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Abstract: Over the past decade, wearable medical devices (WMDs) have become the norm for con-
tinuous health monitoring, enabling real-time vital sign analysis and preventive healthcare. These
battery-powered devices face computational power, size, and energy resource constraints. Tradition-
ally, low-power microcontrollers (MCUs) and application-specific integrated circuits (ASICs) have
been used for their energy efficiency. However, the increasing demand for multi-modal sensors and
artificial intelligence (AI) requires more computational power than MCUs, and rapidly evolving AI
asks for more flexibility, which ASICs lack. Field-programmable gate arrays (FPGAs), which are
more efficient than MCUs and more flexible than ASICs, offer a potential solution when optimized
for energy consumption. By combining real-time reconfigurability with intelligent energy optimiza-
tion strategies, FPGAs can provide energy-efficient solutions for handling multimodal sensors and
evolving AI requirements. This paper reviews low-power strategies toward FPGA-based WMD for
physiological monitoring. It examines low-power FPGA families, highlighting their potential in
power-sensitive applications. Future research directions are suggested, including exploring underuti-
lized optimizations like sleep mode, voltage scaling, partial reconfiguration, and compressed learning
and investigating underexplored flash and hybrid-based FPGAs. Overall, it provides guidelines for
designing energy-efficient FPGA-based WMDs.

Keywords: power optimization; energy efficiency; wearable medical devices; continuous physiological
monitoring; healthcare

1. Introduction

The significance of continuous health monitoring (CHM) for timely detection and
prevention of diseases is on the rise due to growing health issues resulting from modern
lifestyles and an aging population [1]. Monitoring vital signs helps identify symptoms of
diseases, but hospitalization for such monitoring is time-consuming, burdens healthcare
systems, and provides an incomplete picture. To avoid such challenges, remote health
monitoring is continuously rising with the use of wearable medical devices (WMDs) [1,2].

Rapid progress in biomedical sensors, low-power electronics, signal processing, and
wireless transmission technology has increased WMD adoption. However, there are some
challenges to overcome to enable sustained, continuous health monitoring [3]. WMDs
have to be kept small in size to provide user mobility, which not only limits resources but
also the battery size. While the size constraint of WMDs necessitates smaller battery sizes,
batteries have not improved as rapidly as other electronic components and remain limited
in their energy storage capacity [4]. Additionally, energy harvesters have yet to reach the
level of efficiency required to overtake batteries [5]. Consequently, users often face the
inconvenience of frequent battery charging or replacement, which is not only laborious
and costly but also poses hazardous threats to the environment [6]. Furthermore, replacing
batteries in some applications, such as implanted sensors, is unfavorable, and excessive
heat generated due to energy consumption may also affect body tissues [3]. On the other
hand, the use of multimodal sensors and artificial intelligence (AI) integration in WMDs
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for analyzing multi-physiological data is also on the rise. Traditionally, sensors’ data are
transferred to the cloud for AI-based analysis. However, due to power consumption and
privacy-related issues, edge intelligence has been introduced [7–9], forcing all computations
to be executed on a WMD. These growing requirements and associated challenges in the
context of computational power and flexibility are summarized below:

• Integrating multiple or multimodal health sensors for comprehensive physiological
analysis while performing edge computing over cloud computing to address pri-
vacy and security concerns regarding personal medical data necessitates increased
parallelism and computational power for wearable devices.

• Incorporation of AI techniques for real-time decision and feedback demands more
computational power for accuracy of results, while the continuous evolution of AI
techniques and frequent customization of WMD features for individual patients
demands flexibility.

Additionally, competition among WMD manufacturers to reach users faster neces-
sitates a shorter time to market. Such increasing and rapidly changing requirements
demand not only more computational power and parallelism but also system flexibility
for reconfigurability, adaptability, and scalability, along with a shorter time to market.
In power-sensitive designs, designers face the challenge of meeting these requirements
without incurring additional power consumption costs. Therefore, a need arises to increase
the computational power and energy efficiency of WMDs by using suitable computing
platforms. Computations can be executed using various hardware platforms, including
general purpose processors (GPPs), graphic processing units (GPUs), digital signal pro-
cessors (DSPs), microcontrollers (MCUs), field programmable gate arrays (FPGAs), and
application-specific integrated circuits (ASICs) [10,11].

ASICs have traditionally been used by designers to meet the energy constraints of
power-sensitive devices. They are specifically designed and optimized for particular
applications, outperforming all other options in terms of both performance and power
efficiency. Additionally, they have lower costs for mass production. However, despite their
numerous advantages, ASICs also have some limitations:

• Lack flexibility or reconfigurability;
• Higher development cost and longer time to market.

The need to accommodate rapidly changing medical requirements and procedures,
evolving AI techniques, adaptability for individual patient needs, and competition to reach
the market earlier make the choice of hard-wired ASICs for WMDs riskier [12].

Similarly, low-power MCUs, while offering lower energy consumption and the flexi-
bility of reprogrammability to adapt to evolving changes, lack the ability to provide a high
level of parallelism and computational power. Typically, MCUs have fixed architectures op-
timized for general-purpose tasks, with predefined peripherals and processing capabilities.
This can limit their performance in WMD applications, which require increased parallelism
and computational power due to the incorporation of AI and multimodal sensors and the
need to perform all computations at the edge for privacy and security reasons. On the other
hand, GPPs and GPUs provide extremely good computational power, but their energy
consumption is not well suited for small battery-powered devices.

While both MCUs and ASICs offer advantages in power efficiency and cost-effectiveness,
making them suitable for most power-sensitive applications, there exist some applications
which require higher computational power, parallelism, flexibility in reconfigurability,
scalability, adaptability, and a faster time to market all at once. Therefore, researchers
are also exploring other energy-efficient, reconfigurable solutions to adapt to the rapid
evolution of requirements and speed up the time to market.

FPGAs, despite being a costly choice for mass production, offer a feasible solution by
providing the necessary computational power and parallelism, along with the flexibility of
reconfigurability to adapt to changing requirements. They are more flexible than ASICs,
more powerful than DSPs and MCUs, and more energy-efficient than GPUs and GPPs [13].
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Some FPGAs even allow real-time reconfiguration to avoid downtime. However, FPGAs
are generally not as power-efficient as low-power MCUs and ASICs. Therefore, power
optimization strategies must be employed to make FPGA power consumption acceptable
for those applications where MCUs and ASICs are not feasible due to the required compu-
tational power or reconfigurability and time to market. By optimizing power usage, FPGAs
can become a viable option for these demanding applications, balancing the need for high
performance and flexibility with acceptable power consumption.

Numerous recent and ongoing research efforts have focused on addressing the power
consumption of WMDs using FPGAs. This paper reviews the power optimization strategies
employed by different researchers in FPGA-based WMDs. The outcomes of this work are
listed below:

• Identifying power optimization strategies used in FPGA-based WMDs for physiologi-
cal monitoring;

• Categorizing these strategies to provide a holistic view of system design for energy
efficiency, along with their benefits and constraints;

• Highlighting the shortcomings while proposing future research directions and guidelines.

Section 2 introduces continuous health monitoring using WMDs along with the ex-
ploration of low-power FPGA families from different manufacturers. Section 3 outlines
the motivation behind this review by exploring existing review papers and highlighting
their strengths and shortcomings in comparison to our work. Section 4 lists the objectives
of this review, along with the database search methodologies and the screening of articles
against the inclusion and exclusion criteria. In Section 5, the power optimization strategies
found in the selected literature are analyzed and categorized along with their benefits
and limitations. Section 6 presents critical analyses of the practical implications of these
strategies, shortcomings, future research, and guidelines for WMDs developers. Finally, we
conclude our work by summarizing the key findings and suggestions for future research in
Section 7.

2. Background

Chronic diseases are the most widespread non-communicable health issues, leading
to the highest mortality rates worldwide [14,15]. Many people live with complex health
conditions which significantly impact their quality of life. Additionally, the occurrence of
these chronic diseases increases with age. Delays in diagnosing and treating these illnesses
further deteriorate patients’ overall well-being, which results in frequent hospitalization
and burdens healthcare systems [7]. This highlights the critical role of continuous health
monitoring in the early detection of chronic disease symptoms.

2.1. Continuous Health Monitoring

Continuous monitoring of a patient’s health-related parameters over time helps physi-
cians to identify trends in health deterioration and make informed decisions. The most
commonly monitored vital signs include pulse rate or heart rate, respiration rate, blood
pressure, blood oxygen level (SpO2), blood glucose level, and body temperature. These
vital parameters are tracked by capturing their associated physiological signals and pro-
cessing them through signal processing algorithms. The relevant physiological signals
are electrocardiogram (ECG), photoplethysmogram (PPG), electroencephalogram (EEG),
electromyogram (EMG), electrooculogram (EOG), galvanic skin response (GSR), ballisto-
cardiograph (BCG), and electrogastrogram (EGG). These are time series signals which are
generally sparse in nature or can be transformed into a sparse domain [16–18]. The sam-
pling rates associated with these signals are also usually relaxed [19]. Regarding usability,
continuously acquiring these signals in hospitals using fixed devices is costly. Therefore, it
is necessary to use wearable medical devices which patients can comfortably wear outside
of hospitals.
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2.2. Wearable Medical Devices

The key features of WMDs for physiological monitoring include portability, which
requires battery power. Additionally, the smaller form factor of WMDs limits the battery
size, necessitating lower power consumption from various processes. The most common
processes performed by WMDs are shown in Figure 1. Vital signs are captured using sensors
which transduce physiological activity into corresponding electrical signals. These analog
signals undergo signal conditioning and filtering before being converted into digital signals
through the analog-to-digital conversion process. Afterward, the data are segmented,
reshaped, and formatted via preprocessing for further analytical processing. Various
algorithms, including AI models, are used for analysis. Based on the results, feedback
is provided. Additionally, the raw data or final results are stored locally in the WMD or
transmitted to another device for further storage or detailed analysis.

Figure 1. Typical processes in wearable medical devices.

All of the aforementioned processes consume power, which can be categorized mainly
into data acquisition, data processing and analysis, and data transmission [3,20]. Data acquisition
involves collecting data from various sensors, where the continuous operation of these
sensors consumes significant power. The collected data are then processed and analyzed
to extract meaningful information, which involves complex computations and can be
highly power-intensive, especially if the device needs to provide real-time feedback. The
data are often transmitted to other devices, such as a smartphone or a cloud, for further
analysis or storage. This transmission consumes a considerable amount of power. Each of
these processes is crucial for the functionality of wearable medical devices, but they also
contribute to the overall power consumption, necessitating efficient power optimization
strategies in WMDs.

On the other hand, the increasing demand for secure, real-time, comprehensive physi-
ological monitoring has led to the incorporation of multimodal sensors and AI techniques,
along with a shift toward edge computing. These factors are collectively increasing the
demand for computational resources, making FPGAs, known for their high computational
power and energy efficiency, an interesting choice to address this challenge.

