Simulation Environment for the Testing of Electrical Arc Fault Detection Algorithms
Abstract
:1. Introduction
2. Experimental Measurements
3. Fault Modeling
3.1. Arc Fault Model
3.2. Model Validation
4. Load Modeling
4.1. Vacuum Cleaner Based on Universal Motor Model
- The electrical part:
- The mechanical part:
4.2. Simulation Result for a Vacuum Cleaner Model
5. Combined Loads
5.1. First Configuration (Arc Upstream)
5.2. Second Configuration (Arc Between Two Home Appliances)
6. Detection Test
6.1. Correlation Method
6.2. Crest Factor Method
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martel, J.M.; Anheuser, M.; Berger, F. A study of arcing fault in the low-voltage electrical installation. In Proceedings of the 2010 Proceedings of the 56th IEEE Holm Conference on Electrical Contacts, Charleston, SC, USA, 4–7 October 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–11. [Google Scholar]
- Shea, J.J. Identifying causes for certain types of electrically initiated fires in residential circuits. Fire Mater. 2011, 35, 19–42. [Google Scholar] [CrossRef]
- UL1699; UL Standard for Arc-Fault Circuit-Interrupters. 2nd ed. Underwriters Laboratories Inc.: Northbrook, IL, USA, 2011.
- IEC62606; General Requirements for Arc Fault Detection Devices. International Electrotechnical Commission: London, UK, 2013.
- Villanueva, D.; Villanueva, D.; San-Facundo, D.; San-Facundo, D.; Miguez-García, E.; Miguez-García, E.; Fernández-Otero, A.; Fernández-Otero, A. Modeling and Simulation of Household Appliances Power Consumption. Appl. Sci. 2022, 12, 3689. [Google Scholar] [CrossRef]
- Pau, D.; Randriatsimiovalaza, M.D. Electric Current Classification With Deeply Quantized Neural Network for Home Appliances. In Proceedings of the 2022 International Conference on Information Technology Research and Innovation (ICITRI), Jakarta, Indonesia, 10 November 2022. [Google Scholar] [CrossRef]
- Su, M.C.; Su, M.C.; Su, M.C.; Chen, J.H.; Chen, J.H.; Chen, J.H.; Chen, J.H.; Arifai, A.M.; Arifai, A.M.; yang Tsai, S.; et al. Smart Living: An Interactive Control System for Household Appliances. IEEE Access 2021, 9, 14897–14904. [Google Scholar] [CrossRef]
- Wang, D.; Liang, R.; Zhu, G. Modeling Analysis of Arc Fault Volt-Current Characteristics of Electrical Power Supply Lines. In Proceedings of the 2023 3rd International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI), Wuhan, China, 15–17 December 2023. [Google Scholar] [CrossRef]
- Karunarathna, M.W.Y.C.; Karunarathna, Y.; Wijayakulasooriya, J.V.; Wijayakulasooriya, J.; Ekanayake, J.; Ekanayake, J.; Perera, P.; Perera, P. Modelling and validation of arc-fault currents under resistive and inductive loads. In Proceedings of the International Conference on Soft Computing and Software Engineering, Colombo, Sri Lanka, 16 September 2021. [Google Scholar] [CrossRef]
- Jiang, R.; Wang, Y.; Gao, X.; Bao, G.; Hong, Q.; Booth, C. AC Series Arc Fault Detection Based on RLC Arc Model and Convolutional Neural Network. IEEE Sens. J. 2023, 23, 14618–14627. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Lezama, J.; Schweitzer, P.; Tisserand, E.; Humbert, J.B.; Weber, S.; Joyeux, P. An embedded system for AC series arc detection by inter-period correlations of current. Electr. Power Syst. Res. 2015, 129, 227–234. [Google Scholar] [CrossRef]
- Jovanovic, S.; Chahid, A.; Lezama, J.; Schweitzer, P. Shunt active power filter-based approach for arc fault detection. Electr. Power Syst. Res. 2016, 141, 11–21. [Google Scholar] [CrossRef]
