when the privacy
budget is 1.9 and 2.1, the model accuracy approaches that of NoDP, indicating that a
privacy budget of 2.0 is a good choice, ensuring high performance while providing good
privacy protection.

In the multi-client scenario, even with a higher privacy budget of 4.9, the accuracy of
the SPM mechanism still shows an approximate 3% gap compared to NoDP. We believe
this is primarily due to the model being shallow, along with an increase in the number of
clients leading to a reduction in the local training set, which consequently decreases the
content that can be learned. Even with an increased privacy budget, the model struggles
to learn more useful information without being disrupted. Therefore, we decided not to
continue increasing the privacy budget for further investigation.

(a) Low Client Scenario
Figure 13. Cont.
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(b) Multi Client Scenario

Figure 13. Variation trend of model accuracy under different privacy budgets in different client
scenarios for the CIFAR-10 dataset (Model 1).

In CIFAR-10 (Model II), as shown in Figure 14, we conducted additional experiments
addressing the issue of being unable to learn more information in shallow networks in the
multi-client scenario. By employing the deeper ResNet18 architecture, we found that under
the same privacy budget (4.4), this model can provide better performance, with a gap of
less than 0.2% compared to NoDP. Therefore, we set the privacy budgets as follows: 2.9 to
4.9 for the low client scenario and 2.4 to 4.4 for the multi-client scenario.

In the low client scenario, when the privacy budget is 4.4 and 4.9, the gap between
SPM and NoDP can also be maintained within 1%. This further indicates that adopting a
deeper network architecture is necessary for more complex datasets. However, this also
implies that the time and privacy overhead incurred may increase.

Finally, based on the above observations, we conclude that appropriately increasing
the privacy budget helps improve model accuracy to meet practical needs, but it may also
lead to a decrease in privacy-protection capability. To this end, we will introduce DLG
attacks in Section 5.2.4 to test the privacy-protection capability of the privacy budgets used
in this section and conduct a comprehensive analysis of the optimal privacy budget for the
SPM mechanism.

(a) Low Client Scenario
Figure 14. Cont.
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(b) Multi Client Scenario

Figure 14. Variation Trend of model accuracy under different privacy budgets in different client
scenarios for the CIFAR-10 dataset (Model 2).

5.2.4. Privacy-Protection Capability Evaluation

In this section, we selected three privacy budget values for the SPM mechanism in
different client scenarios to assess its usability and privacy-protection capability. The first
two privacy budget values are selected from the privacy budgets in Sections 5.2.1 and 5.2.2
to evaluate the level of privacy protection when balancing privacy-protection capability
and performance, while the third privacy budget is chosen from the maximum privacy
budgets for each dataset in Section 5.2.3 to measure the privacy-protection capability at
maximum accuracy. We employed classic DLG attacks on the datasets corresponding to
each privacy budget, recording the convergence count of the attacks as Attack T (AT),
and selecting three phases: (1/3 AT, 2/3 AT, 3/3 AT) to observe the completion of the
disguised images during the attacks. We use the following two metrics to evaluate the
experimental results: (1) Structural Similarity Index (SSIM), which is used to assess the
difference between the attack-reconstructed image and the original image; (2) DLG attack
loss value, which measures the difference between the gradients of the original sample and
the disguised sample.

The SSIM value ranges from 0 to 1, with values closer to 1 indicating higher image
similarity, and 1 representing identical images. SSIM is calculated based on three aspects:
luminance, contrast, and structure, which respectively measure the differences in mean
luminance, contrast, and local structural similarity. These metrics help comprehensively
evaluate the effectiveness of the attack and the performance of privacy protection. Next,
we will independently analyze the experimental results of each dataset.

In the MNIST dataset, the privacy budgets we adopted are 0.3, 1.5, and 2.4. From
Table 12 and Figure 15, it can be seen that as the number of attack rounds increases, the loss
value decreases while the SSIM value continues to increase. With a privacy budget of 0.3,
the provided privacy protection is the strongest, with a very high loss value of 119.6575
and a relatively low SSIM value of 0.4582, resulting in the final disguised image showing
almost no features of the original image. This indicates that using a privacy budget of
0.3 can effectively protect privacy in the low client scenario. With a privacy budget of
1.5, the disguised image displays only a few features, making it difficult to distinguish
obvious characteristics, indicating that the multi-client scenario also possesses strong
privacy-protection capability. However, when the privacy budget is increased to 2.4, we
find that the attacked disguised images exhibit numerous features, which can be used to
distinguish the original training images after further processing, especially considering
that this dataset is small, containing only ten classes. As mentioned in the conclusion of
the previous section, increasing the privacy budget reduces privacy-protection capability,
which also indirectly reflects the privacy-protection capability of the SPM mechanism.
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Table 12. Effectiveness of DLG attacks on the model under different privacy budgets for the
MNIST dataset.