Notice, however, that the terms energy and power are often used interchangeably in
the literature to describe power consumption. Additionally, various phrases are found in
the literature describing the reduction in power consumption, such as power optimization,
energy optimization, low-power techniques (LPTs), and energy optimization strategies. In this
work, we have most frequently used the phrases energy optimization strategies and LPTs,
describing the same concept.

2.3. FPGAs in Wearable Medical Devices

Wearable medical devices require efficient power management to ensure long battery
life and reliable performance. FPGAs offer unique opportunities for power optimization
due to their reconfigurability, customizability, and granular control. However, selecting the
right FPGA family and implementation technology is crucial. This section explores various
FPGA families and implementation technologies optimized for low-power applications,
particularly in wearable medical devices.

2.3.1. FPGA Architecture

Although the architecture varies across vendors, the basic logic block generally in-
cludes lookup tables (LUTs) and flip-flops (FFs). These components form logic elements
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(LEs) or logic cells (LCs), which in turn form configurable logic blocks (CLBs) or adap-
tive logic modules (ALMs), depending on the vendor’s terminology. Additionally, the
architecture includes configurable I/O blocks and programmable interconnects [21]. LUTs
are the fundamental units within an FPGA, performing combinational logic by storing
precomputed results for various input combinations, while FFs are used for sequential
architectures. These logic elements are housed within LEs or LCs, while multiple LEs or
LCs are organized into slices, which serve as subdivisions within a larger block. Finally,
these slices are grouped together within a CLB or ALM, the primary building block of
an FPGA [22]. CLBs or ALMs contain the necessary components to implement the logic
functions specified by the user, forming a hierarchical structure which allows for highly
flexible and configurable digital circuit implementations. These architectures also feature
clock circuitry to distribute clock signals to each logic block.

2.3.2. FPGA Technologies

FPGAs are generally categorized into anti-fuse, SRAM (Static random-access memory),
flash, or hybrid (SRAM + Flash) based on their implementation technology.

Antifuse FPGA: Anti-fuse FPGAs are non-volatile, meaning they retain their configu-
ration without needing power. These FPGAs typically consume less power, making them
energy-efficient. However, anti-fuse FPGAs cannot be reconfigured once programmed,
limiting their flexibility. They are often used in applications requiring security against the
theft of configuration data.

SRAM FPGA: SRAM-based FPGAs are highly flexible and reprogrammable, allowing
numerous reconfigurations even during operation. This adaptability makes them suitable
for a wide range of applications. These FPGAs store their configuration data in static RAM
cells and require external memory to hold the configuration bits, which are transferred
upon powering up. Their volatile nature necessitates reprogramming every time they
are powered on, leading to higher power consumption. They also have higher static
consumption due to leakage currents.

Flash FPGA: Flash-based FPGAs, on the other hand, use non-volatile memory cells,
retaining their configuration data even when powered off. They combine the advantages
of both SRAM and anti-fuse technologies. They are non-volatile like anti-fuse FPGAs and
reprogrammable like SRAM FPGAs, offering flexibility, instant-on capability, and lower
power consumption, with reduced static power due to minimal leakage.

Hybrid FPGA: Hybrid (SRAM + Flash) FPGAs combine the advantages of both SRAM
and flash technologies by providing on-chip non-volatile configuration memory. This way,
they offer the flexibility of SRAM with the non-volatility of flash.

2.3.3. Low-Power FPGA Families

The power consumption of FPGAs is primarily due to static and dynamic power
consumption. Static power consumption occurs when the FPGA is powered on but not per-
forming any active tasks, mainly due to leakage currents and depending on the underlying
technology. Dynamic power consumption is associated with the switching activity within
the FPGA and varies significantly based on clock frequencies and application complex-
ity. To reduce power consumption, some manufacturers focus on technology shrinkage,
while others have utilized flash-based technology to avoid the power consumption asso-
ciated with SRAM technologies. Additionally, some have adopted a hybrid approach by
incorporating on-chip flash configuration memory in SRAM-based FPGAs.

AMD (Xilinx) Spartan-7 and Artix-7 Families: These families are known for their
optimal balance between performance and power efficiency. These FPGAs utilize the 28 nm
high performance-low power process, which incorporates high-K metal gate technology
to significantly reduce transistor leakage by 50% compared with previous generations.
This process supports voltage scaling with two operating modes—high-performance mode
at a core voltage of 1.0 V and low-power mode at 0.95 V—resulting in 10% dynamic
power savings and up to 40% static power savings. This technology shrinkage allows
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for reductions in both the core voltage and capacitance, achieving 40% dynamic power
saving when the core voltage is scaled to 0.95 V. Additionally, power gating extends to
block RAMs, reducing the overall static power, as block RAM leakage accounts for nearly
30% of total device leakage. Designers can also gate clocks at global, regional, and local
resources using a clock enable, which helps reduce switching power loss in the logic core.
Furthermore, the series offers partial reconfiguration capabilities, allowing users to time-
slice FPGA portions to fit more IPs into smaller devices, thereby saving both power and
cost. A detailed comparison is given in Table 1.

Intel (Altera) Cyclone-V and Max-10 Families: Cyclone-V and Max-10 FPGAs are
designed for low-power and cost-sensitive applications, making them suitable for wearable
devices. The Max-10 series utilizes 55 nm technology with an embedded SRAM + Flash
process, resulting in a maximum power consumption of approximately 1.362 W for the
Max10M08 device, which provides ample logic resources. It also includes a sleep mode to
significantly reduce standby power and is suitable for edge computing. In contrast, the
Cyclone-VE series is based on 28 nm low-power process technology, which reduces power
consumption by 40% compared with the previous Cyclone-IV generation. This series also
supports partial reconfiguration and includes numerous hard intellectual property (IP)
blocks. Further details are provided in Table 1.

Lattice iCE40 and MachXO2 Families: These FPGAs are tailored for low-power ap-
plications. The iCE40 series, known for its use in portable and battery-powered devices,
is constructed using 40 nm SRAM technology and includes on-chip non-volatile memory
for configuration storage. The iCE40 UltraPlus model is capable of implementing neural
networks for pattern recognition, enabling continuous intelligence at the edge. It typically
consumes 1–10 mA of active current. It offers three power-saving modes—standby, sleep,
and power off—which help extend battery life by allowing the application processor to
enter sleep mode. The iCE40-LP family also includes two low-power modes (iCEGate
and PLL) to address both static and dynamic power needs, making it suitable for ultra
low-power mobile applications like handheld devices. On the other hand, the MachXO2
family is built on 65 nm technology and supports an ultra low-power standby mode. In
this mode, various subsystems can be configured to shut down automatically or enter a
low-power state to conserve energy. Further comparisons are provided in Table 1.

Microchip IGLOO2 and IGLOO Families: Microchip’s IGLOO2 and IGLOO Nano
FPGAs utilize flash-based technology, resulting in extremely low static power consump-
tion. This flash-based architecture eliminates the need for external configuration memory,
allowing the device to be instantly operational and retain its configuration even when
powered off. Both devices are equipped with an ultra low-power static mode known as the
flash-freeze power mode, which allows the device to enter and exit this state in under 1 µs,
consuming nano power. This technology streamlines power management by avoiding the
need to turn off voltages, I/Os, or clocks at the system level, while I/Os can maintain their
states during flash-freeze mode. The IGLOO2 device, built on a 65 nm process, features a
flash-freeze mode, while the IGLOO Nano device, built on a 130 nm process, also offers an
additional sleep mode. Further details are listed in Table 1.

GOWIN Semiconductor and QuickLogic Low-Power Families: Apart from these
renowned manufacturers, other vendors like GOWIN Semiconductor and QuickLogic
also offer low-power FPGAs. The GOWIN GW1NZ series FPGAs are non-volatile flash-
based devices known for their ultra-low power consumption, instant-on capability, and
suitability for mobile and wearable applications. They also feature a low-power mode
which operates at a core voltage of 0.9V. In contrast, QuickLogic’s PolarPro-3 FPGAs utilize
SRAM technology, offering high flexibility and reprogrammability, making them ideal for
battery-powered applications. These FPGAs achieve ultra-low static power consumption
of about 55 µA, enhancing the battery life of devices. Both series are optimized for low
power, but they leverage different technologies to meet their power efficiency goals.
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Table 1. Comparison of low-power FPGA families in terms of technology, static power consumption, and logic resources.

Manufacturer FPGA Family Device Process
Node Technology Logic Resources RAM

(kbits) Math Blocks Core
Voltage Static Current Features

AMD (Xilinx)
Spartan-7 [23,24] XC7S6 28 nm SRAM 6000× LCs 180 10× DSP Slices 0.95 V/1.0 V 32 mA 1 Lower power consumption than previous generation.

Artix-7 [23,25] XC7A12T 28 nm SRAM 12,800× LCs 720 40× DSP48E1 0.95 V/ 1.0 V 43 mA 1 Partial reconfiguration, voltage scaling, power gating,
and clock gating.

QuickLogic PolarPro3 [26,27] – – SRAM 1019× LCs 73 - 1.2 V 55 µA 2 Targets low power and low latency.
Suitable as small CPU cores in IoT.

Intel (Altera)

CycloneV [28] 5CEBA2 28 nm SRAM 25,000× LEs 1760 25× DSP Blocks 1.1 V 32 mA 4,**
Partial reconfiguration;
40% lower power consumption compared with
Cyclone-IV.

MAX10 [29,30] 10M08DC 55 nm Hybrid
(SRAM + Flash) 8000× LEs 378 24× Mul (18 × 18) 1.2 V & 2.5 V 3.9 mA 1,**

Sleep mode for standby power reduction.
Suitable for edge computing.

Lattice Semiconductor

iCE40
UltraPlus [31] UP5K 40 nm Hybrid

(SRAM + Flash) 5280× LUTs 120 8× DSP Blocks 1.2 V 75 µA 2
Have on-chip non-volatile configuration Memory.
Active current <10 mA for most apps.
Three low power modes: standby, sleep, and power off.

iCE40 LP [32] LP8K 40 nm Hybrid
(SRAM + Flash) 7680× LUTs 128 - 1.2 V 250 µA 2 Features 2 low-power modes (iCEGate and PLL).

MachXO2 [33] LCMXO2-
7000ZE 65 nm Hybrid

(SRAM + Flash) 6864× LUTs 240 - 1.2 V 189 µA 2
Has internal flash memory mimicking a non-volatile
device.
Standby mode for low power consumption.

Microchip Technology

IGLOO2 [34–36] M2GL005 65 nm Flash 6060× LEs 703 11× Mul (18 × 18) 1.2 V 1.4 mA 2,*
6.2 mA 2,$ Flash-dreeze mode: consumption < 1 mW.

IGLOO nano
[37,38] AGLN250 130 nm Flash 3000× LEs 36 - 1.2 V 20 µA 2,*

Three low-power modes: flash, freeze, and sleep.
Flash-freeze power mode has power consumption of
24 µW.

GOWIN
Semiconductor LittleBee [39] GW1NZ-

ZV2 55 nm Flash 2304× LUTs 70 - 0.9 V/1.0 V 120 µA 3
Offers low-power mode and normal mode.
Low cost and low power; suitable for mobile and
wearable devices.

