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Abstract

:

Infrared and visible image fusion (IVIF) fully integrates the complementary features of different modal images, and the fused image provides a more comprehensive and objective interpretation of the scene compared to each source image, thus attracting extensive attention in the field of computer vision in recent years. However, current fusion methods usually center their attention on the extraction of prominent features, falling short of adequately safeguarding subtle and diminutive structures. To address this problem, we propose an end-to-end unsupervised IVIF method (ESFuse), which effectively enhances fine edges and small structures. In particular, we introduce a two-branch head interpreter to extract features from source images of different modalities. Subsequently, these features are fed into the edge refinement module with the detail injection module (DIM) to obtain the edge detection results of the source image, improving the network’s ability to capture and retain complex details as well as global information. Finally, we implemented a multiscale feature reconstruction module to obtain the final fusion results by combining the output of the DIM with the output of the head interpreter. Extensive IVIF fusion experiments on existing publicly available datasets show that the proposed ESFuse outperforms the state-of-the-art(SOTA) methods in both subjective vision and objective evaluation, and our fusion results perform well in semantic segmentation, target detection, pose estimation and depth estimation tasks. The source code has been availabled.
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1. Introduction


Images captured by a single sensor or within a single shooting setup can only represent the imaging scene from a limited perspective, and conventional image processing techniques often struggle to acquire multiple pieces of information simultaneously [1]. Therefore, IVIF is essential for generating richer and clearer images. Recently, IVIF has been widely applied in scene understanding [2], saliency detection [3], and pedestrian re-identification [4].



Numerous image fusion methods have been developed over the past few decades. Traditional image fusion techniques include multiscale decomposition [5,6,7], sparse representation [8,9], and hybrid methods [10,11,12]. However, these traditional methods primarily rely on pixel-level operations, and their lack of semantic understanding and effective analysis of complex environments can result in fusion outputs that lack semantic consistency and plausibility. With the rise of deep learning in recent years, end-to-end image fusion solutions have demonstrated significant potential. Mainstream deep learning methods can be broadly categorized into three types: auto-encoder (AE), generative adversarial networks (GANs), and convolutional neural networks (CNNs). Recent learning-based approaches leverage CNNs [13,14,15,16,17] to address the shortcomings of traditional methods. The feature extraction capability of CNNs excels in capturing valuable information about image features. However, CNNs struggle with the challenge of lacking ground truth data, necessitating sophisticated training strategies to enhance their fusion capabilities. AE-based methods first train auto-encoders as feature extractors on large natural image datasets. The feature extractor is then utilized to extract complementary information from multimodal images, merging these features using specific fusion rules [18], such as splicing [19] and element summation [20,21]. However, the AE-based fusion framework is not fully learnable, as it employs handcrafted fusion rules to combine depth features. Consequently, Ma et al. [22] were the first to define image fusion as a game between a generator and a discriminator. Specifically, they constrained the probability distribution between the fused and source images to ensure the fused image possesses rich texture details. However, excessively strong constraints may introduce artificial textures into the fused image, limiting the realism and accuracy of the fusion results. Recently, algorithmic unfolding models have garnered significant attention. The core principle behind these models is that mathematical optimization algorithms guide the construction of the network framework, enhancing the interpretability of neural networks and effectively avoiding time-consuming empirical network design. The most commonly used models for IVIF tasks include convolutional sparse coding models [23] and learned low-rank representation models [24]. However, these methods lack flexibility and may struggle to handle varying magnification factors, blurring kernels, and other variations.



Significant modal differences exist between infrared and visible images due to variations in wavelengths, radiation sources, and acquisition sensors. These differences manifest in texture, luminance, and structure, impacting the quality of image fusion. When such modal differences lead to inconsistent feature fusion, the overall quality of the fusion result often deteriorates. Decomposition-based representation methods can align the feature spaces of images from different domains, reducing the impact of modal differences. However, these methods typically require complex decomposition and fusion rules, and when dealing with complex inter-domain transformations or significant modal differences, feature space alignment may fail to capture the intricate relationships both within and between domains. Additionally, many methods prioritize the extraction of salient features, neglecting subtle image texture information from intermediate layers, which is crucial for effective model learning [25]. Although dense connections [26] have been introduced in fusion networks, they often result in increased computational costs.