Indicators 1/3 AT 2/3 AT 3/3 AT

Loss Value (ϵ = 0.3) 119.6662 119.6584 119.6575
SSIM Value (ϵ = 0.3) 0.1803 0.3468 0.4582
Loss Value (ϵ = 1.5) 3.1977 3.1946 3.2009
SSIM Value (ϵ = 1.5) 0.1910 0.3855 0.6319
Loss Value (ϵ = 2.4) 83.5240 83.5232 6.9459
SSIM Value (ϵ = 2.4) 0.1438 0.1169 0.6989

Figure 15 shows the variation trend of disguised images under different privacy
budgets in the MNIST dataset.

Figure 15. DLG attack effect on the model under different privacy budgets for the MNIST dataset.

In the Fashion-MNIST dataset, as shown in Figure 16, the protection capability of the
SPM mechanism is relatively unstable. In the final iteration, the disguised images under all
privacy budgets displayed some features, and the prominence of these features increased
with the privacy budget. As shown in Table 13, it can be seen that, except for the case
where the privacy budget is 0.6, where the loss value does not converge, the loss values
for other privacy budgets converge well, and the SSIM values can reach around 80%. This
indicates that in this dataset, if we wish to enhance the privacy-protection capability of
the SPM mechanism, it is necessary to consider reducing the privacy budget or employing
deeper neural networks.

Table 13. Effectiveness of DLG attacks on the model under different privacy budgets for the Fashion-
MNIST dataset.

Indicators 1/3 2/3 3/3

Loss Value (ϵ = 0.6) 717.1729 717.1757 717.2051
SSIM Value (ϵ = 0.6) 0.3830 0.2078 0.1613
Loss Value (ϵ = 1.2) 0.2467 0.2147 0.2102
SSIM Value (ϵ = 1.2) 0.2336 0.5325 0.7217
Loss Value (ϵ = 1.8) 1.3854 0.9854 0.7643
SSIM Value (ϵ = 1.8) 0.2985 0.1425 0.8168

Figure 16 shows the variation trend of disguised images under different privacy
budgets in the Fashion-MNIST dataset.
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Figure 16. DLG attack effect on the model under different privacy budgets for the Fashion-
MNIST dataset.

In the CIFAR-10 dataset (Model 1), the privacy budgets were increased to 1.9, 2.9,
and 4.9 due to the dataset consisting of color images. As shown in Table 14, the loss values
and SSIM values under each privacy budget did not exhibit non-convergence. However,
with a privacy budget of 1.9, the disguised images displayed almost no features. As the
privacy budget increased, the images gradually revealed some features, but there was still
considerable noise interference, resulting in blurry images. This indicates that training the
SPM mechanism on this dataset using Model 1 is advisable, demonstrating good privacy-
protection capability. Furthermore, the optimal choice of privacy budget aligns with those
selected in Sections 5.2.1 and 5.2.2.

Table 14. Effectiveness of DLG attacks on the model under different privacy budgets for the CIFAR-10
dataset (Model 1).

Indicators 1/3 2/3 3/3

Loss Value (ϵ = 1.9) 10.1564 7.9269 7.5234
SSIM Value (ϵ = 1.9) 0.1641 0.5540 0.6650
Loss Value (ϵ = 2.9) 2.6184 1.6189 1.4455
SSIM Value (ϵ = 2.9) 0.3035 0.7160 0.8255
Loss Value (ϵ = 4.9) 0.5326 0.3208 0.2914
SSIM Value (ϵ = 4.9) 0.8073 0.8888 0.9293

Figure 17 shows the variation trend of disguised images under different privacy
budgets in the CIFAR-10 dataset (Model 1).

In the CIFAR-10 dataset (Model 1), as shown in Table 15, we used a deeper network
structure and relatively low privacy budgets of 3.9, 4.4, and 4.9. With a privacy budget
of 3.9, we observed a trend consistent with the SPM mechanism, where the colors of the
disguised images were completely opposite to those of the original images, indicating
a reversal of the color channels in the attacked images. This phenomenon reflects the
disturbance method of our mechanism, where applying directional perturbations after
desensitizing the gradient weights can effectively disrupt the direction of DLG attacks,
thereby protecting the original data while maintaining high accuracy. For the settings
of other privacy budgets, we found it difficult to obtain useful information. As seen in
Table 1, the SSIM values for each privacy budget are relatively low, with the highest being
only around 70%. This indicates that, despite the higher privacy budgets, the metrics
have limitations across multiple dimensions, with actual pixel similarity being only about
one-third of the current value.

We believe that even with higher privacy budgets, the combination of the SPM mecha-
nism and deep neural networks maintains privacy-protection capability. Therefore, for com-
plex datasets, although shallower networks can provide smaller privacy budget settings,
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deep neural networks can still maintain similar privacy-protection capabilities even with
larger privacy budgets, albeit with increased time costs.