1 At 0.95 V; Tj = 85 °C. 2 At 1.2 V; Tj = 25 °C. 3 At 0.9 V, 25 °C; 4 At 1.1 V; Tj = 25 °C; * Flash-freeze mode. ** From Intel EPE tool [40]. $ Normal mode.
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Table 1 provides a detailed comparison of various low-end, low-power FPGA families,
focusing on their logic resources and static power consumption. It has been observed that
SRAM-based FPGAs focus on shrinking process technology to reduce dynamic power
consumption. However, their static power consumption is increasing due to sub-threshold
leakage and quantum tunneling. Despite this, the reprogrammability of SRAM technology
allows for partial reconfiguration, which can be beneficial in delaying deployments until
necessary, keeping unused logic powered off to lower power consumption. Additionally,
they offer voltage scaling opportunities. For example, in the Artix-7 series, the voltage can
be scaled down from 1.0 V to 0.95 V, resulting in 10% dynamic power savings and up to
40% static power savings. On the other hand, it has been observed that flash-based FPGAs
have extremely low static current consumption and offer flash-freeze modes for further
standby current savings. Some FPGA families combine the features of both SRAM and
flash technologies, providing on-chip non-volatile memory along with SRAM fabric in
hybrid mode. Devices from Lattice Semiconductor utilize this technology to offer the non-
volatility of flash-based FPGAs along with the reconfigurability of SRAM-based FPGAs. It
is noted that hybrid and flash-based FPGAs exhibit lower static consumption compared
with SRAM-based FPGAs, along with a reasonable amount of logic resources.

The observation that various manufacturers offer different low-power families of FP-
GAs, each with a distinct range of power consumption characteristics, provides motivation
for this literature review. This review aims to investigate the application of FPGAs in
wearable medical devices, explore additional strategies for optimizing FPGA-based designs
to enhance the energy efficiency, and examine existing review works on this subject.

3. Related Work and Motivation

The use of FPGAs by researchers for physiological monitoring in wearable devices is
increasing to meet the demand for higher computational capabilities, as shown in Figure 2.
We evaluated various survey and review studies related to the objective of this work.

Figure 2. Number of papers published on FPGA-based wearable medical devices in last 5 years.

It has been observed that several notable studies have reviewed energy optimization
strategies, with a particular emphasis on micro-controllers and CPU-based systems, while
some other research has investigated these optimizations more broadly without centering
on a specific platform. For instance, the authors of [41] comprehensively reviewed low-
power techniques (LPTs) through a literature review for WMDs and proposed a taxonomy.
However, their work does not address FPGA-based wearable devices and corresponding
LPTs. Similarly, in [42], the authors reviewed the various energy-efficient strategies to
minimize power consumption in the Internet of Wearable Things (IoWT) without focusing
on a particular platform. The authors did not mention any FPGA-specific optimization
technique at all. In a similar fashion, the authors of [43] comprehensively reviewed LPTs
through a literature review for WMDs and proposed a taxonomy. However, their work
does not address FPGA-based WMDs or their corresponding LPTs.
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Furthermore, in [44], the authors conducted a review of various edge computing
architectures in the healthcare domain. These architectures encompass operations like
authentication, encryption, classification, and prediction. While the paper briefly mentions
the energy optimization topic, it does not delve into a detailed discussion of LPTs and their
underlying principles. Additionally, FPGA-specific LPTs were beyond the scope of this
survey. In another approach, various energy-efficient solutions for IoWT applications were
examined in [45]. The authors discussed common power optimization strategies. However,
the paper did not review the energy-efficient utilization of FPGAs in such applications.

Likewise, the authors of [46] conducted a review on energy optimization for edge
computing in mobile devices. While they touched upon several aspects of energy opti-
mization at the device, application, and transmission levels, their primary focus remained
on energy-efficient computation offloading and the corresponding execution mechanisms
across various cloud environments. Notably, the review did not delve into application-
specific optimization strategies for FPGA-based WMDs in physiological monitoring. In
another work [47], the challenges faced by wearable devices, including energy efficiency,
were reviewed and discussed. However, this work did not delve into energy optimization
techniques, their classification, or the use of FPGAs in wearables. Furthermore, the au-
thors of [48] classified energy optimization strategies into hardware (HW) and software
(SW) levels. However, FPGA-based approaches were not explored. Last but not least, the
authors of [49] comprehensively documented and classified energy optimization strate-
gies, along with different architectural approaches. While their work is commendable,
it primarily focuses on human context recognition applications and does not delve into
FPGA-based optimization.

On the other hand, some reviews and surveys briefly mentioned energy optimization
approaches. However, they did not conduct a thorough investigation or discussion of
these strategies and their corresponding implications, as this was not the main focus of
their studies. For example, in [50], the authors reviewed the implementation of real-time
machine learning (ML) algorithms on FPGAs and systems-on-chips (SoCs) within the
biomedical domain. They investigated how different researchers optimize their ML models
to overcome resource limitations for a given accuracy. While the primary focus was on
the trade-off between accuracy and resource utilization for ML algorithms, the authors
also touched upon the impact of this trade-off on energy consumption in various instances.
However, a detailed exploration of LPTs remained outside the scope of this paper. Similarly,
the authors of [51] summarized a few power optimization strategies for FPGAs, with a
primary focus on dynamic voltage and frequency scaling (DVFS), power gating, and clock
gating. While the authors briefly mentioned “algorithm-level techniques”, they did not
delve into the details. Broad-level exploration of LPTs was out of their scope. Likewise,
in [52], the authors reviewed various vital health parameters and their corresponding
physiological signals, as well as the design considerations for smart wearable healthcare
devices. It does not present LPTs.

It was also observed that some of the studies concentrated on reviewing energy
optimization through improvements in FPGA architecture, technology, and associated
CAD tools. While some studies briefly mentioned system design level optimization, they
fell short of providing a comprehensive survey with optimization of processing algorithms,
communication protocols, data acquisition methods, etc. For illustration, in [53], the authors
broadly examined power optimization strategies in general across various hierarchical
levels of design, including architecture, circuitry, devices, and systems. While the focus
of their work was technological, architectural, and CAD tool improvements, they briefly
listed and discussed some optimizations at a system-design level. In contrast, our research
provides a comprehensive review of LPTs at the system design level, specifically within
the wearable healthcare domain. Similarly, the authors of [54] mainly reviewed power
optimization techniques and strategies for FPGAs at the technology, architecture, and CAD
tool levels, targeting Internet of Things (IoT) devices. However, they did not review the
optimization strategies at the system design level.
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In contrast, some researchers explored energy and power optimization opportunities
without a specific emphasis on WMDs. Therefore, such studies missed out on potential
optimizations which could have taken advantage of the unique features of physiological
signals for applications tailored to WMDs. For example, the authors of [55] reviewed
energy optimization in edge computing from hardware architecture to the application layer
in general and its broader prospects. However, application-specific optimization strategies
for WMDs in physiological monitoring remained out of their main scope.

Similarly, the authors of [56] surveyed techniques related to optimizing and imple-
menting convolutional neural networks (CNNs) on FPGAs. They categorized the surveyed
work to emphasize both differences and similarities. While the paper briefly mentions the
impact of some acceleration techniques on energy efficiency, it lacks a detailed discussion
of LPTs and their underlying principles. Additionally, the focus on WMDs as potential
applications remained out of the scope of this paper. In a similar fashion, the authors in [57]
examined recent research on implementing deep learning models in FPGAs. They com-
pared different topologies and development strategies in terms of performance and energy
efficiency. However, the paper did not delve into the classification of LPTs specifically
related to wearable physiological monitoring; that topic was beyond the scope of their
study. In another work, FPGA-related LPTs within the domain of wireless sensor networks
for IoT applications were explored in detail [13]. While these LPTs can be adapted for use
in WMDs, it is important to note that this paper does not delve into the specifics of such
utilization. In contrast, the review presented in [58] is limited to communication-related
optimizations only.

There are several other review papers on energy-efficient health monitoring at the edge.
However, their main focus is on allied technologies rather than the computing platform. For
example, some papers focused on low-power wireless transmission technologies suitable
for power-sensitive WMDs, such as Bluetooth Low Energy (BLE), near-field communication
(NFC), and radio frequency identification (RFID) [59–61]. BLE is designed for low power
consumption, making it ideal for wearable medical devices. Similarly, NFC enables data
exchange between devices in close proximity, typically within a few centimeters. It is
used for secure patient identification, device authentication, and data transfer, allowing
healthcare providers to quickly access patient information by tapping an NFC-enabled
device to a patient’s wristband [61]. On the other hand, RFID uses electromagnetic fields
to automatically identify and track tags attached to objects. Its applications range from
low-power physiological health monitoring [59] and medication tracking to structural
health monitoring [62–64] due to its energy efficiency. Additionally, some review papers
focused more on energy harvesting approaches rather than exploring algorithm-based
optimization strategies [65].

While the above-mentioned reviews and surveys, summarized in Table 2, provide
notable overviews within their respective scopes, our review paper addresses the identified
gaps. We offer an exhaustive list and in-depth analysis of cutting-edge optimization
techniques and strategies, including the underlying principles, benefits, and corresponding
implications for FPGA-based WMDs. To the best of our knowledge, this is a more detailed
review of its kind which addresses the power optimizations specific to FPGA-based WMDs
for physiological monitoring.
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Table 2. Comparison of review papers on FPGA-based, energy-efficient wearable medical devices for physiological monitoring.

Ref. Year Focus Wearable
Devices

Healthcare
Applications

Common
LPTs

FPGA-Specific
LPTs

Categorization of
LPTs Limitations

[41] 2024 Wearables in medical domain ○ ○ ○ ○ ○
Comprehensive review of LPTs for WMDs and taxonomy. However, FPGA-based wearables
and corresponding LPTs were not focused upon.

[52] 2024 Low-power wearables ○ ○ ○ ○ ○
This paper is focused on general design consideration for smart wearable healthcare devices;
it does not present LPTs for WMDs.

[50] 2024 Machine learning (ML) in
biomedical field � ○ � � ○

This work is focused on optimization of ML models to overcome resource limitations for a
given accuracy. However, a detailed exploration of LPTs remained out of scope.

[51] 2024 Wearable and Implantable
Devices ○ ○ � � �

The main focus is on dynamic voltage frequency scaling, power, and clock gating along with
brief mention of “algorithm-level techniques”. Broad-level exploration of LPTs out of scope.

[53] 2023 General use of FPGA ○ ○ � ○ ○
While the focus of their work lies on technological, architectural, and CAD tool
improvements, they briefly listed and discussed some optimizations for system-level design.
Comprehensive review of LPTs at system-level design, specifically within WMDs, is missing.

[42] 2023 IoWT in healthcare ○ ○ ○ ○ ○
Reviewed various energy efficient strategies in IoWT without focusing on a particular
platform. FPGA-specific optimization techniques were not considered.

[43] 2022 Wearables in medical domain ○ ○ ○ ○ ○
Comprehensive review of LPTs for WMDs and taxonomy. However, FPGA-based wearables
and corresponding LPTs were not under focus.