Therefore, the shortcomings of the current research can be summarized in the following five points. (1) Lack of semantic understanding: Traditional image fusion methods primarily rely on pixel-level operations, lacking effective analysis and semantic understanding of complex environments. (2) Over-reliance on ground truth: CNN-based methods struggle in the absence of ground truth and require complex training strategies to enhance fusion capabilities. (3) Limitations of manual fusion rules: While AE methods can extract features, their manual fusion rules limit learning capacity and adaptability to complex scenes. (4) Inadequate handling of modal differences: Current methods often fail to capture complex feature relationships effectively when addressing significant modal differences between infrared and visible images. (5) High computational cost: Although dense connections are introduced to extract more information, they result in a significant computational overhead.



To address these challenges, we propose a novel weak edge structure perception network (ESFuse). To generate high-quality fused images, our method first employs a two-branch head interpreter to extract common features and reduce feature differences between the infrared and visible light modalities while preserving their unique information. The two-branch outputs from the head interpreter are then combined and processed by an edge refinement module, which captures feature location information from the source images of each modality and integrates these data into the fusion process to enhance performance. Second, since the performance of a fusion network relies heavily on the spatial location of its features, we propose the DIM. This module utilizes the deep semantic information extracted by the head interpreter module, along with the edge detection results from the edge refinement, to update the gradient map using residuals and generate attention weights. These attention weights emphasize the complementary regions of the source image, thereby enhancing the network’s performance. Finally, we implement a multiscale feature reconstruction module, which combines the outputs of the DIM and the head interpreter to produce the final fusion results. Our method outperforms existing SOTA approaches both quantitatively and qualitatively on publicly available datasets. Additionally, we demonstrate the effectiveness of our approach in various downstream tasks, including semantic segmentation, target detection, pose estimation, and depth estimation. We also conduct ablation studies to evaluate the effectiveness of each component of our approach. In summary, the contributions of this paper are as follows:




	
We propose a novel two-branch unsupervised end-to-end IVIF model that effectively predicts weak edge structure and texture features in different modal images, and reduces the feature differences between modalities to preserve the unique information of each modal image.



	
We propose a feature reconstruction module that optimizes the fusion process by comprehensively preserving the details and structural features by multiscale computation; thus, the fused image can more realistically reflect the information of the source images, significantly improving the fusion performance.



	
We propose using the DIM to highlight the features in the complementary regions of the source images by multiplying the attention weights generated from the gradient map with the depth semantic information.The DIM can effectively enhance the importance and expressiveness of their features by means of fine-tuning them, and efficiently preserves and exploits the semantic structure.



	
Extensive experiments cover IVIF image fusion, and downstream tasks such as semantic segmentation, target detection, pose estimation and depth estimation, the corresponding subjective and quantitative evaluation results consistently demonstrate the competing SOTA performance of the proposed ESFuse.









2. Related Work


In this section, we review various IVIF methods, categorizing them into traditional, AE-based, GAN-based and diffusion model-based methods.



2.1. Traditional-Based Methods


In the study of traditional methods for IVIF, various techniques have been proposed, including multiscale decomposition and saliency detection [27]. Multiscale decomposition methods [28,29,30,31] decompose and reconstruct the features of infrared and visible images at various levels to better fuse details and structures. These approaches align the processing of scale information with the human visual system. Saliency detection methods [32] enhance fusion performance for important targets by assigning higher weights to salient regions or objects. Sparse representation techniques [33] utilize dictionaries learned from large sets of images to encode and preserve essential information from the source images during the fusion process. Together, these traditional approaches lay the groundwork for IVIF, enabling the retention of image details and improvement of visual quality.




2.2. AE-Based Methods


The core idea of auto-encoder AE-based IVIF algorithms is to achieve information extraction and fusion from multiple input modalities by learning a compact representation (coding) and the reconstruction process of an image. Li et al. [34] first proposed the DenseFuse method, connecting the output of each layer in the encoder to every other layer to obtain more features from the source image. Following the introduction of DenseFuse, AE-based IVIF methods have seen significant development. Huang et al. [35] enhanced the fusion and denoising capabilities of the model by employing decomposition techniques. Tang et al. [19] utilized convolutional neural networks (CNNs) as the basic units for the encoder and decoder, constructing a global feature extraction module embedded after feature encoding through the use of a transformer. This combination of CNNs and transformers is a common approach in AE-based models, effectively capturing local and global features of multimodal images, respectively.