Figure 17. DLG attack effect on the model under different privacy budgets for the CIFAR-10 dataset
(Model 1).

Table 15. Effectiveness of DLG attacks on the model under different privacy budgets for the CIFAR-10
dataset (Model 2).

Indicators 1/3 2/3 3/3

Loss Value (ϵ = 3.9) 9.6695 8.9784 11.0653
SSIM Value (ϵ = 3.9) 0.4942 0.6270 0.6768
Loss Value (ϵ = 4.4) 10.5954 10.3584 10.5718
SSIM Value (ϵ = 4.4) 0.5516 0.6997 0.7175
Loss Value (ϵ = 4.9) 5.6114 3.9893 4.5776
SSIM Value (ϵ = 4.9) 0.6179 0.7271 0.7234

Figure 18 shows the variation trend of disguised images under different privacy
budgets in the CIFAR-10 dataset (Model 2).

Figure 18. DLG attack effect on the model under different privacy budgets for the CIFAR-10 dataset
(Model 2).

Figure 18 shows the variation trend of disguised images under different privacy bud-
gets in the CIFAR-10 dataset (Model 2). In conclusion, we summarize as follows: The SPM
mechanism implements positive and negative disturbances by taking the absolute value of
the model gradient parameters and multiplying by a disturbance coefficient, achieving a
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desensitization effect that meets strict differential privacy requirements. Combined with
the characteristics of DLG attacks, this mechanism can effectively reduce the likelihood of
successful attacks. First, the positive and negative disturbances increase the randomness of
the model gradients, making it difficult for attackers to extract useful information. Second,
the dynamic adjustment of the disturbance coefficient can enhance resistance to specific
attack patterns, adapting to different attack environments. Furthermore, the design of the
SPM mechanism ensures that the leakage of sensitive information during gradient updates
is significantly reduced, thereby suppressing the effectiveness of DLG attacks. Overall,
the SPM mechanism not only protects data privacy but also effectively mitigates the risk of
DLG attacks by enhancing the fuzziness and randomness of the gradients.

Furthermore, we analyzed how the SPM mechanism effectively reduces the risk of
membership inference attacks. Membership inference attacks attempt to infer whether
specific data points were used in training by analyzing the model outputs, while the SPM
mechanism applies noise and processes gradients in absolute value, making the model
outputs more random and making it difficult for attackers to extract clear membership
information. Notably, the SPM mechanism is particularly suitable for multi-client scenarios.
In multi-client environments, the datasets used by each client are usually smaller, and the
diversity of data is relatively low, which makes the features learned by the attack mod-
els trained on shadow datasets used in membership inference attacks more difficult to
discern against the features of our model, thus reducing the effectiveness of membership
inference attacks.

The design of the SPM mechanism not only protects user data privacy but also sig-
nificantly reduces the risk of the model facing various types of attacks by enhancing the
fuzziness of the model outputs.

5.2.5. Impact of Local Iteration Count on Communication Overhead

In this section, we conducted an internal exploration of the SPM mechanism to investigate
whether “increasing local iterations can reduce global communication costs at the expense
of local time overhead”. We selected the parameter settings from Sections 5.2.1 and 5.2.2 as a
control, appropriately reducing the global communication rounds T while increasing the
local iterations E, ensuring that the privacy budget remained unchanged. This was done
to compare the model accuracy against the original parameter settings and to analyze the
changes in other parameters while maintaining a similar model accuracy and ensuring
the effectiveness of privacy protection. The client scenarios were set to 30 and 300 clients,
respectively. Next, we will analyze the experimental results one by one.

In the MNIST dataset, as shown in Table 16, we increased the local iterations E from 3
to 5, 7, 9, and 11 for the small client scenario, and to 11, 13, 15, and 17 for the multi-client
scenario, while reducing the global communication rounds T to 20. As seen in Table 1,
appropriately increasing the local iterations not only maintains the original model accuracy
but also leads to some improvements, while significantly reducing global communication
costs. Therefore, for the SPM mechanism, this paper recommends adopting the parameter
settings shown in the table for this dataset to achieve higher communication efficiency and
model performance.

Table 16. Analysis of Model accuracy under different parameter settings for the MNIST dataset.

C = 30, ϵ = 0.3 E = 3 E = 5 E = 7 E = 9 E = 11

SPM (T = 50) 89.25 - - - -
SPM (T = 20) - 90.02 89.77 89.41 89.66

C = 300, ϵ = 0.3 E = 3 E = 11 E = 13 E = 15 E = 17

SPM (T = 50) 85.88 - - - -
SPM (T = 20) - 87.83 88.05 88.47 87.74

In the Fashion-MNIST dataset, as shown in Table 17, we found that reducing the local
iterations, for example setting E = 2 and simultaneously decreasing the global communica-
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tion rounds T, led to a decline in model accuracy from the original 83.28 to 82.80. However,
when E = 7 or higher, the model accuracy remains stable, while communication costs
are significantly reduced. This conclusion applies to both client scenarios in this dataset.
However, as the number of local iterations increases, the computational time overhead also
rises rapidly, which is another important issue that requires careful consideration.