[44] 2022 Edge computing in healthcare ○ ○ � ○ ○
The authors reviewed various edge computing architectures in the healthcare domain.
However, a detailed discussion of LPTs and the underlying principles for FPGA-based
WMDs was out of their scope.

[54] 2021 IoT ○ ○ ○ ○ ○
Reviewed LPTs at technology, architecture, and CAD tool levels, targeting IoT devices. A
review of LPTs for the system design level is missing.

[45] 2020 IoWT ○ � ○ ○ ○
Although various energy-efficient solutions for IoWT applications were examined,
energy-efficient utilization of FPGAs in such applications was missing.

[55] 2020 Edge computing � � ○ � ○
Comprehensively reviewed energy optimization in edge computing in broader prospects.
However, application-specific optimizations for WMDs in physiological monitoring
remained out of the main scope.

[46] 2020 Mobile devices ○ ○ ○ ○ ○
A comprehensive review with a primary focus on computation offloading to cloud in mobile
devices. However, application-specific optimizations for FPGA-based WMDs in
physiological monitoring were not the main focus.

[56] 2020 FPGA-based convolutional
neural networks ○ ○ � � ○

A survey of techniques for optimization of CNNs on FPGAs. It lacks a detailed discussion of
LPTs for WMDs as potential applications.

[57] 2019 FPGA-based deep learning (DL) ○ � � � ○
This work examined recent research on implementing DL models in FPGAs in terms of
performance and energy efficiency. However, classification of LPTs for WMDs was beyond
the scope of their study.

[13] 2019 Wireless sensor networks
(WSNs) in IoT ○ ○ � ○ ○

Explores FPGA-related LPTs within the domain of WSN for IoT applications. However, the
use of such LPTs in WMDs was not covered.

[47] 2017 Wearable devices ○ ○ � ○ ○
Does not delve into the energy optimization techniques, classification, or the use of FPGAs in
wearables.
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Table 2. Cont.

Ref. Year Focus Wearable
Devices

Healthcare
Applications

Common
LPTs

FPGA-Specific
LPTs

Categorization of
LPTs Limitations

[49] 2017 Human context recognition
(HCR) via WSNs ○ ○ ○ ○ ○

A comprehensive review with a primary focus on HCR applications. However, it does not
delve into FPGA-based optimization.

[58] 2016 Remote healthcare monitoring
using IoT ○ ○ � ○ ○ Limited to communication-related optimizations only.

[48] 2015 Wearable devices ○ ○ ○ ○ ○
Classifies energy optimization strategies into HW and firmware levels. However,
FPGA-based approaches were not explored.

This Work Wearable medical devices ○ ○ ○ ○ ○ –

○ indicates that the subject review work covered this topic; � indicates that the subject review work partially addressed this topic as compared to our work. ○ indicates that the subject
review work did not cover this topic. The term LPTs indicates ‘Low-power techniques’ or ‘energy optimization strategies’.
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4. Review Methodology

This paper aims to review the current state-of-the-art application of FPGAs in WMDs
in the context of power optimization and energy efficiency while highlighting the challenges
for further research opportunities. A review of the trends in this research field in the last
five years was performed to identify suitable research papers for the objective.

A comprehensive search process was run on different databases using a well-thought
out set of search keywords. Web of Science, ACM-DL, IEEE-Xplore, Scopus, Science Direct,
PubMed, and Google Scholar were explored using the following search keywords:

FPGA AND wearable AND (health OR healthcare OR medical OR Biomedical OR monitoring OR
management OR diagnosis OR treatment OR rehabilitation)

The initial search keywords were further enhanced by including synonyms such as
“field programmable gate array” along with terms like portable, edge, IoT, or remote and power or
energy. Moreover, the health-related terms were optimized to health* or medical or disease*
or biomedical.

We included works written in English with full text available which implemented their
research on FPGAs and evaluated power optimization approaches in their systems. Works
focusing on other parameters such as performance, accuracy, or resource consumption
which did not directly target power optimization were excluded, even if they had some
power improvement.

After identifying the relevant articles, we removed duplicates, considering the possi-
bility of overlapping results across multiple databases. Next, we assessed the eligibility of
the shortlisted papers against the above-mentioned inclusion and exclusion criteria. Finally,
52 studies were selected for the final review.

5. Power Optimization Strategies

Designing any system involves various aspects, from the preliminary conceptual de-
sign to the final hardware implementation [51]. Energy-efficient design requires a holistic
approach which considers all aspects of the system. This includes selecting energy-efficient
hardware, designing energy-conscious algorithms which minimize computational over-
head, minimizing transmission energy cost, scheduling tasks to optimize resource usage,
and leveraging the energy-saving capabilities of the hardware platform. By integrating
these elements, one can ensure that the system operates efficiently, reducing overall en-
ergy consumption. Neglecting any of these aspects can compromise the system’s energy
efficiency, making a holistic approach essential.

In this work, we systematically present the power optimization strategies explored
during our review of various FPGA-based WMDs in the related research papers. These
strategies were categorized into “Designing Energy-Conscious Algorithms”, “Minimizing
Transmission Energy Costs” “Energy-Efficient Task Scheduling” and “Exploiting FPGA Features”,
as summarized in Figure 3.

5.1. Designing an Energy-Conscious Algorithm

At the heart of WMDs lies an algorithm which processes and analyzes data collected
from health sensors, identifies patterns, provides predictive analysis, and offers personal-
ized health insights. It can range from a simple set of instructions to complex AI algorithms
commonly found in the reviewed literature. Examples include the infinite impulse re-
sponse (IIR) filter [66], CNN [67], support vector machines (SVMs), multilayer perceptron
(MLP) [67], random forest (RF), and artificial neural networks (ANNs). These algorithms
consume energy primarily due to their computational tasks, such as data processing,
real-time analysis, and communication. The complexity of computations increases with
the algorithm’s complexity, leading to higher energy consumption. Simplifying these
computations and optimizing the algorithms can help reduce their energy usage.
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Figure 3. Categorization of identified power optimization strategies.

Wearable devices are often battery-powered and limited in computational resources,
such as memory and processing power. As the complexity of computing algorithms in-
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creases, so do the demands on power consumption and computational resources. However,
high-performance algorithms are essential for real-time monitoring and timely interven-
tions in medical scenarios. The incorporation of AI in WMDs has further increased this
complexity [68]. Therefore, it is necessary to optimize these complex algorithms for re-
source efficiency, power consumption, and performance before implementing them in
WMDs. Optimized algorithms ensure efficient use of resources, allowing the device to
perform its tasks without overloading the system. This optimization can significantly
improve performance, resulting in faster data processing and quicker response times with
an acceptable level of accuracy. Most importantly, optimized algorithms can reduce the
number of computations required, thereby conserving energy and extending battery life.
These benefits are particularly important for continuous health monitoring tasks which
require real-time data processing over long periods. To address issues of resource consump-
tion, memory, and power usage, various optimization techniques, such as approximate
computing, parameter quantization, feature reduction, and signal format conversion, are
employed to compress these models [69].

5.1.1. Simplification of Arithmetic Operations

Arithmetic operations, such as multiplication and division, are resource-intensive and
consume significant FPGA logic and power. These operations can often be replaced by
simpler shift and add operations. Similarly, logic-wise multiplication can be substituted
with XNOR operations [70,71]. These simplifications reduce computational complexity and
resource consumption, leading to lower power usage.

For example, the authors of [72] binarized the weights, allowing logic-wise multiplica-
tion operations using XNOR instead of the power-consuming MAC operation. This resulted
in simplified computations, thereby reducing resources and dynamic power consumption,
but at the cost of a slight reduction in accuracy due to the simplification of arithmetic
operations. Similarly, in [67], the authors used a binary hyperbolic tangent as an activation
function to allow a logic-wise multiplication operation (XNOR) in their bCNN-based ECG
classifier, resulting in significant resource and power consumption at the cost of a small
degradation in accuracy. Likewise, in [69], the authors replaced the multiply–accumulate
operation with bitwise XNOR operation, exploiting the fact that weights and feature maps
are constrained to negative or positive one and thereby enabling one-bit operations. This
significantly reduces memory access and computational resources, leading to a reduction
in power consumption with acceptable accuracy.

Another approach is to replace multiply–accumulate (MAC) operations with shift–
accumulate (SAC) operations [73–75]. Using shift–add operations instead of multipliers can
reduce hardware complexity and power consumption because shift-and-add operations
are generally simpler and require fewer resources than multiplication, though this may
affect the overall speed. These simplifications significantly reduce the complexity of
computations and the corresponding hardware, thereby lowering power consumption.
For instance, the authors of [66] replaced the DSP block with shifters by choosing filter
coefficients with a power of two, resulting in significant area and power reduction without
compromising the functionality. Filters with coefficients of the form 2n can be implemented
using addition and shift operations instead of multipliers, resulting in reduced resource
and power consumption [76].

Similarly, the authors of [77] converted the MAC operations with SAC. According
to the authors, the dynamic power consumption of a 12 bit multiplier is approximately
13× times higher than that of the 15 bit shifter. Likewise, the authors of [78] replaced the
multiplier with shift-and-add operations in their lifting-based discrete wavelet transform
(LDWT) PVC recognition system. In another approach, an integer Haar wavelet transform
(IHT) was used by the author of [79] for denoising the ECG signal, where division by a
“2” operation was also implemented using a simple shift operation. This resulted in lower
complexity and thereby lower power consumption.
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5.1.2. Approximation of Arithmetic Operations

The complex functions can also be approximated with simpler ones, having similar
curves provided that the accuracy degradation is within an acceptable range [80]. Likewise,
an operation involving multiplication or division by a particular constant can be avoided in
AI operation because it linearly scales the data, and the classifier can adjust the hyperplane
with the corresponding scale.

The author of [80] exploited the fact that multiplication or division by a particular
constant linearly scales the data. Removing such multiplication or division will not impact
the classifier’s output, as it will adjust the hyperplane with the corresponding scale. They
also observed that the approximation of complex functions with simpler ones, having
similar curves (e.g., natural log and square root), can also be used, provided that the
degradation is within an acceptable range. On the other hand, the authors of [81] replaced
conventional adders with approximate adders in order to reduce the power consumption
by 21% at the cost of a 3% loss in accuracy.

5.1.3. Sparsity-Aware Arithmetic

Sparsity-aware arithmetic reduces the number of active computations by leveraging
the sparsity (presence of many zero or near-zero values) to optimize the computations.
This approach can significantly reduce the number of operations and memory usage,
leading to more efficient processing and thereby reducing computational resources and
power consumption. In [82], the authors used sparsity-aware arithmetic in a BioCNN-
based emotion detector. They exploited the sparsity generated by weight pruning to
avoid unnecessary computations in zero-operand cases, thereby reducing the number of
computations and the power consumption to 150 mW. Sparsity-aware arithmetic not only
enables faster processing times but also allows for the efficient use of FPGA resources,
facilitating the deployment of larger or more complex models on the same hardware.
Additionally, it can reduce latency by decreasing the number of operations per inference.
However, it is crucial to carefully manage sparsity-aware techniques to prevent significant
accuracy loss.