2.3. GAN-Based Methods


The GAN-based IVIF algorithm primarily achieves multimodal information extraction through the adversarial training of generators and discriminators. Ma et al. [22] were the first to extend GANs to the IVIF task by balancing the fusion of infrared intensity information and visible gradient information during the adversarial process, thereby demonstrating the effectiveness of generative adversarial networks in infrared and visible image fusion. Additionally, Xu et al. [36] developed a conditional GAN with dual discriminators, each trained on infrared and visible images, respectively. This approach effectively balances the features of the two image types, thus enhancing fusion performance. Notable architectural innovations based on the GAN approach have emerged, as researchers have explored the use of multiple discriminators to improve fusion outcomes. For instance, Song et al. [37] introduced a novel GAN-based method for IVIF that employs a triple discriminator to generate detailed fused images.




2.4. Diffusion Model-Based Methods


Recently, diffusion models have been enhanced to produce images of higher quality than previous generative models, such as GANs [38,39]. This approach generates high-quality images by simulating the diffusion process, which transforms noise-corrupted images into clean ones, thereby alleviating common issues such as training instability and mode collapse associated with GANs. Zhao et al. [40] were the first to propose the use of Denoising Diffusion Probabilistic Models (DDPM) for fusion tasks, employing a hierarchical Bayesian approach to model the subproblem of maximum likelihood estimation. Xu et al. [41] introduced the FS-Diff diffusion model, which is based on a stochastic iterative denoising process for the task of tri-modal image fusion with super-resolution. Additionally, DPS [42] employs the Laplace approximation to compute the log-likelihood gradient for posterior sampling, effectively addressing many noisy nonlinear inverse problems.





3. Method


In this section, we introduce the head interpreter, edge refinement, detail injection module, and fusion module. The framework of the proposed method is illustrated in Figure 1.



3.1. Head Interpreter


The head interpreter is designed to learn and comprehend the embeddings of high-level image semantics. Therefore, a large receptive field is essential for effectively encoding structures that exhibit variations in scale. To address this requirement, we employed convolutional layers with varying kernel sizes to fully leverage contextual information. As shown in Figure 1, by utilizing a mixture of convolutional kernel sizes (3, 5, and 7) instead of a fixed size of 3, we obtained dense receptive fields of different dimensions. To facilitate information propagation in convolutional neural networks (CNNs), we combined residual connections with convolutional layers of varying kernel sizes, forming a residual block. Additionally, we utilized the spatial and channel attention block (SCAB) [43] to generate an attention map for visible image information, which we then multiplied element-wise with the infrared feature map. This process injects crucial information captured by the visible image into the infrared image features, thereby aiding the head interpreter in extracting these features.
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Figure 1. Workflow of the proposed framework, head interpreter is our proposal to implicitly learn contextual information from the source image using residual block. To further highlight the features of the source image, we propose edge refinement and the DIM, which utilizes the attention mechanism to regulate the head interpreter. The last part is the fusion model, which utilizes the learned head interpreter and the DIM to improve the fusion performance. 
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The input paired infrared and visible images are denoted as    I  i r   ∈  R  H × W     and    I  v i   ∈  R  H × W × 3    , respectively, and the head interpreter is denoted as   H ( · )  . The head interpreter aims at extracts the respective depth features {  F 1  ,  F 2  } from the infrared and visible inputs {  I  i r   ,  I  v i   }, which are formulated as follows:


   {  F 1  ,  F 2  }  = H  (  I  i r   ,  I  v i   )   



(1)








3.2. Spatial and Channel Attention Block


As shown in Figure 1, adaptive feature enhancement and fusion is performed using SCAB after each multi-layer feature extraction in the head interpreter.