Table 17. Analysis of model accuracy under different parameter settingsfor the Fashion-
MNIST dataset.

C = 30, ϵ = 0.6 E = 3 E = 2 E = 5 E = 7 E = 9

SPM (T = 50) 83.28 - - - -
SPM (T = 30) - 82.80 82.95 83.35 83.08

C = 300, ϵ = 0.9 E = 10 E = 12 E = 14 E = 16 E = 18

SPM (T = 20) 80.40 - - - -
SPM (T = 15) - 80.94 81.00 81.30 81.24

In the CIFAR-10 dataset (Model 2), as shown in Table 18, we found that reducing
the number of iterations did not yield significant results for complex network models.
For example, increasing the number of iterations from E = 5 to E = 8 resulted in negligible
improvement in model accuracy, while reducing the global communication rounds T led
to a decrease in model accuracy, which contradicts the purpose of this experiment. We
believe this is due to the deeper internal connections of the network, which are already
capable of fully learning feature information under the current iteration settings. Therefore,
this approach cannot effectively reduce communication overhead for this dataset. We will
explore more strategies to optimize communication overhead in future research.

Table 18. Analysis of model accuracy under different parameter settings for the CIFAR-10 dataset
(Model 2).

C = 30, ϵ = 3.9 E = 5 E = 6 E = 7 E = 8 E = 9

SPM (T = 50) 85.08 - - - -
SPM (T = 30) - 84.82 84.78 85.16 84.37

C = 300, ϵ = 3.9 E = 10 E = 12 E = 14 E = 16 E = 18

SPM (T = 50) 79.24 - - - -
SPM (T = 30) - 79.51 79.34 79.06 79.13

6. Discussion

In this chapter, we discuss the applications of our research findings, current limitations,
and future directions for improvement, providing guidance for subsequent research.

6.1. Advantages and Limitations of the Existing Mechanism

The proposed Symmetric Piecewise Mechanism combines differential privacy and zero
bias design, successfully balancing model performance and privacy protection. However,
there are some limitations when dealing with open-set scenarios and addressing data imbal-
ance. In open-set classification scenarios, the model needs to make reasonable predictions
for inputs not belonging to the training set. The recently proposed FedPD algorithm solves
the federated open-set recognition problem through parameter disentanglement, providing
a new approach to enhancing model generalization in open-set cases [33]. In the future, we
plan to apply the idea of parameter disentanglement to the SPM mechanism to improve
the model’s ability to recognize new classes of data.

Furthermore, federated learning faces challenges in handling imbalanced data, es-
pecially in the medical field where data imbalance is particularly severe. Reference [34]
proposes a personalized federated learning approach that uses personalization and anti-
degradation strategies to tackle the challenge of imbalanced data. We plan to combine these
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methods with the SPM mechanism to improve the robustness and generalization capability
of the model in handling uneven data across different clients.

6.2. Application of Blockchain Technology in Federated Learning

In terms of the security of federated learning, this study reduces the negative impact
of perturbation on global model performance through the SPM mechanism and zero bias
design, maintaining statistical unbiasedness of the model. However, we recognize that there
is still room for improvement in protecting model integrity. Reference [7] indicates that
blockchain technology has significant potential in enhancing the security and transparency
of federated learning.

The tamper-resistant and distributed nature of blockchain allows each client’s con-
tribution to be recorded and tracked, enabling verifiability and auditability of the model
update process. We believe that blockchain technology, such as Vfchain, can enhance
model integrity and can be combined with our SPM mechanism to achieve auditability and
trustworthiness in federated learning in future research. However, effectively integrating
blockchain technology into the federated learning framework is not a trivial task, requir-
ing thorough architectural design and performance optimization. Therefore, we remain
cautiously optimistic about the integration of these technologies.

6.3. Future Research Directions

Based on existing research and the proposed SPM mechanism, future research direc-
tions mainly include the following:

Enhancement of open-set recognition and generalization ability: Drawing inspiration
from the parameter disentanglement method of FedPD, applying it to federated learning to
enhance the model’s generalization ability in open-set scenarios.

Solutions for personalization and data imbalance: Combining personalized learn-
ing mechanisms to address the uneven distribution of client data. In sensitive domains
such as healthcare, imbalanced data can severely affect model performance. We refer to
Reference [34] to explore personalized anti-degradation mechanisms to improve model
robustness in complex data scenarios.