5.1.4. Parameter Quantization

Arithmetic operations with real numbers on an FPGA consume substantial power due
to floating-point (FP) computations. Moreover, these FP operations utilize significant on-
chip resources, memory bandwidth, and inference times [7]. Parameter quantization is used
to reduce the model’s size, memory footprint, and resource consumption by compromising
the precision of model parameters. It involves converting high-precision floating-point
numbers (e.g., 32 bit) into lower-precision formats (e.g., 8 bit integers). To optimize the
model for resource-constrained hardware, the model’s parameters are quantified from float
to fixed for compression and efficient inference [83]. Such optimization also results in the
reduction of resource consumption and improves power consumption. For instance, the
authors of [84] implemented a real-time apnea detection module, taking input from a pulse
oximeter and single-channel ECG sensors and using a BiNN on an Artix-7 Nexys FPGA.
The input data were quantized into eight-bit binary values. The hyperparameters of the
trained model were also binarized, enabling the substitution of MAC operations with SAC
operations, including the use of a SAC-based activation function. Such implementation
of the SABiNN model, as opposed to a feedforward neural network (FNN), resulted in a
reduction in power consumption of nine times and a reduction in resource usage of four
times, with only a minimal but acceptable loss in accuracy.

The authors of [68] also exploited parameter quantization in their SNN-based ECG
classifier. The parameters were mapped to the (−1, 1) range during the training phase
and then quantized to a six-bit fixed point for hardware implementation. This approach
significantly reduced complexity and power consumption at the cost of little accuracy
loss from 98.39% to 98.22%. An arrhythmia classification at the edge was designed based
on the DCNN model in [83], where a large-scale DCNN was optimized to accelerate its
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inference on the FPGA-based embedded platform by quantizing the parameters of the
pruned model. The weights and feature maps of the pruned model were quantified to
unsigned 8 bit integers, while the bias vectors were quantified to signed 32 bit integers.
Such integer operation resulted in a reduction in communication, along with memory
and power consumption. In another approach, the authors of [77] converted the FP
parameters to corresponding integer values in their FNN-based sleep apnea detector for
power consumption.

Similarly, in [66], the authors used fixed-point arithmetic in their QRS extractor based
on the Pan and Tompkins algorithm. The IIR filters in the digital signal processing (DSP)
section of this algorithm are power-hungry components due to the large number of arith-
metic computations involved. They reduced the number of bits at input from 16 to 4,
thereby reducing the bit size of all of the processing elements involved in the computation.
The authors of [72] used fixed 16 bit precision and also binarized the weights, simplifying
computations and thereby reducing resource usage and dynamic power consumption.
However, this came at the cost of a slight reduction in accuracy due to the simplified arith-
metic operations. Likewise, ECG signal classification using dynamically biased LSTM was
proposed in [85], where weights were quantized to fixed points for hardware implementa-
tion. The author quantized the widths from FP32 to INT4 to improve power consumption,
with an acceptable loss of accuracy of 2.4%.

Likewise, the authors of [78] used fixed points (16 bit) to represent LDWT factors,
computed in a parallel fashion to reduce the clock cycles from n to 1. The authors were
able to achieve a 20% reduction in power consumption operating at 35 MHz with 98.29%
accuracy while using only 4.36% of the total resources. The authors of [86] also quantized
the parameters of each trainable layer to 8 bit integers in their 1D CNN-based ECG classifier.
In another approach, an integer Haar wavelet transform (IHT) was used by the author
of [79] for denoising the ECG signal. This works by using integer coefficients, thereby
eliminating FP operations. Some other authors [83,87–91] also replaced the FP operation
with fixed-point or integer operations to reduce resource consumption, computational load,
and power consumption.

In contrast, the authors of [92,93] kept the FP arithmetic to maintain the dynamic
properties of the ECG signal in their ECG denoising system. However, to reduce resource
consumption and the off-chip bandwidth, they used half-precision (16 bit) FP instead of
single-precision (32 bit) FP.

Quantization significantly reduces the size of a model by using lower-precision arith-
metic operations, which are faster and consume less power. This process is crucial for
deploying complex models on wearable devices, which are constrained by limited resources
and battery life. FPGAs can be programmed to use any bit width for their operations, al-
lowing for more precise control over the quantization process.

5.1.5. Feature Reduction

Feature reduction in AI algorithms reduces data by eliminating less relevant features
while keeping essential information. Such reduction produces smaller models, simpler
computations, less memory, and less data movement within the FPGA. It can enhance
the performance, resource, and power efficiency of FPGA implementations in WMDs. By
decreasing the number of features, the AI model becomes less complex, leading to faster
processing times, which is vital for real-time monitoring [94]. However, this may reduce
accuracy, and thus careful feature selection is essential. Fewer features also mean reduced
memory and computational load, allowing for smaller, less powerful FPGAs and extending
battery life. Additionally, lower power consumption reduces heat generation, improving
user comfort.

The authors of [95] reduced the area and power consumption in their single-lead ECG
processor by using a reduced feature set of four (RFS4) features. Using only four morpho-
logical features simplifies the computations, thereby reducing the computations, area, and
system power consumption. In [96], the authors also used a feature reduction approach in
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their low-power stress detector to reduce the computational complexity, memory access,
and resources and implement a low-power design with 82 mW of consumption. The au-
thors of [81,97] also used a similar approach, feature selection, in epileptic seizure detection
for power reduction. Employing a lower number of features for prediction with a given
confidence can reduce computational complexity. Additional features can be activated only
when the desired confidence level is not achieved. This strategy minimizes the overall
computational complexity, thereby reducing power consumption.

Channel selection [94] and weight pruning [98] are other approaches used to reduce
computational load and power.

5.1.6. Fused-Logic Model Implementation

Fusion of operations across adjacent layers or fusion of adjacent layers itself combines
multiple computational steps into a single step to reduce memory access and improve
computational efficiency, which can reduce resource and power consumption. Such fusion
of operations can increase the overall throughput and reduce the latency of the system,
which is important for real-time physiological monitoring, where timely data processing
is critical. However, such operations are highly optimized for a particular scenario or
application, which reduces the flexibility of the system to adapt to changing requirements.
The authors of [99] integrated their feature selection process with the classifier to form a
single architecture for their EEG-based seizure detection system. This strategy improved
performance along with a reduction in computational complexity and power consumption,
resulting in 2.018 µW of power.

In another approach, the authors fused their batch normalization with convolution
to reduce unnecessary computations in their PPG-based heart rate estimator [100]. The
convolution operation mainly consists of multiplication and addition operations. Usually,
the next layer is a batch normalization (BN) layer, where the main operations are subtraction
and division, which are resource- and power-hungry. These computations can be fused
with the previous layer’s computations to remove repeating computations. This results
in a reduction in computational complexity and can thus also reduce resource and energy
consumption. The authors of [67] fused their qMLP with the bCNN model to enable
an end-to-end architecture for their binary image-based ECG classifier for resource and
power reduction.

The fusion of operations and layers can significantly enhance efficiency, performance,
and power optimization. However, it can limit the flexibility of the system.

5.1.7. Signal Format Conversion

Some researchers have converted signal formats to reduce complex arithmetic op-
erations in their approaches. This conversion allows them to leverage well-established,
efficient models from other domains, which can extract features more effectively. For
instance, conversion of an ECG signal to a binary image enabled the authors of [101] to use
simple addition and shift operations in their TNN-based cardiac arrhythmia detector. This
resulted in a reduction in energy per operation of three times. Moreover, this simplification
reduced the bit sizes of the weights, thereby simplifying the memory controller. This not
only increased the overall system speed but also reduced latency. The authors of [67]
also used the same approach to convert ECG signals into binary images in their ECG
classifier on a wearable edge device to exploit the benefits of the bCNN for resource and
power optimization.

By transforming complex representations into simpler ones, this method also reduces
memory requirements, computational load, and power consumption, which are critical
factors for WMDs. However, this approach introduces the overhead of initial data pro-
cessing for conversion and post-processing, which may degrade system latency. On the
contrary, the authors of [102] used a simple slope-based detection (SBD) algorithm instead
of complex machine learning for seizure detection. To save power, they computed the data
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at shorter intervals instead of at the sampling period and determined the running sum of
the squared data values before calculating the slope.

In conclusion, researchers have employed various optimization techniques to enhance
the efficiency of complex algorithms in WMDs. These optimizations address the challenges
posed by the increasing complexity of AI-integrated algorithms, ensuring that AI models
are compressed and optimized to operate effectively within the resource, memory, and
power constraints of WMDs.

The benefits and constraints associated with these optimization techniques are sum-
marized in Table 3, along with their descriptions.

Table 3. Optimization strategies for designing energy-conscious algorithms.

Strategy Description Advantages Constraints

Simplification of arithmetic
operations

Complex operations, such as
multiplication, are replaced with simpler
ones (e.g., MAC to SAC or MUL to XNOR)
to reduce computational resources.

Requires fewer logic elements and memory
resources.

Simpler operations can lead to lower
switching activity.

Reduced resource usage allows more
parallelism for performance, lower latency,
and faster computation.

Reduced power consumption.

Less heat generation leads to more comfort
and safety of WMDs.

Possible loss of precision and therefore
accuracy.

Accumulation of smaller
errors over time can affect reliability.

Can limit the flexibility of the system.

Approximation of
arithmetic operations

Complex functions are approximated with
simpler ones, having similar curves, to
reduce computation complexity.

Sparsity-aware arithmetic Exploiting the sparse nature of signals to
reduce the number of active computations.

Parameter quantization

Floating-point operations are replaced
with fixed-point or even lower-bit integer
operations (e.g., FP-32 to FP-16, INT-32,
INT16, INT8, or INT4), with binarization
of parameters to 1 and −1 values.

Feature reduction Reduces data and computations by
eliminating less relevant features.

Fused-logic model
implementation

Fusion of operations across adjacent layers
or across the components to reduce
memory access and improve
computational efficiency.

Signal format conversion
Conversion of signal formats to reduce
complex arithmetic operations (e.g., ECG
to binary image).

5.2. Minimizing Transmission Energy Costs

Continuous health monitoring involves collecting large amounts of data, which can
be stored locally or transmitted to a higher level for further storage and analysis. However,
transmitting continuous streams of physiological data at high data rates and frequent
intervals costs energy consumption, which needs to be minimized to extend the battery life
of WMDs. The energy consumption is directly proportional to the volume of data and the
frequency of transmission. Consequently, high data volumes and frequent transmissions
can quickly drain the battery. To address this issue, researchers have developed several
approaches focused on the idea of data compression and power-aware transmission, aiming
to reduce the data volume, lower the data rates, and decrease the transmission frequency,
thereby minimizing energy consumption. Different data compression approaches, their
energy minimization methods, and their associated advantages are further explained in the
following sections and also summarized in Table 4.