As shown in Figure 2, the SCAB consists of two cascaded attention units. The node data   I 1   and   I 2   from the head interpreter are processed by the 1D channel attention graph    M c  ∈  R   C i  × 1 × 1     and a 2D spatial attention graph    M s  ∈  R  1 ×  H i  ×  W i     . The channel attention first performs global maximum pooling and global average pooling of spatial dimensions on an input feature map I of size    H i  ×  W i  ×  C i    to obtain two   1 × 1 ×  C i    feature maps; then, the results of global maximum pooling and global average pooling are fed into a shared multilayer perceptual machine (MLP) for learning, respectively, to obtain two   1 × 1 ×  C i    feature maps. Finally, the outputs of the MLP are summed up and then go through the mapping process of the Sigmoid activation function to obtain the channel attention weight matrix. The channel attention process can be summarized as follows:


   M c   ( I )  = σ  M L P ( A v g P o o l ( I ) ) + ( M L P ( M a x P o o l ( I ) )   



(2)






   I ′  =  M c   ( I )  ⊗ I  



(3)




where ⊗ denotes the element-wise multiplication,  σ  denotes sigmoid function,   C i  ,   H i  ,   W i   denote the number of channels, height, and width of input   I 1   and   I 2  .   A v g P o o l ( · )   and   M a x P o o l ( · )   denote average pooling and maximum pooling with a step size of 2, respectively. Before multiplication, the attention maps    M c   ( I )    are stretched to the size of    M c   ( I )  ∈  R   C i  ×  H i  ×  W i     .



Similar to the channel attention process, spatial attention is paid to the fact that the input feature map of size   H × W × C   is first subjected to global maximum pooling and global average pooling in the channel dimension to obtain two feature maps of size   H × W × 1  . Then, the results of global maximum pooling and global average pooling are spliced according to the channel to obtain a feature map of size   H × W × 2  , and finally, a   7 × 7   convolution operation is performed on the spliced results to obtain a feature map of size   H × W × 1  , and then the Sigmoid activation function is used to obtain the spatial attention weight matrix. The spatial attention process can be summarized as follows:


   M s    I ′   = σ  (  f  7 × 7    (  [ A v g P o o l  (  I ′  )  ; M a x P o o l  (  I ′  )  ]  )  )   



(4)






   I  ′ ′   =  M s   (  I ′  )  ⊗  I ′   



(5)




where   f  7 × 7    represents a convolutional operation with the filter size of 7 × 7. The attention maps    M s   ( I )    are also stretched to the size of    M s   ( I )  ∈  R   C i  ×  H i  ×  W i      before multiplication.




3.3. Edge Refinement


CNNs are typically more adept at identifying the texture of an image than its shape [25]. This characteristic simplifies the learning process; however, it compromises the robustness when applied to real-world scenarios. To improve the retention of subtle and small-scale structures within an image, we implemented an edge refinement module. This module was designed to bridge the gap between the fusion outcome and the actual structural layers of the original image. Rather than using existing edge prediction methods to generate pseudo ground truth, this aims to give the model an overall improved ability to capture and preserve complex detail, thus enhancing its generalisation and utility. Edge refinement (denoted by   E ( · )  ) aims to extract the edge details of the source image and is formulated as


   F  e d g e   = E  (  F 1  )   



(6)







As shown in Figure 1, this module explores more new features by encouraging the edge refinement module to learn residual from the input image. The refinement module comprises two convolutional layers and three cascaded residual blocks.




3.4. Detail Injection Module


In the image fusion task, the performance of a fused image depends heavily on the spatial location of its features. Therefore, an image fusion model should be able to handle individual regions with different priorities. Using a head interpreter to represent the spatial information of the regions to be fused, we further emphasize the importance of these regions in the attention mechanism. Specifically, we propose a detail injection module (DIM). It uses the deep semantic information extracted by the head interpreter module and updates the gradient map with residuals. The updated gradient map is then used to generate attention weights, which increase the importance of the complementary regions of the source image and suppress other irrelevant regions. Finally, the features within the complementary regions are emphasized by multiplying the elements of deep semantic information and attention weights. The DIM can be described as follows:


        {   F ¯  edge  , f }  = D  (  F edge  , R )       



(7)




where   F  e d g e    and R are the final gradient map and the deep semantic information extracted from the residual blocks in the edge refinement module, respectively.   D ( · )   denotes our detail injection module.    F ¯  edge   and f are the modulation outputs and feature tensor, respectively, ready to be fed into the feature reconstruction module.