- Tisserand, E.; Lezama, J.; Schweitzer, P.; Berviller, Y. Series arcing detection by algebraic derivative of the current. Electr. Power Syst. Res. 2015, 119, 91–99. [Google Scholar] [CrossRef]
- Yi, Z.; Etemadi, A.H. Fault Detection for Photovoltaic Systems Based on Multi-Resolution Signal Decomposition and Fuzzy Inference Systems. IEEE Trans. Smart Grid 2017, 8, 1274–1283. [Google Scholar] [CrossRef]
- Grichting, B.; Goette, J.; Jacomet, M. Cascaded fuzzy logic based arc fault detection in photovoltaic applications. In Proceedings of the 2015 International Conference on Clean Electrical Power (ICCEP), Taormina, Italy, 16–18 June 2015; pp. 178–183. [Google Scholar]
- Chu, R.; Schweitzer, P.; Zhang, R. Series AC Arc Fault Detection Method Based on High-Frequency Coupling Sensor and Convolution Neural Network. Sensors 2020, 20, 4910. [Google Scholar] [CrossRef]
- Artale, G.; Cataliotti, A.; Cosentino, V.; Cara, D.D.; Nuccio, S.; Tinè, G. Arc Fault Detection Method Based on CZT Low-Frequency Harmonic Current Analysis. IEEE Trans. Instrum. Meas. 2017, 66, 888–896. [Google Scholar] [CrossRef]
- Guan, H.; Wang, B.; Zhao, Z.; Bimenyimana, S.; Wang, Q. Arc Fault Current Signal’s Power Spectrum Characteristics and Diagnosis Based on Welch Algorithm. Int. J. Eng. Sci. 2016, 6, 2852–2857. [Google Scholar]
- Liu, Y.; Guo, F.; Ren, Z.; Wang, P.; Nguyen, T.N.; Zheng, J.R.; Zhang, X. Feature analysis in time-domain and fault diagnosis of series arc fault. In Proceedings of the 2017 IEEE Holm Conference on Electrical Contacts, Denver, CO, USA, 10–13 September 2017; pp. 306–311. [Google Scholar]
- Jia, C.; Li, Z.; Zhang, Y.; Cao, J.; Chen, H.; Zhao, X.; Du, Y.; Cheng, Q.S.; Ma, N.; Qiu, F. Serial arc-fault restriction survey with standard-listed products in the Chinese market. IEEE Trans. Ind. Appl. 2023, 59, 7453–7461. [Google Scholar] [CrossRef]
- Shiller, S. High impedance fault arcing on sandy soil in 15kV distribution feeders: Contributions to the evaluation of the low frequency spectrum. IEEE Trans. Power Deliv. 1990, 5, 676–686. [Google Scholar]
- Sedighi, A.; Haghifam, M. Simulation of high impedance ground fault In electrical power distribution systems. In Proceedings of the 2010 International Conference on Power System Technology, Hangzhou, China, 24–28 October 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–7. [Google Scholar]
- Andrea, J.; Schweitzer, P.; Martel, J.M. Arc fault model of conductance. Application to the UL1699 tests modeling. In Proceedings of the 2011 IEEE 57th Holm Conference on Electrical Contacts (Holm), Minneapolis, MN, USA, 11–14 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–6. [Google Scholar]
- Etemadi, A.; Sanaye-Pasand, M. High-impedance fault detection using multi-resolution signal decomposition and adaptive neural fuzzy inference system. IET Gener. Transm. Distrib. 2008, 2, 110–118. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, C.I.; Fu, W.C.; Lee, Y.; Chen, C.; Chen, Y.F. A Hybrid Approach for Low-Voltage AC Series Arc Fault Detection. Energies 2023, 16, 1256. [Google Scholar] [CrossRef]
- Miao, W.; Miao, W.; Miao, W.; Qi, X.; Xu, Q.; Lam, K.T.; Lam, K.H.; Pong, P.W.T.; Pong, P.W.T.; Poor, H.V.; et al. DC Arc-Fault Detection Based on Empirical Mode Decomposition of Arc Signatures and Support Vector Machine. IEEE Sens. J. 2020, 21, 7024–7033. [Google Scholar] [CrossRef]
- Ke, Y.; Yi, K.; Zhang, W.; Zhang, W.; Suo, C.; Suo, C.; Wang, Y.; Wang, Y.; Ren, Y.; Ren, Y. Research on Low-Voltage AC Series Arc-Fault Detection Method Based on Electromagnetic Radiation Characteristics. Energies 2022, 15, 1829. [Google Scholar] [CrossRef]