5.2.1. Data Compression

Data compression at the sensor node lowers the amount of data to be transmitted
and thereby also lowers the power consumption. The authors of [103] proposed a lossless
compression scheme based on run-length coding for ECG signals. The signal is compressed
through duplicate data encoding, exploiting the distribution and correlation of adjacent
beats of the ECG. They obtained a compression ratio of 2.11:1 for lossless compression.
Fusion of data from the body sensor network (BSN) also faces the challenge of higher data
volumes and power consumption.



Electronics 2024, 13, 4094 20 of 35

Table 4. Optimization strategies for minimizing transmission energy costs.

Strategy Description Advantages Constraints

Data compression Compress the data in lossy or lossless
fashion to reduce the transmission load

Reduction in power required for transmission.

Reduction in storage requirement.
Trade-off between power saved from
transmission vs. spent for compression &
reconstruction.

Power saving vs. accuracy trade-offCompressed sensing
Efficient acquisition and reconstruction of
signals using fewer samples than typically
needed

Reduction in power required for both
acquisition and transmission.

Reduction in storage requirement.

Compressed learning
Focuses on directly inferring information
from compressed measurements using
machine learning tools

Eliminate the resource and power
consumption required for reconstruction.

Additional design effort for optimizing
sensing and inference with deep learning
during training

Trade-off: power consumption vs.
accuracy

Power-aware transmission Adjusting the transmission load based on
the current battery level

Maintain availability of critical data by
prolonging the battery lifetime. Could impact real-time monitoring

In another work [104], the authors used a data compression approach in their bal-
listocardiograph (BCG)-based heart health monitor. The data sampled at 600 Hz with
16 bits for each sample pose a challenge for storage and wireless transmission due to
power consumption in wearable applications. Modified delta encoding was used for online
compression of large data volumes, achieving a compression ratio of 5.17 with negligible
loss to reduce transmission power consumption and the storage requirements. In another
approach, the authors of [105] proposed transmitting only lossy compressed ECG data
initially until an anomaly is detected. This method achieved a compression ratio of 7.8× at
the cost of an RMS error of 4.61, requiring only 18% of the power consumption compared
with uncompressed transmission using a Bluetooth transceiver. In the event of anomaly
detection at the receiving end, the sensor node can be prompted to send the error residue.
This allows the original signal to be accurately reconstructed without any loss, enabling
further analysis of the anomaly.

Depending on the compression technique used, there might be some loss of data
fidelity. Any loss of data accuracy could potentially impact clinical decisions based on
the monitored data. Moreover, decompression and analysis of compressed data require
additional computational resources, which might complicate the device’s design and
operation at the receiving end.

5.2.2. Compressed Sensing

Compressed sensing (CS) [106], also known as compressive sensing or sparse sam-
pling, is a signal processing method which efficiently captures and reconstructs signals
using fewer samples than typically required, known as sub-Nyquist sampling [107]. This
approach reduces the need for continuous sampling and the associated communication
load, which can frequently drain the battery [49]. This technique takes advantage of the fact
that many natural signals are sparse or compressible in certain domains. By utilizing fewer
measurements, compressed sensing can greatly decrease the data required for accurate
signal reconstruction, which in turn can significantly lower the transmission load and
reduce power consumption. By leveraging this inherent sparsity in most physiological
signals, CS becomes a powerful tool compared with conventional compression techniques.

The authors of [108] introduced a low-complexity hardware implementation of CS
on an FPGA for reconstructing compressively sensed signals using the matching pursuit
(MP) algorithm. The proposed hardware design was implemented on the programmable
logic (PL) part of a Zybo board, achieving a significant reduction in computational time.
It was 75× faster than the processing system (PS) implementation on the same board at
the cost of extra resources of FPGA. In [109], the authors also implemented multichannel
EEG compressive sensing on an FPGA to optimize power consumption in wireless sensors
and enhance real-time performance. The system can collect, compress, transmit, and
reconstruct EEG signals in real time. Moreover, the authors used a binary permutation block
diagonal (BPBD) sensing matrix due to its low computational complexity and resource
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efficiency, which helped reduce the power overhead associated with the compressive
sensing processes.

Compressive sensing reduces the power consumed for data transmission by collecting
data in a compressed manner. This is because fewer samples are needed to represent the
signal, which translates to less data being transmitted. However, this process requires
additional computations for both compression at the front end and reconstruction at the
receiving end, which in turn demand extra resources and power. Therefore, there is a
trade-off between the power saved from transmitting less data and the power spent on
compression and reconstruction. Moreover, if the data are not perfectly sparse, or if there is
noise, then the process of reconstruction can introduce errors, leading to inaccuracies in the
final analyses.

5.2.3. Compressed Learning

In contrast to the CS approach, which has reconstruction overhead at the receiving
end, compressed learning (CL) focuses on directly inferring information from compressed
measurements using machine learning tools [110]. This approach mitigates the reconstruc-
tion overheads and associated power consumption. It combines signal processing and
machine learning to infer information from a signal using a small number of measure-
ments. It leverages deep learning techniques to optimize both the sensing and inference
processes during the training phase. Moreover, it also eliminates the need for additional
computations, resources, time, and power required for the reconstruction process. The
authors of [111] proposed a compressed learning approach in their abnormal ECG detection
system. In the CL approach, the features are directly extracted from compressed data while
ensuring acceptable levels of accuracy. CL reduces the amount of data required to be stored
and processed, thereby also reducing storage, memory accesses, and computations, which
is highly important in WMDs.

Similarly, the authors of [112] proposed a CL method for on-device ECG signal classi-
fication, which operates directly within the compression domain, eliminating the need for
reconstruction. This approach achieved a 2.6× reduction in model size at a compression
ratio (CR) of 0.2, with only a loss of 0.028 in the macro F1 score compared with the uncom-
pressed scenario. It significantly reduced the dimensions of raw data, thereby decreasing
the required processing power. In another instance [113], the authors also performed
feature extraction and classification directly on the compressed data in their low-power
seizure detection processor. All of the computations are performed on the sensor node,
and only the 1 bit result is transmitted. This significantly reduces the transmission load
and power consumption. Likewise, the authors of [20] employed a similar approach to
analyze compressed data received from the sensor node without reconstruction to detect
anomalies. They were able to achieve acceptable accuracy, with a compression ratio of 16:1
and a significant reduction in transmission power.

CL is a relatively new approach which can significantly reduce the transmission power
at the sensor node and computation power at the receiving node. However, the accuracy of
the results can be affected by the quality of the compressed measurements.

5.2.4. Power-Aware Transmission

Power-aware transmission refers to techniques which adjust a device’s data trans-
mission based on the current battery level to optimize power consumption. If the battery
depletes unexpectedly, then critical physiological data might not be transmitted or recorded,
potentially compromising patient monitoring and care. To mitigate this, the device can
reduce the frequency or amount of data transmitted when the battery level is low, prioritiz-
ing critical data. For example, power usage can be adjusted by sending compressed data
instead of raw data, ensuring that essential monitoring continues even with a low battery.

The authors of [105] proposed a similar approach for “power-aware transmission
mode” implementation, where the ECG data are compressed through a lossy approach
while the residual error is stored in local memory in an entropy-encoded form. The original
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signal can be fully represented losslessly by combining the lossy compressed signal with
the encoded residuals. The system can switch to a lossy transmit mode if the battery level
is below some threshold. In the event of anomaly detection at the receiving end, the sensor
node can be requested to send the error residue. This allows the original signal to be
accurately reconstructed without any loss, enabling further analysis of the anomaly.

The authors of [114] exploited a similar approach in their ECG monitoring system.
A dual transmission mode strategy was employed, depending on the battery level. The
transmitter within the sensor node continuously transmits raw ECG samples when the
battery voltage is above a predefined threshold (referred to as the high-power mode).
However, when the battery level falls below the threshold, an energy-saving mode is
activated, and only critical information is sent in encrypted (3 bit) form. This helped induce
a 98% reduction in transmission load and therefore power consumption compared with the
high-power mode.

However, such implementations require more resources in FPGAs and impact the
device’s real-time monitoring capabilities due to reduced data transmission rates. Never-
theless, these downsides are often offset by the benefits of preventing the loss of critical
information, extending device life, and improving reliability.

The benefits and constraints of these optimization techniques are summarized in
Table 4 along with their descriptions.

5.3. Energy-Efficient Task Scheduling

Strategic scheduling of tasks and components to leverage specific hardware features
can significantly reduce power consumption. In physiological monitoring, some tasks
rely on the successful completion of other tasks. For example, detecting an anomaly
in an ECG signal can trigger a subsequent arrhythmia classification step. Conversely,
some tasks require only periodic activation, such as turning on the LED of a PPG sensor.
Significant efforts have been made by different authors to optimize power consumption
by scheduling tasks in a way which selectively activates only the necessary components
at any given time. They employed various approaches, including event-driven activation,
duty cycle optimization, and time sharing of hardware components using time division
multiplexing (TDM). All of these approaches rely on the idea of minimizing unnecessary
active components or their active time to reduce energy consumption.

5.3.1. Event-Driven Approach

Designs based on an event-driven approach involve activating hardware components
only in response to specific events rather than running them continuously. This can
significantly reduce energy consumption by ensuring that components are only activated
when necessary, thus avoiding wasteful energy expenditure during idle periods.

The authors of [72] proposed a two-stage ECG classifier using an event-driven ap-
proach. The idea behind this is the observation that most heartbeats are usually normal.
The algorithm is implemented on a Zynq XC7Z020 FPGA, where the first stage only dif-
ferentiates between normal and abnormal classes. The Softmax function normalizes the
output of the first stage. If the classification score exceeds some preset value, then the
classifier sends the normal class as the output; otherwise, the second stage will be trig-
gered to further classify the abnormal class into different types of arrhythmia. Another
approach implemented a three-level event-driven mechanism for arrhythmia classification
on a Xilinx XC5VLX110T [115]. The ECG signal, converted through LC-ADC, is segmented
into independent heartbeats by the QRS locator module. The correlation information
among heartbeats is then reproduced by the beat segment refactor module. This recon-
structed information is then further classified using an abnormal heartbeat detector module.
Upon detection of an abnormal heartbeat, the cardiac arrhythmia classifier is awakened
to classify the heartbeat further; otherwise, it remains dormant. The authors reported a
44% reduction in power consumption when operating in detection mode compared with
classification mode.
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A neuromorphic processor was proposed on an event-driven based architecture, where
a spiking neural network (SNN) is used with a leaky integrate-and-fire (LIF) model of
neurons for ECG classification [116]. At every time stamp, the potential is integrated by an
input spike and is also lowered by a leaky term. When the integrated value of potential
reaches a threshold, a firing event happens. In the proposed processor, an event handler is
designed for each of the three phases of the LIF model. The event controller triggers an
event handler based on the timestamp and ID of the neuron received in the processor via
the bus. These event handlers are triggered based on the conclusion of the previous event.
The processor remains in an idle state for the rest of the time. They were able to reduce
power consumption by 21.69% and resources by ≈15% at the cost of reduced accuracy of
83%. The authors of [117] also used an event-driven concept in epileptic seizure detection,
dividing the process into monitoring and detection stages. The monitoring stage extracts
only one feature to avoid redundant computations and operates in both inter-ictal and ictal
states. The detection stage remains powered off and is only activated temporarily by the
controller when a detection event happens in the monitoring stage. It extracts more features
to improve accuracy and thus reduce false positive alarms in the first stage. They were able
to reduce dynamic power consumption to 1 µW with a trade-off between detection speed
and false positive detection.