3.5. Fusion Module


To retain as much structural information as possible in the final fused image, we used multiscale reconstruction. As shown in Figure 3, multiscale reconstruction uses residual blocks combined in a parallel fashion to capture structural information at different scales in the source image and enhance the fusion effect. Denoting the fusion module as   M U ( · )  , which is formulated as follows:


    I fus  = M U  {  (  F 1  +   F ¯  edge  )  ,  (  F 2  +   F ¯  edge  )  , f }   



(8)




where f is the a prior output of the DIM,   F 1  ,   F 2  ,    F ¯  edge   are the outputs of the head interpreter and update edge refinement, respectively.




3.6. Loss Function


Fusion loss: Constraining the network using the structural similarity index measure (SSIM) [44] is an effective approach for preserving luminance information. The SSIM considers luminance, contrast, and structural metrics, which agree with the perception of human vision.   L  S S I M    is expressed by the following loss function:


    L SSIM  =  ( 1 − SSIM  (  I fus  ,  I ir  )  )  +  ( 1 − SSIM  (  I fus  ,  I vi  )  )   



(9)







In addition, we expected the fused image to maintain an optimal intensity distribution consistent with that of the source image. We designed the following intensity loss   L  i n t    to guide our fusion model in capturing the appropriate intensity information:


    L int  =   max  (  I ir  ,  I vi  )  ,  I fus   1   



(10)




Here,    ( · )  1   denotes the   L 1   norm and   m a x ( · )   denotes the element-by-element maximum selection.



Edge loss: The main idea of our network was to introduce additional effective constraints on the texture details. For edge detection, we used the   L 1   norm to constrain the detailed prediction results directly, which can be written as


    L e  =   ∇  I ir  ,  F edge   1  +   ∇  I vi  ,  F edge   1   



(11)




Here,   ∇ ( · )   denotes the gradient map in the horizontal and vertical directions, and in this study, we utilize the Sobel operator to compute the gradient map.



Total loss: The ultimate goal is to achieve the combined goal of edge detection and image fusion. The overall loss function is expressed as


        L total  =  λ 1   L SSIM  +  λ 2   L int  +  λ 3   L e       



(12)




Here,   λ 1  ,   λ 2  , and   λ 3   are hyperparameters that control the trade-offs of each sub-loss term. In this study, we empirically set them to 5, 10, and 3, respectively.





4. Experiments


4.1. Datasets


We used four popular benchmarks to validate our fusion model: MSRS [45], Roadscene [46], TNO [47] and M3FD [14]. We trained our network on the MSRS training set (1083 pairs). The test datasets included the MSRS (361 pairs), RoadScene (221 pairs), TNO (107 pairs) and M3FD (300 pairs) test sets. In total, we use 1083 image pairs for training, and 989 for testing. Among these datasets, RoadScene includes both daytime and nighttime road scenarios, MSRS and M3FD offer a variety of scenarios across different conditions, while TNO focuses specifically on infrared and visible light data in military applications.




4.2. Implementation Details


The source images of the training dataset were cropped into 64 × 64 patches to increase data volume. The parameters were updated using the Adam optimizer at a learning rate of   1 ×  10  − 4    . Training was performed for 30 epochs, with a batch size of 32. The proposed approach was implemented in PyTorch1.12.1 with two NVIDIA 3090 GPUs for training. The source code is available at https://github.com/lwy12345678/ESFuse.




4.3. Evaluation Metrics


To evaluate the image fusion capability of our model, we employed four objective evaluation metrics: normalized mutual information (  Q  M I   ), phase congruency (  Q P  ), average gradient (  A G  ), Chen–Blum Metric (  Q  C B   ), and Piella’s Metric (  Q S  ). Higher values for these metrics generally indicate better quality in the fused images. These metrics assess various aspects of the merged images, including the amount of information conveyed, fidelity to the original source images, and overall visual quality.