- Shen, Y.L.; Shen, Y.L.; Wai, R.; Wai, R.J. Fast-Fourier-Transform Enhanced Progressive Singular-Value-Decomposition Algorithm in Double Diagnostic Window Frame for Weak Arc Fault Detection. IEEE Access 2022, 10, 39752–39768. [Google Scholar] [CrossRef]
- Ye, G.; Nijhuis, M.; Cuk, V.; Cobben, J.F. Appliance-based residential harmonic load modelling. In Proceedings of the 2017 IEEE Manchester PowerTech, Manchester, UK, 18–22 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Alışkan, İ.; Keskin, R. Fluorescent Lamp Modelling and Electronic Ballast Design by the Support of Root Placement. Int. J. Eng. Technol. 2016, 2, 118–123. [Google Scholar]
- Liu, Y.J.; Chen, S.I.; Chang, Y.R.; Lee, Y.D. Development of a modelling and simulation method for residential electricity consumption analysis in a community microgrid system. Appl. Sci. 2017, 7, 733. [Google Scholar] [CrossRef]
- Tokić, A.; Jukan, A.; Uglešić, I.; Mustafić, D. Nonlinear model of fluorescent lamp in harmonic studies. In Proceedings of the 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Sarajevo, Bosnia and Herzegovina, 21–25 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Yamaguchi, Y.; Yilmaz, S.; Prakash, N.; Firth, S.K.; Shimoda, Y. A cross analysis of existing methods for modelling household appliance use. J. Build. Perform. Simul. 2019, 12, 160–179. [Google Scholar] [CrossRef]
- Williams, I.C. Mathematical Modeling of a Robot Vacuum Cleaner Suction with Matlab Simulink. Int. J. Res. Innov. Appl. Sci. IJRIAS 2019, 4, 2454–6194. [Google Scholar]
- Tuncay, R.; Yilmaz, M.; Onculoglu, C. The design methodology to develop new-generation universal-motors for vacuum cleaners. In Proceedings of the IEMDC 2001, IEEE International Electric Machines and Drives Conference (Cat. No. 01EX485), Cambridge, MA, USA, 17–20 June 2001; IEEE: Piscataway, NJ, USA, 2001; pp. 926–930. [Google Scholar]
- Pérez-Aguilar, S.I.; Granda-Gutiérrez, E.E.; Díaz-Guillén, J.C.; Candelas-Ramírez, J. Control of a non-linear vacuum system through a PID controller. Procedia Technol. 2013, 7, 189–197. [Google Scholar] [CrossRef]
- Lezama, J.; Schweitzer, P.; Weber, S.; Tisserand, E.; Joyeux, P. Modeling of a domestic electrical installation to arc fault detection. In Proceedings of the 2012 IEEE 58th Holm Conference on Electrical Contacts (Holm), Portland, OR, USA, 23–26 September 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–7. [Google Scholar]
- Patidar, R.; Singh, S. Harmonics estimation and modeling of residential and commercial loads. In Proceedings of the 2009 International Conference on Power Systems, Kharagpur, India, 27–29 December 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–6. [Google Scholar]
- Di Gerlando, A.; Perini, R. Modelling and test validation of high speed universal motors fed via a triac. In Proceedings of the IEEE International Conference on Electric Machines and Drives, San Antonio, TX, USA, 15 May 2005; IEEE: Piscataway, NJ, USA, 2005; p. 6. [Google Scholar]
- Dhar, S.; Dash, P.K. Differential current-based fault protection with adaptive threshold for multiple PV-based DC microgrid. IET Renew. Power Gener. 2017, 11, 778–790. [Google Scholar] [CrossRef]
- Spataru, S.; Sera, D.; Kerekes, T.; Teodorescu, R. Diagnostic method for photovoltaic systems based on light IV measurements. Sol. Energy 2015, 119, 29–44. [Google Scholar] [CrossRef]