Integration of blockchain technology: Continue exploring how to apply blockchain
technology to federated learning to enhance data traceability and model security. Technolo-
gies like Vfchain have great potential for improving federated learning security. The de-
centralized, tamper-resistant, and transparent nature of blockchain can provide addi-
tional guarantees for model integrity, making the federated learning process verifiable
and auditable.

Through the above discussion, we hope to provide new ideas for future federated
learning research, especially in terms of security and adaptability, to further enhance the
practicality and reliability of federated learning.

7. Conclusions

This paper proposes a Symmetric Piecewise Mechanism to probabilistically perturb
local model weights before aggregation, thereby meeting strict ϵ-differential privacy re-
quirements. Additionally, we propose a variance constraint mechanism to mitigate the
impact of noise on model performance and introduce a zero bias design to ensure that
the aggregated global model retains its original performance as much as possible. Experi-
mental results show that SPM exhibits better usability and privacy protection compared
to other mechanisms under different numbers of clients, particularly in defending against
DLG attacks.

Despite significant progress, some issues remain unresolved, especially in terms of
privacy loss measurement and data heterogeneity. In the future, we aim to develop more
precise privacy budget-management methods and explore ways to improve the robustness
and adaptability of the model in heterogeneous data environments.
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Appendix A. Proof

Theorem A1. SPM Mechanism and Differential Privacy. When the boundary C of the
perturbation coefficient and the probability density p of the perturbation value satisfy Equation (3),
the SPM mechanism can ensure that the model parameters uploaded by clients participating in
federated learning training meet ϵ-differential privacy. Moreover, this mechanism ensures zero bias
during mean estimation of the weights and minimizes the dispersion (variance) of the model weights
after being processed by the perturbation mechanism.

Proof. In this paper, S represents the perturbation mechanism, ω denotes the model
weights, t∗ is the perturbation coefficient, and S(ω) = S(|ω| · t∗) represents the model
weights after perturbation. We calculate the expected value of the weights after
perturbation:

Var[S(ω)] = Var[|ω| · t∗] = |ω|2Var[t∗] (A1)

Since |ω|2 ≥ 0, the magnitude of Var[S(ω)] changes with Var[t∗]. Therefore, we only
need to discuss and compute Var[t∗], yielding:

Var[t∗] = E[(t∗)2]− (E[t∗])2 (A2)

(1) Compute E[t∗]
E[t∗] is the expectation of t∗, where l(t) = (C+1)

2 · t− (C−1)
2 , r(t) = (C+1)

2 · t + (C−1)
2

E[t∗] =
∫ −l(t)

−r(t)

P
eϵ

x dx +
∫ r(t)

l(t)
Px dx =

P(r(t)2 − l(t)2)(eϵ − 1)
2eϵ

=
P(C2 − 1)(eϵ − 1)

2eϵ
· t (A3)

Let P = (eϵ−1)eϵ

eϵ+α · P′ be the probability density, with bounds C = (eϵ+β)
eϵ−1 · C′, where P′,

C′, α, β are custom parameters that may be constants or polynomials containing eϵ.

E[t∗] = P′
(
(C′2 − 1)e2ϵ + (2C′2β + 2)eϵ + C′2β2 − 1

2(eϵ + α)

)
· t (A4)

Assume E[t∗] = t, implying there are no terms involving O(ϵ2) in the numerator,
resulting in C′2 − 1 = 0, |C′| = 1.

E[t∗] = P′
(

2(β + 1)eϵ + β2 − 1
2(eϵ + α)

)
· t (A5)

The denominator is a linear term in ϵ, and the numerator is adjusted to be linear in ϵ
by extracting coefficients.

E[t∗] = (β + 1)P′
(

eϵ + β−1
2

eϵ + α

)
· t (A6)
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We conclude that when the following relationship exists, E[t∗] = t.{
(β + 1)P′ = 1
β− 1 = 2α

(A7)

(2) Compute E[(t∗)2]
E[(t∗)2] is the expectation of t∗ squared:

E[(t∗)2] =
∫ −l(t)

−r(t)

P
eϵ

x2 dx +
∫ r(t)

l(t)
Px2 dx =

P(r(t)3 − l(t)3)(eϵ + 1)
3eϵ

(A8)

It can be inferred from the above l(t) and r(t).

r(t)3 − l(t)3 = (C− 1)
(

3
4
(C + 1)2 +

1
4
(C− 1)2

)
= C3 − 1 (A9)

Substituting P = (eϵ−1)eϵ

eϵ+α · P′ yields:

E[(t∗)2] = P′
(eϵ − 1)(eϵ + 1)

3(eϵ + α)
(C3 − 1) (A10)

Substituting C = (eϵ+β)
eϵ−1 · C′ yields:

E[(t∗)2] = P′
(eϵ + 1)