  Q  M I    is a modification of mutual information (  M I  ). Specifically,   M I   is a quantitative measure of the mutual dependence of two variables. The definition of mutual information for two discrete random variables U and V is


  M I  ( U ; V )  =  ∑  v ∈ V    ∑  u ∈ U   p  ( u , v )   log 2     p ( u , v )   p ( u ) p ( v )    ,  



(13)




where   p ( u , v )   is the joint probability distribution function of U and V, and   p ( u )   and   p ( v )   are the marginal probability distribution functions of U and V, respectively. Actually,   M I   quantifies the distance between the joint distribution of U and V, i.e.,   p ( u , v )  , and the joint distribution when U and V are independent, i.e.,   p ( u ) p ( v )  . Mutual information can be equivalently expressed with joint entropy   { H ( U , V ) }   and marginal entropy   { H ( U , V ) }   the two variable U and V as


  M I ( U , V ) = H ( U ) + H ( V ) − H ( U , V ) ,  



(14)




where


     H  ( U )  = −  ∑ u  p  ( u )   log 2  p  ( u )  ,       H  ( V )  = −  ∑ v  p  ( v )   log 2  p  ( v )  ,       H  ( U , V )  = −  ∑  u , v   p  ( u , v )   log 2  p  ( u , v )  .     











Qu et al. [48] used the summation of the MI between the fused image   F ( i , j )   and two input images,   A ( i , j )   and   B ( i , j )  , to represent the difference in quality. The expression of the MI-based fusion performance measure   M F  A B    is


     M  F   A B      = M I ( A , F ) + M I ( B , F )          =  ∑  i , j     h  A F    ( i , j )   log 2      h  A F    ( i , j )     h A   ( i )   h F   ( j )               +  h  B F    ( i , j )   log 2      h  B F    ( i , j )     h B   ( i )   h F   ( j )     ) ,     



(15)




where    h  A F    ( i , j )    indicates the normalized joint gray level histogram of images   A ( i , j )   and   F ( i , j )  ;    h K   ( i , j )    (K = A, B, and F) is the normalized marginal histogram of images A, B, or F, respectively. However, (15) mixes two joint entropies measured at different scales. This can lead to unstable measurements, so Hosny et al. [49] modified (15) as follows:


   Q  M I   = 2     M I ( A , F )   H ( A ) + H ( F )    +    M I ( B , F )   H ( B ) + H ( F )     .  



(16)







We used Hossny’s definition in our experiments.



  Q P   is an image feature-based metric. Zhao et al. [50] and Liu et al. [51] used the phase congruency, which provides an absolute measure of image feature, to define an evaluation metric. The metric is defined as a product of three correlation coefficients:


   Q P  =   (  P p  )  α    (  P M  )  β    (  P m  )  γ  ,  



(17)




where p, M, m refers to phase congruency   ( p )  , maximum, and minimum moments, respectively, and there are


      P p  = max   C  A F  p  ,  C  B F  p  ,  C  S F  p   ,        P M  = max   C  A F  M  ,  C  B F  M  ,  C  S F  M   ,        P m  = max   C  A F  m  ,  C  B F  m  ,  C  S F  m   .     











Herein,   C  x y  k  ,   { k | p , M , m }   stands for the correlation coefficients between two sets x and y:


   C  x y  k  =     σ  x y  k  + C    σ x k   σ y k  + C    ,  



(18)






   σ  x y   =   1  N − 1     ∑  i = 1  N   (  x i  −  x ¯  )   (  y i  −  y ¯  )  .  



(19)







The suffixes A, B, F, and S correspond to the two inputs, fused image, and maximum-select map. The exponential parameters  α ,  β , and  γ  can be adjusted based on the importance of the three components.



  Q  C B    is a human perception-inspired fusion metric. There are five steps involved:



Contrast sensitivity filtering: Filtering is implemented in the frequency domain. Image    I A   ( i , j )    is transformed into the frequency domain and we obtain    I A   ( m , n )   . The filtered image is obtained:     I ˜  A   ( m , n )  =  I A   ( m , n )  S  ( r )   , where   S ( r )   is the CSF filter in polar form with   r =    m 2  +  n 2     . In [52], there are three choices suggested for CSF, which include Mannos–Sakrison, Barton, and DoG filter.



Local contrast computation: Peli’s contrast is defined as


  C  ( i , j )  =     ϕ k   ( i , j )  * I  ( i , j )     ϕ  k + 1    ( i , j )  * I  ( i , j )     − 1 .  



(20)







A common choice for   ϕ k   would be


   G k   ( x , y )  =   1  (   2 π    σ k  )     e     x 2  +  y 2    2  σ k 2      ,  



(21)




with a standard deviation    σ k  = 2  .