- Karlöf, L.; Ølgård, T.; Godtliebsen, F.; Kaczmarska, M.; Fischer, H. Statistical techniques to select detection thresholds for peak signals in ice-core data. J. Glaciol. 2005, 51, 655–662. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, R.; Chen, S.; Zhang, F.; Yang, J.; Zhang, X. Series Arc Fault Detection Algorithm Based on Autoregressive Bispectrum Analysis. Algorithms 2015, 8, 929–950. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, S. Fault Arc Detection Model Based on LSTM-Transformer. In Proceedings of the 2024 IEEE 7th International Electrical and Energy Conference (CIEEC), Harbin, China, 10–12 May 2024. [Google Scholar] [CrossRef]
- Saeed, E.; Saeed, E.; Abdulhassan, K.M.; Abdul-Hassan, K.M.; Al-Atbee, O.; Al-Atbee, O. Series and Parallel Arc Fault Detection in Electrical Buildings Based on Discrete Wavelet Theory. J. Electr. Electron. Eng. 2021, 17, 94–101. [Google Scholar] [CrossRef]
- Wu, C.J.; Liu, Y.W.; Hung, C.S. Intelligent detection of serial arc fault on low voltage power lines. J. Mar. Sci. Technol. 2017, 25, 43–53. [Google Scholar]
- Wang, Y.; Zhang, F.; Zhang, S. A New Methodology for Identifying Arc Fault by Sparse Representation and Neural Network. IEEE Trans. Instrum. Meas. 2018, 67, 2526–2537. [Google Scholar] [CrossRef]
- Ahmadi, M.; Samet, H.; Ghanbari, T. Series Arc Fault Detection in Photovoltaic Systems Based on Signal-to-Noise Ratio Characteristics Using Cross-Correlation Function. IEEE Trans. Ind. Inform. 2019, 16, 3198–3209. [Google Scholar] [CrossRef]
- Kim, C.; Russell, B. Analysis of distribution disturbances and arcing faults using the crest factor. Electr. Power Syst. Res. 1995, 35, 141–148. [Google Scholar] [CrossRef]
Load | Voltage | Current |
---|---|---|
Model | Lecroy PPe 20 kV | Lecroy AP015 |
Bandwidth | DC-100 MHz | DC-50 MHz |
Max. peak | 20 kV | 50 A |
Load | Description | Value |
---|---|---|
Load 1 | Resistance | 48.1 |
Load 2 | Vacuum cleaner | 1250 W |
Load 3 | Dimmer | 1000 W |
Load 4 | Vacuum cleaner + Arc fault + Resistance | 1250 W + 80.2 |
Load | Load 1 | Load 2 | Load 3 | Load 4 | |
---|---|---|---|---|---|
Resistive | Vacuum Cleaner | Dimmer | Masking Load | ||
Positive | Restrike avg [V] | 85.78 | 124.44 | 167.56 | 148.46 |
Restrike std [V] | 14.7 | 19.12 | 29.18 | 25.65 | |
Arc avg [V] | 23.03 | 47.47 | 28.98 | 44.54 | |
Arc std [V] | 2.61 | 21.04 | 9.99 | 9.72 | |
Negative | Restrike avg [V] | −86.41 | −116.92 | −165.76 | −142.85 |
Restrike std [V] | 14.41 | 14.70 | 27.97 | 30.59 | |
Arc avg [V] | −23.29 | −48.88 | −30.39 | −47.52 | |
Arc std [V] | 2.81 | 19.34 | 4.25 | 13.72 |
= 150 V | = 25 V |
= 30 V | = 30 V |
R = 1 | L = 300 H |
= 1.651 | |
= 1.651 mH | = 0.22 Nm |
= 24.7 mH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lezama, J.; Schweitzer, P.; Tisserand, E.; Weber, S. Simulation Environment for the Testing of Electrical Arc Fault Detection Algorithms. Electronics 2024, 13, 4099. https://doi.org/10.3390/electronics13204099
Lezama J, Schweitzer P, Tisserand E, Weber S. Simulation Environment for the Testing of Electrical Arc Fault Detection Algorithms. Electronics. 2024; 13(20):4099. https://doi.org/10.3390/electronics13204099
Chicago/Turabian StyleLezama, Jinmi, Patrick Schweitzer, Etienne Tisserand, and Serge Weber. 2024. "Simulation Environment for the Testing of Electrical Arc Fault Detection Algorithms" Electronics 13, no. 20: 4099. https://doi.org/10.3390/electronics13204099
APA StyleLezama, J., Schweitzer, P., Tisserand, E., & Weber, S. (2024). Simulation Environment for the Testing of Electrical Arc Fault Detection Algorithms. Electronics, 13(20), 4099. https://doi.org/10.3390/electronics13204099