(
(C′3 − 1)e3ϵ + 3(βC′3 + 1)e2ϵ + 3(β2C′3 − 1)eϵ + β3C′3 + 1

)
3(eϵ + α)(eϵ − 1)2 (A11)

From |C′| = 1, since the selected perturbation domain is a symmetric piecewise
interval with no overlap between intervals, the interval [−1, 1] is not considered. C′ = −1
would cause the intervals to intersect, violating the initial setup. Thus, taking C′ = 1,
we have:

E[(t∗)2] = P′
(eϵ + 1)

(
3(β + 1)e2ϵ + 3(β2 − 1)eϵ + β3 + 1

)
3(eϵ + α)(eϵ − 1)2 (A12)

From Equation (A1), it is known that when E[t∗] is at t = {−1, 1}, and Equation (A7)
is satisfied, E[t∗] = t, E[t∗]2 = 1. In this case, Var[t∗] is:

Var[t∗] = P′
(eϵ + 1)

(
3(β + 1)e2ϵ + 3(β2 − 1)eϵ + β3 + 1

)
3(eϵ + α)(eϵ − 1)2 − 1 (A13)

Considering minimizing Var[t∗], it suffices to focus on E[(t∗)2]. Substituting
Equation (A7) into Equation (A11) gives:

E[(t∗)2] =
(eϵ + 1)

(
6(α + 1)e2ϵ + 12(α2 + α)eϵ + 8α3 + 12α2 + 6α + 2

)
6(eϵ + α)(eϵ − 1)2(eϵ + 1)

=
(eϵ + 1)

(
(eϵ + α)2 + (α+1)2

3

)
(eϵ + α)(eϵ − 1)2 =

(eϵ + 1)
(
(eϵ + α) + (α+1)2

3(eϵ+α)

)
(eϵ − 1)2

≥ (eϵ + 1)
(eϵ − 1)2 · 2

√
(α + 1)2

3
=

(eϵ + 1)
(eϵ − 1)2 ·

2
√

3
3
· |α + 1|

(A14)

From the inequality |α + 1| ≪ |α|+ 1, we obtain:

E[(t∗)2] ≥ (eϵ + 1)
(eϵ − 1)2 ·

2
√

3
3
· (|α|+ 1) (A15)
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Since (eϵ+1)
(eϵ−1)2 > 0 and |α + 1| ≫ 0, minimizing |α| + 1 is sufficient to achieve the

minimum value of Var[t∗]. Given |α| ≪ 0, α is set to 0. Substituting these values into
Equation (A7) yields a series of parameter values.

α = 0
β = 1
P′ = 1

2

C′ = 1

{
P = (eϵ−1)

2

C = (eϵ+1)
(eϵ−1)

(A16)

In summary, when the above parameters satisfy Equation (A16), E[t∗] = t, Var[t∗] is
minimized, leading to the minimum variance Var[S(ω)] applied to the weights.

Var[t∗] =
(eϵ + 1)

(
eϵ + 1

3eϵ

)
(eϵ − 1)2 − 1 =

(3eϵ + 1
3eϵ − 2

3 )

(eϵ − 1)2 (A17)

Var[S(ω)] = Var[|ω| · t∗] = |ω|2Var[t∗] = |ω|2 ·
(3eϵ + 1

3eϵ − 2
3 )

(eϵ − 1)2 (A18)

Lemma A1. The variance of the SPM mechanism is strictly smaller than the variance of the Laplace
mechanism and the variances in the literature [27,29], and it is independent of the value of the
privacy budget ε.

Proof. This lemma is compared with the variances in references [27,29]. Since the model
weights in reference [28] are adaptively selected, it is impossible to calculate a fixed variance
for comparison.

Proof (1): Regardless of the privacy budget value, the variance of SPM is always
smaller than the variance of PM.

Given that the variance of the SPM mechanism is |ω|2 · 3eϵ+ 1
3eϵ− 2

3
(eϵ−1)2 and the variance of the

PM mechanism is ω2

eϵ/2−1
+ eϵ/2+3

3(eϵ/2−1)2 , let y = |ω|2 ·
(

3eϵ+ 1
3eϵ − 2

3
(eϵ−1)2

)
−
(

ω2

eϵ/2−1
+ eϵ/2+3

3(eϵ/2−1)2

)
=

ω2 ·
(

3eϵ+ 1
3eϵ − 2

3−(e
ϵ/2+1)(eϵ−1)

(eϵ−1)2

)
− eϵ/2+3

3(eϵ/2−1)2 . Let eϵ/2 = x, since ϵ ∈ (0,+∞), it follows that

x ∈ (1,+∞). y = |ω|2 ·
−x3+2x2+x+ 1

3x2 +
1
3

(x2−1)2 − x+3
3(x−1)2 . Let f (x) = −x3 + 2x2 + x + 1

3x2 + 1
3 .