A similar approach was also used in [114], where upon detecting a low battery event,
the transmission mode was switched from transmitting complete raw data to sending only
critical data to conserve power. In case an anomalous event is detected in ECG data, the
system can revert back to transmitting the complete raw signal for detailed analysis at the
receiving end. This significantly reduces the transmission load and power consumption.
In [20], the authors also implemented an event-driven signal reconstruction module. Their
system is divided into three modules: compression, analysis, and reconstruction. The
reconstruction module remains dormant and only activates when an anomaly is detected
during the analysis of compressed data, thereby saving power consumption. The authors
of [68] also introduced an event-driven neuromorphic processor which employs a level
crossing (LC) sampling method. The LC-ADC captures the level-crossing event and encodes
it as a single bit. This approach not only simplifies the ADC quantization process but also
minimizes the number of sampling points, thereby reducing the overall data volume.

The event-driven approach must be designed carefully to minimize resource overheads
and reduce the latency associated with activating components. Additionally, it is crucial to
design the event controller to minimize false positive events, which can lead to unnecessary
module activation. Conversely, failing to detect true events can compromise the reliability
of the physiological monitoring system.

5.3.2. Duty Cycle Optimization

In contrast to the event-driven approach, where the activation of a component is based
on specific events rather than a time period, the duty cycling approach involves switching
between active and idle modes at predetermined intervals [118]. This approach effectively
manages average power consumption by balancing active and idle periods in systems
which can tolerate a wake-up delay. Respecting these conditions is critical; otherwise, the
system might miss crucial events. Duty cycling approaches contribute to reducing average
power consumption by allocating more time to sleep for energy-consuming components
such as wireless communication modules, processing elements (PEs), and sensors.

The author of [119] used the duty cycle optimization approach to reduce the power
consumption of high LED currents in the acquisition of PPG signals. The red and IR
LEDs were switched on and off alternatively while controlling the duty cycle through
digital feedback using pulse density modulation (PDM). This approach avoids unnecessary
turning on LEDs to avoid power consumption. Likewise, in [105], the authors applied duty
cycle optimization in their system, which has two transmission modes for lossy and lossless
compressed ECG data. They configured the Bluetooth transceiver in such a way that the
connection interval of the transceiver was managed according to the transmission mode by
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adjusting the duty cycle. This approach further reduces power consumption when only
lossy data are transmitted.

Duty cycling introduces some latency due to the time needed to switch between
modes, which should be acceptable in the context of real-time health monitoring. While
the accuracy of results might not be directly affected, the timing and synchronization of
data collection could be impacted. This could potentially lead to missed data points if
not managed correctly. However, this impact can be minimized by ensuring the wake-up
intervals are short enough to capture the necessary data.

5.3.3. TDM of Hardware Components

Another approach is to share the hardware components in a time-division multiplexing
fashion with other tasks instead of putting them to sleep. By sharing hardware resources
among multiple tasks in a time-sliced manner, the utilization efficiency of those resources
can be improved. This leads to reduced energy usage, as it avoids the need to power
multiple components simultaneously when a single one can be time-shared.

The authors of [67] classified ECG signals by converting them first into a binary
image using a quantized multi-layer perceptron (qMLP) and then classifying them using a
binary convolutional neural network (bCNN) to reduce resource and power consumption.
The authors orchestrated their algorithm such that IP MACs (multiply–accumulate) were
shared between the three dense layers of the qMLP, which not only reduced the resource
consumption but also enabled authors to implement their design on the ultra-low power
Lattice iCE40 FPGA, which resulted in an overall power reduction.

Although this approach reduces power and resource consumption, it can impact
latency due to time-sharing. This means there may be delays in task execution as each task
waits for its turn to access the hardware. Therefore, this approach is suitable for scenarios
where strict real-time monitoring is not required, such as heart rate monitoring.

The benefits and associated constraints of these optimization techniques are summa-
rized in Table 5 along with their descriptions.

Table 5. Optimization strategies for energy-efficient task scheduling.

Strategy Description Advantages Constraints

Event-driven approach
Activation of hardware components only
in response to specific events, rather than
running them continuously.

Avoid wasteful energy expenditure during
idle periods.

Introduces latency associated with
activation time and sharing of resources.

Could compromise reliability if a true
event is missed.

Duty cycle optimization
Optimizes average power consumption by
balancing active and idle periods at
predetermined intervals.

Balance the on and off periods to optimize
power consumption.

Minimize switching activities.

TDM of hardware
components

Share the hardware components among
multiple tasks in a time-sliced manner.

Reduce energy usage by avoiding powering
up multiple components simultaneously
when a single one can be time-shared.

Efficient resource management.

5.4. Exploiting FPGA Features

FPGAs provide unique opportunities for power optimization due to their reconfigura-
bility, customizability, and fine-grained control. These features allow designers to tailor
FPGAs precisely to their application’s needs, resulting in energy-efficient designs. They of-
fer an opportunity to optimize specific parts of a design by leveraging hardware capabilities
such as clock gating, power gating, and dynamic partial reconfiguration (DPR) [120]. These
gating techniques not only enable the selective activation or deactivation of components
but also facilitate the design of fine-grained power modes. On the other hand, DPR allows
for the time-shared deployment of hardware components, further enhancing resource and
energy efficiency.
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5.4.1. Dynamic Partial Reconfiguration

Partial reconfiguration (PR) allows for modifying parts of the FPGA while other
sections continue to operate, leading to significant energy savings. By only utilizing
resources when needed, PR minimizes idle power consumption and reduces the necessity
to power the entire FPGA continuously. Similarly, the dynamic partial reconfiguration
(DPR) of FPGAs allows them to adjust to different tasks or conditions on the fly, saving
energy by updating existing resources to meet new requirements and avoiding unnecessary
parallel deployments of all modules [121]. Consequently, PR and DPR not only enhance the
flexibility and efficiency of FPGA usage but also contribute to the overall energy efficiency.

For instance, a reconfigurable approach was applied in [80] to design an epileptic
seizure detection system based on multiple feature extractors followed by one classifier.
These feature extractors were implemented using DPR to avoid leakage power from dif-
ferent extractor parts when they were inactive. This resulted in a 0.68× reduction in
resource consumption, thereby reducing associated leakage power. Since leakage power
is the energy consumed by a component even when it is inactive, delaying the deploy-
ment of that component until it is required can eliminate the associated leakage power of
that component.

In another instance, the authors of [83], in arrhythmia classification using the DCNN
model, conducted convolutional operation layer by layer using a reconfigurable convolu-
tion accelerator through time-division multiplexing. This approach not only allowed for
the optimized use of resources but also a reduction in idle power consumption by those
unused accelerators.

5.4.2. Custom Clock Gating

FPGAs are highly customizable, allowing designers to use clock-gating strategies for
a specific application at the fine-grained level. By selectively enabling clocks of different
modules only when needed, custom clock gating can minimize significant power con-
sumption in unnecessary clock transitions. The authors of [87] implemented their design
using a modular approach for P-wave, T-wave, and QRS extractors. They incorporated the
method of custom clock gating to turn off the modules which were not required to be active.
Likewise, the authors of [81] also used clock gating to activate only 1 of the 15 multiplier
instances at a time, reducing dynamic power consumption by exploiting the fact that these
multipliers were used serially.

Clock gating reduces unnecessary switching activities, which in turn lowers dynamic
power consumption. Dynamic power consumption mainly arises from the charging and
discharging of capacitive loads during clock transitions. By minimizing the number of
active clock signals, these transitions are reduced, leading to lower power consumption.
Thus, selectively enabling or disabling the clock signal to different parts of the circuit
effectively reduces dynamic power consumption. This approach is highly useful for
designing various event-driven and sleep mode strategies for applications to optimize
power consumption.

5.4.3. Fine-Grained Power Modes

FPGAs allow granular control over power modes for shutting down any module not
required for a given task. Such control over power modes reduces not only dynamic power
consumption but also static power consumption. FPGAs consume static power even when
idle due to transistor leakage [122]. Fine-grained power modes minimize this static power
by selectively gating unused components. A similar approach was used in [123] to put a
complex module in sleep mode until required. From analysis of the patient-specific seizure
patterns, the authors noticed biases in distribution over time. Therefore, they created two
different, simple, and complex models for seizure detection. During the time of day when
the likelihood of occurrence of seizures is low, a simple model can be activated to lower the
power consumption. Since the likelihood of occurrence over the time of a day is extremely
low, the system will mostly remain in low power mode, and much power can be saved.
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Implementing power down modes for inactive components can result in significant
energy savings. For instance, placing communication interfaces, unused sensors, or an
associated ADC [124] into sleep mode can reduce the system’s power consumption, thereby
extending battery life in WMDs. However, there are various levels of power down modes,
such as low power, ultra-low power, sleep mode, and deep sleep mode. It is crucial to
consider the wake-up time of these modes to prevent missing critical events in continuous
health monitoring.

The advantages and constraints associated with these optimization strategies are
summarized in Table 6 along with their descriptions.

Table 6. Optimization strategies while exploiting FPGA features.

Strategy Description Advantages Constraints

Dynamic partial
reconfiguration

A distinct feature of FPGAs used to
reconfigure parts of the FPGA on the fly
for resource optimization.

Used in event-driven & TDM approaches.

Reduce both dynamic and static power
consumption.

Introduces latency associated with
activation or wake-up time.

Could compromise the reliability if a true
event is missed.Custom clock gating

Selective enabling of the clocks of different
modules to reduce unnecessary switching
activities.

Enables event-driven, duty-cycling
and fine-grained power modes.

Minimize switching activities.

Reduces dynamic power consumption.

Fine-grained power modes Putting the components to sleep or into
deep sleep mode when in an idle state.

Reduce both dynamic and static power
consumption.

6. Analyses and Discussion

The increasing demand for real-time physiological monitoring and feedback has sig-
nificantly driven the incorporation of AI techniques in wearable medical devices. At the
same time, there is a rising trend toward integrating multimodal sensors within these
devices to achieve comprehensive monitoring of vital parameters, which has increased the
data volumes to be stored, transmitted, and processed. Additionally, concerns regarding
privacy, security, and the load on cloud computing resources have prompted a shift to-
ward edge computing, where data are processed locally on a device. These advancements
have collectively led to a substantial increase in data volumes, computational complexity,
memory accesses, and transmission load, which are significant challenges in the design
of wearable medical devices. Moreover, the continuous evolution of AI techniques and
frequent customization of WMD features for individual patients demand flexibility in
reconfigurability, adaptability, and scalability. To address the demand for additional com-
putational resources and flexibility, researchers are exploiting FPGAs due to their unique
properties of parallelism, reconfigurability, and partial reconfigurability. Although FPGAs
are more power-efficient compared with GPUs and GPPs, they are still power-hungry
devices. Consequently, researchers have applied various energy optimization strategies to
make FPGAs viable for use in battery-powered WMDs.