The first derivative is f ′(x) = −3x2 + 4x − 2
3x3 + 1, the second derivative is f ′′(x) =

−6x + 2
x4 + 4, and the third derivative is f ′′′(x) = − 8

x5 − 6. Because x ∈ (1,+∞), and
x5 in f ′′′(x) does not change its sign, we have f ′′′(x) < 0. Thus, f ′′(x) is monotonically
decreasing for x ∈ (1,+∞). Since f ′′(1) = 0, it follows that f ′′(x) < 0. Therefore, for
x ∈ (1,+∞), f ′(x) is a monotonically decreasing function. Given f ′(1) = 4

3 > 0, and since
x2 dominates in f ′(x) and does not change its sign, we have limx→+∞ f ′(x) = −∞ < 0. As
f ′(x) is a polynomial function that is continuous over its domain and is a linear combination
of a finite number of continuous functions, the linear combination of continuous functions
is also continuous and differentiable everywhere. By the Intermediate Value Theorem,
there exists at least one zero point c in the interval (1,+∞) such that f ′(c) = 0. Thus, f (x)
is monotonically increasing for x ∈ (1, c) and monotonically decreasing for x ∈ (c,+∞),
leading to f (c) > f (1) = 8

3 > 0. Since limx→+∞ f (x) = −∞ < 0, by the Intermediate Value
Theorem, there exists a unique zero point d in the interval (c,+∞) such that f (d) = 0.

By Newton’s iteration method, it is known that initializing x0 = 2, f (x0) = f (2) = 29
12 ,

f ′(x0) = f (2)′ = − 37
12 , updating x1 = x0 − f (x0)

f ′(x0)
= 103

37 , x2 = x1 − f (x1)
f ′(x1)

, repeating this

process until |xn+1 − xn| ≪ 10−6, finally obtaining x ≈ 2.4687, i.e., when d ≈ 2.4687,
f (d) = 0. That is, for x ∈ (1, d), f (x) > 0, and for x ∈ (d,+∞), f (x) < 0.
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Because f (x) has positive and negative intervals when x ∈ (1,+∞), it is discussed

separately. Divide y = |ω|2 ·
−x3+2x2+x+ 1

3x2 +
1
3

(x2−1)2 − x+3
3(x−1)2 into two parts, let A = |ω|2 ·

−x3+2x2+x+ 1
3x2 +

1
3

(x2−1)2 and B = x+3
3(x−1)2 , and then analyze the positive and negative values of

A− B in different intervals.

• When x ∈ (d,+∞), f (x) = −x3 + 2x2 + x + 1
3x2 + 1

3 < 0, (eϵ − 1)2 > 0, and since
|ω|2 > 0, it follows that A < 0. In B, 3(x− 1)2 > 0 and x + 3 > 0, which makes B > 0.
Subtracting B from A yields a negative result, hence y < 0.

• When x ∈ (1, d), y = A − B = |ω|2 ·
(−x3+2x2+x+ 1

3x2 +
1
3 )−

(x+3)
3·(x+1)2

(x2−1)2 where |ω|2 = C,

and C ∈ [0, 1]. Combined, we have y =
((−C− 1

3 )x3+(2C− 4
3 )x2+(C− 7

3 )x+ C
3x2 +( C

3 −1))

((x−1)2(x+1)2)
. Let

the numerator be denoted as h(x). Differentiating it, the first derivative h′(x) =
(−3C − 1)x2 + (4C − 10

3 )x − 2C
3x3 + (C − 7

3 ), the second derivative h′′(x) = (−6C −
2)x + 2C

x4 + 4C− 10
3 , and the third derivative h′′′(x) = − 8C

x5 − 6C− 2. For x ∈ (1, d)
and x5 maintaining its sign, we have h′′′(x) < 0. h′′(x) is a monotonically decreasing
function. Since h′′(1) = − 16

3 < 0, it follows that h′′(x) is always negative, and h′(x) is
a monotonically decreasing function. Given h′(1) = 4

3 · C−
20
3 and C ∈ [0, 1], we have

h′(1) < 0, h′(x) is always negative, and h(x) is a monotonically decreasing function.
Thus, h(1) = 8

3 · C−
16
3 < 0, implying h(x) < 0. Since the numerator is negative and

the denominator (x− 1)2(x + 1)2 > 0, we conclude x ∈ (1, d) ⊂ (1,+∞), hence y < 0.

In conclusion, when x ∈ (1,+∞), the variance of the SPM mechanism is consistently
less than that of the PM mechanism.

Proof (2): Regardless of the privacy budget value, the variance of the SPM mechanism
is always less than the variance of the PNPM mechanism.

It is known that the variance of the SPM mechanism is denoted as |ω|2 · 3eϵ+ 1
3eϵ − 2

3
(eϵ−1)2 , and

the variance of the PNPM mechanism is denoted as |ω|2 · 4(eϵ+ 1
3 )

(eϵ−1)2 . Let y = |ω|2 · 3eϵ+ 1
3eϵ − 2

3
(eϵ−1)2 −

|ω|2 · 4(eϵ+ 1
3 )

(eϵ−1)2 = |ω|2 · (−1)·(eϵ− 1
3eϵ +2)

(eϵ−1)2 determine the magnitude based on the positive or

negative difference. Let eϵ = T, y = |ω|2 · (−1)·(T− 1
3T +2)

(T−1)2 , and define f (T) = T − 1
3T + 2,

f ′(T) = 1 + 1
3T2 , where T ∈ (1,+∞), it follows that f ′(T) is always greater than 0, and

f (T) is a monotonically increasing function. Also, f (1) = 3− 1
3 > 0, indicating that f (T)

is always positive in this interval. Since the denominator (T − 1)2 > 0 and |ω|2 ≥ 0, it

follows that for ϵ ∈ (0,+∞), y = |ω|2 · (−1)·(eϵ− 1
3eϵ +2)

(eϵ−1)2 < 0, proof is complete.

Theorem A2. For any model weight input values t, t′ ∈ {1,−1} and perturbation coefficient
output value t∗ ∈

[
− eϵ+1

eϵ−1 ,−1
]
∪
[
1, eϵ+1

eϵ−1

]
, the SPM mechanism satisfies pdf(t∗ |t)

pdf(t∗ |t′) ≤
p
p

eϵ
= eϵ,

thereby ensuring ϵ-local differential privacy. Additionally, a zero bias is introduced in the mean
estimation of the weights to ensure that E[S̄(ω)] = ω̄, which means that the expected value of the
mean parameters of the aggregated perturbation model equals the mean parameters of the original
aggregated model.

Proof. Given that the mechanism is S, ω represents weights, and E[S(ω)] denotes the
expected weights after perturbation.

E[S(ω)] = E[|ω| · S(t)] = |ω| · E[t∗] = |ω| · t = ω (A19)



Electronics 2024, 13, 4091 37 of 39

Therefore, for the weights of the clients used:

E
[
S(ω)

]
= E

[
1
n

n

∑
i=1

S(ωi)

]
=

1
n

n

∑
i=1

ωi = ω (A20)

Var[t∗] represents the variance of perturbed values, hence the variance of weights after
perturbation is:

Var[S(ω)] = Var[|ω| · t∗] = |ω|2 ·Var[t∗] = |ω|2 ·
3eϵ + 1

3eϵ − 2
3

(eϵ − 1)2 (A21)

Theorem A3. For ∀ω ∈ W, there exists λ = O
(
|ω|
ϵ ·
√

ln(1/β)
n

)
such that |S(ω)− ω| < λ

with at least 1− β probability.

Proof. For any client i, the weights after perturbation have an upper bound b within a
certain range, where the upper bound b of this perturbation range is:

b = |S(ωi)−ωi| ≤ |S(ωi)|+ |ωi| ≤ |ωi| · |C|+ |ωi| = |ω| ·
2eϵ

eϵ − 1
(A22)

For the variance of the weight after perturbation, we can conclude:

Var[S(ω)] = Var[S(ω)−ω] = E[(S(ω)−ω)2]− E[S(ω)−ω]2 (A23)

Therefore, E[S(ω)−ω] = E[S(ω)]−ω = ω−ω = 0 used:

Var[S(ω)] = E[(S(ω)−ω)2] (A24)

According to the Bernstein inequality, substituting the upper bound b and Var[S(ω)],
we get:

Pr

(∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣ ≥ λ

)
= Pr

(∣∣∣S(ω)−ω
∣∣∣ ≥ λ

)
= Pr

(∣∣∣∣∑n
i=1(S(ωi)−ωi)

n

∣∣∣∣ ≥ λ

)
= Pr

(∣∣∣∣∣ n

∑
i=1

(S(ωi)−ωi)

∣∣∣∣∣ ≥ nλ

)

≤ 2 exp
(
− (nλ)2

2(∑n
i=1 E[(S(ω)−ω)2] + bnλ/3)

)
≤ 2 exp

(
− (nλ)2

2(∑n
i=1 Var(Xi) + bnλ/3)

)

= 2 exp

− nλ2

|ω|2
(

6eϵ+ 2
3eϵ − 4

3
n(eϵ−1)2 + 4|ω|λeϵ

3(eϵ−1)

)
 = 2 exp

(
− nλ2

|ω|2 ·O(ϵ−2) + λ|ω| ·O(ϵ−1)

) (A25)

Based on the aforementioned joint agreement, there exists λ = O
(
|ω|
ϵ ·
√

ln(1/β)
n

)
such that

∣∣∣S(ω)−ω
∣∣∣ < λ holds with at least a probability of 1− β.
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