Designing an Energy-Conscious Algorithm: It can be observed that most authors
tried to design energy-conscious algorithms for optimized implementation of AI algorithms
on resource-constrained devices while maintaining an acceptable level of accuracy. Since
full-scale trained AI models are usually large, optimizations such as simplification of arith-
metic operations, parameter quantization, feature reduction, and signal format conversion are
used to reduce resource consumption. The primary focus of these optimizations is to
achieve a trade-off between resource usage and accuracy for better performance, with
power optimization as a secondary benefit. FPGAs, being more flexible due to their re-
configurable nature for custom logic design, allow designers to choose any bit width for
their operations. Customizing the bit width (e.g., in parameter quantization) can simplify
computations, reduce the number of required logic gates, and optimize resource usage,
thereby reducing power consumption. Moreover, the parallel processing capabilities of
FPGAs are well suited for algorithmic optimization. Unlike sequential processors, FPGAs
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can execute multiple operations concurrently, leading to faster processing times and, conse-
quently, less energy consumption for a given task. Optimizing algorithms to leverage this
parallelism can result in significant power savings, as the FPGA can complete tasks more
efficiently than other platforms which might require higher clock speeds and more power
to achieve the same performance. However, careful design of such optimization strategies
is essential, as they can impact the accuracy and precision of results, which are critical in
physiological monitoring.

Minimizing the Transmission Energy Cost: Since wireless data transmission con-
tributes significantly to the power consumption of WMDs [20], researchers have employed
different data reduction techniques, including data compression, compressed sensing, and
compressed learning, along with power-aware transmission strategies. However, traditional
compression methods necessitate a reconstruction step at the receiver, incurring additional
computational costs and power usage. To handle this, some studies explored a compressed
learning approach, where data acquired through sub-Nyquist sampling are directly pro-
cessed. The effectiveness of this approach relies on the sparsity of the signal. FPGAs offer
the opportunity to minimize the latency introduced by compression and reconstruction
processes due to their capability of parallel execution. Additionally, the integration of AI
with digital signal processing for compressed learning can also benefit from this flexibility
of FPGAs. Moreover, this parallelism opportunity is also well suited for the compression of
multimodal signals simultaneously [109]. However, while compression techniques offer
significant advantages in terms of data volume reduction and power consumption, they
also introduce challenges which need to be carefully managed to ensure the accuracy and
reliability of physiological monitoring in wearable medical devices.

Energy-Efficient Task Scheduling: Tasks scheduling is another area where we ob-
served an increased focus of researchers to reduce idle power consumption. The designers
exploited the event-based nature of underlying applications to schedule tasks using either
event triggers or periodic activation. Event-driven design is a reactive approach where a
component is activated based on the occurrence of an event. In contrast, duty cycling is
proactive, with components activated according to a preset schedule. On the other hand,
the time-division multiplexing approach for hardware components leverages relaxed sam-
pling deadlines in physiological monitoring to reduce power consumption by avoiding the
simultaneous activation of multiple components. The main advantage of these scheduling
approaches is that even though they introduce some latency associated with the activation
time, they do not directly affect the accuracy of the results. This is highly important in
physiological monitoring. Usually, the sampling deadlines in physiological monitoring
are flexible [19], and thus a small delay could be acceptable. FPGAs’ unique features of
reconfigurability, customizability, and fine-grained control enable designers to schedule
tasks more flexibly and at finer levels, optimizing both active and idle periods more effec-
tively. These approaches significantly reduce the leakage and idle power consumption of
components which are not active, along with dynamic power consumption by reducing
unnecessary switching activities. However, it is crucial to consider the activation time
when designing these scheduling approaches to avoid missing any critical events due to
activation delays.

Exploiting FPGA Features: On the other hand, rather few works have exploited FPGA
features for power reduction, such as dynamic partial reconfiguration and custom clock
gating. FPGAs allow the optimization of different design components through fine-grained
power modes using custom clock gating and power gating. Specifically, when address-
ing the lenient sampling deadlines associated with physiological monitoring, there is an
opportunity to leverage fine-grained power modes and custom clock-gating techniques.
On the other hand, dynamic partial reconfiguration allows for the selective deployment
of hardware components only when needed, leading to efficient resource utilization and
reduced static power consumption. DPR is highly beneficial in scenarios where the algo-
rithm can be broken down into sequential, functional blocks using a modular approach. In
these scenarios, the output of the first block triggers the activation of subsequent blocks.
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This allows DPR to delay deployment until necessary, reducing static power consumption.
Such deployments, based on fine-grained power modes and DPR, may also introduce some
latency due to the gating-up or deployment time. However, they do not directly affect the
accuracy of the results, which is extremely crucial in healthcare.

Development Complexities and Financial Barriers: Despite the need for power
optimization, developers also face several other difficulties, particularly regarding tools,
programming languages, licenses, and costs. Development tools like Xilinx Vivado and
Intel Quartus are complex and have steep learning curves, making them difficult to master.
Debugging FPGA designs is also more challenging compared with software debugging
due to the less intuitive tools. Programming FPGAs typically involves using hardware
description languages (HDLs) like VHDL or Verilog, which require a different mindset
focused on hardware parallelism and timing. While high-level synthesis (HLS) tools
allow for programming in higher-level languages like C or C++, they are not as mature
and can produce less efficient designs if proper design space exploration for suitable
optimization directives is not performed, which is also time-consuming. Additionally,
the cost of licenses for FPGA development tools can be prohibitive, especially for small
companies or individual developers. The reliance on vendor-specific tools and IP cores can
lead to vendor lock-in, limiting flexibility and increasing costs. Moreover, FPGAs remain
expensive devices due to their high degree of flexibility and relatively limited production
volumes compared with microcontrollers.

Shortcomings and Future Research Directions: It has been observed that most re-
searchers targeted high-end FPGAs, which inherently have higher power consumption.
Ultra-low power flash-based FPGAs, along with hybrid model FPGAs, could be explored
for power-sensitive WMDs. Moreover, some fundamental features of FPGAs, such as
reconfigurability, customizability, and fine-grained control, are underutilized. The partial
reconfiguration capability of FPGA helps save power by delaying the implementation
of a specific part until it is needed during operation [80]. Specifically, when addressing
the relaxed sampling deadlines associated with physiological monitoring [19], there is an
opportunity to leverage fine-grained power modes and custom clock-gating techniques. These
features could be useful when adopting a modular approach to achieve power reduction:

• Flash-based and hybrid FPGAs, which are designed for low-power applications, should
be further explored for power-sensitive WMDs.

• Dynamic partial reconfiguration should also be further exploited in scenarios where
the algorithm can be decomposed into sequential functional blocks. In such cases,
the output of the first block determines the activation of the subsequent block, a
characteristic inherently present in physiological monitoring. By leveraging DPR,
the implementation of a subsequent block can be delayed until it is needed to avoid
static leakage.

• The capability of power gating was also found to be underutilized in the reviewed
literature related to WMDs for physiological monitoring. This can also be explored
in conjunction with fine-grained power modes to significantly reduce static power con-
sumption. This approach works by cutting power to inactive logic blocks, thereby
minimizing leakage currents. This approach can introduce latency but does not
directly impact the accuracy of the results.

• Exploring external voltage scaling for physiological monitoring is also essential. Dy-
namic power consumption (Pdyn) is directly proportional to the square of the oper-
ating voltage (V) [125], as described by the equation Pdyn = αCV2 f , where C is the
switching capacitance, f is the clock frequency, and α is a constant representing the
switching factor [126]. This squared relationship between Pdyn and V can be exploited
to significantly lower power usage, provided that the reliability of operation remains
intact, as lowering the voltage increases the switching time and reduces the maximum
operating frequency.

• Moreover, both the voltage and frequency can be dynamically adjusted based on
performance requirements through dynamic voltage and frequency scaling (DVFS). This
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technique can also be explored in the context of physiological monitoring by using
WMDs for power optimization while maintaining the necessary performance [126].

• Despite its benefits, compressed learning was found to be underutilized in the re-
viewed articles, requiring further investigation by exploring the sparse nature of
physiological signals.

In conclusion, FPGAs offer significant power optimization potential due to their
reconfigurability, customizability, and granular control. Additionally, the flash-based and
hybrid FPGAs, which are designed for low-power applications, could be used for power-
sensitive WMDs. Moreover, features like clock gating, power gating, and dynamic partial
reconfiguration enable designers to create energy-efficient designs tailored to specific
application needs. For instance, compressive sensing can minimize sampling activity at the
sensing stage, complemented by an event-driven approach using clock gating to activate
sensors only when necessary. At the computing stage, a compressed learning approach can be
used for analytics, avoiding reconstruction overheads. The algorithm can be modularized
and deployed in a time-division multiplexed fashion by using a partial reconfiguration to reduce
idle power consumption. This comprehensive strategy reduces the unnecessary sensor on
time, minimizes redundant data sampling, decreases transmission and computation loads,
and reduces power leakage, significantly lowering energy consumption.

7. Conclusions

This work qualitatively reviewed state-of-the-art power optimization strategies in
FPGA-based wearable medical devices for physiological monitoring. The benefits and
constraints of these techniques were summarized, along with their effects on power, perfor-
mance, and resource consumption. Potential shortcomings, challenges, and solutions were
highlighted, providing guidelines and future research directions for WMD designers.

Our findings indicate that power optimization strategies often optimize resource
consumption at the cost of performance or accuracy. Algorithmic optimizations and trans-
mission load reductions decrease resource and power consumption, potentially improving
latency but compromising result accuracy. In contrast, task scheduling approaches com-
bined with dynamic partial reconfiguration and clock and power gating reduce power
consumption by delaying component activation until necessary. This approach affects
latency but maintains accuracy, which is crucial for physiological monitoring. FPGAs offer
significant potential for such deployments due to their customizability and reconfigurabil-
ity, helping reduce idle power consumption without compromising accuracy. Moreover, the
flash and hybrid-based FPGAs, designed for low-power applications, are under-explored.

Looking forward, several promising areas for future research have been identified.
Power-gating, voltage-scaling, and sleep mode techniques remain underutilized in WMDs
and present opportunities for more energy-efficient implementations in physiological
monitoring devices. Enhancing the capabilities of power gating and voltage scaling at
fine-grained levels through FPGA vendors could offer more flexible options. Partial recon-
figuration should be further explored in scenarios where algorithms can be decomposed
into sequential functional blocks to minimize static leakage. Additionally, the compressed
learning approach is underutilized and could be leveraged by exploiting the sparse nature
of physiological signals, optimizing power consumption and resource utilization. Fur-
thermore, flash and hybrid-based FPGAs, designed for low-power applications, could
be investigated further for power-sensitive WMDs. By addressing these areas, future
research can significantly advance the development of more efficient and effective wearable
medical devices.
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