Contrast preservation calculation: The masked contrast map for input image    I A   ( i , j )    is calculated as


   C A ′  =    t   (  C A  )  p    h   (  C A  )  q  + Z    .  



(22)




Here, t, h, p, q, and Z are real scalar parameters that determine the shape of the nonlinearity of the masking function.



Saliency map generation: The saliency map for    I A   ( i , j )    defined as


   λ A   ( i , j )  =       C A ′   2   ( i , j )       C A ′   2   ( i , j )  +    C B ′   2   ( i , j )     .  



(23)







The information preservation value is computed as


   Q  A F    ( i , j )  =          C A ′   ( i , j )     C F ′   ( i , j )     ,     if   C A ′   ( i , j )  <  C F ′   ( i , j )  ,           C F ′   ( i , j )     C A ′   ( 9 i , j )     ,     otherwise .       



(24)







Global quality map:


   Q  G Q M    ( i , j )  =  λ A   ( i , j )   Q  A F    ( i , j )  +  λ B   ( i , j )   Q  B F    ( i , j )  .  



(25)







The metric value is obtained by average the global quality map, i.e.,    Q  C B   =    Q  G Q M    ( i , j )   ¯  .  



  Q S   is an image-structure similarity-based metric. Piella and Heijmans [53] defined three fusion quality indices. Assume the local   Q ( A , B | w )   value is calculated in a sliding window w. There are


   Q S  =   1  | W |     ∑  w ∈ W    [ λ  ( w )   Q 0   ( A , F | w )  +  ( 1 − λ  ( w )  )   Q 0   ( B , F | w )  ]  ,  



(26)






   Q W  =  ∑  w ∈ W   c  ( w )   [ λ  ( w )   Q 0   ( A , F | w )  +  ( 1 − λ  ( w )  )   Q 0   ( B , F | w )  ]  ,  



(27)






   Q E  =  Q W   ( A , B , F )  ·  Q W    (  A ′  ,  B ′  ,  F ′  )  α  ,  



(28)




where the weight   λ ( w )   is defined as


  λ  ( w )  =    s ( A | w )   s ( A | w ) + s ( B | w )    .  



(29)







Herein,   s ( A | w )   is a local measure of image salience. In Piella’s implementation,   s ( A | w )   and   s ( B | w )   are the variance of images A and B within the window w, respectively. The coefficient   c ( w )   in (27) is


  c  ( w )  =    max [ s ( A | w ) , s ( B | w ) ]    ∑   w ′  ∈ W    [ s  ( A |  w ′  )  , s  ( B |  w ′  )  ]     .  



(30)







In (28),    Q W   (  A ′  ,  B ′  ,  F ′  )    is the   Q w   calculated with the edge images, i.e.,   A ′  ,   B ′  , and   F ′   0, and is a manually adjustable parameter to weight the edge-dependent information.



  A G   is a non-reference metric, which calculates the average gradient value across all pixels, representing the overall spatial variation (sharpness) in the images.


  A G =   1  M N     ∑  i = 1  M   ∑  j = 1  N      ∇  F x 2   ( i , j )  + ∇  F y 2   ( i , j )   2    .  



(31)




where   ∇  F x   ( i , j )  = F  ( i , j )  − F  ( i + 1 , j )    and   ∇  F y   ( i , j )  = F  ( i , j )  − F  ( i + 1 , j )   . A higher   A G   metric indicates an enhanced presence of gradient information within the fused image, implying that the algorithm effectively integrates gradient details, potentially leading to superior performance in image fusion tasks.



These five metrics can comprehensively measure the performance of the fusion method. The higher the value of all metrics, the better.




4.4. Qualitative Comparison


The results of the qualitative comparison are presented in Figure 4. For each of the four datasets, we selected a set of images to compare the supervised fusion performance. To effectively distinguish the fusion effects of different methods across various scenarios, we chose diverse scenes, including nighttime, highway, battlefield, and street, from the respective datasets.



From the nighttime scene of the MSRS dataset, it is evident that most methods exhibit poor robustness under low-light conditions (see the red boxes in Figure 4). For instance, in the fused images produced by TarADL, U2Fusion, ReCoNet, and LRRNet, the human figure is difficult to recognize. In comparison, UMF-CMGR and MURF perform worse than DEFusion and the proposed method in terms of detail retention and character contrast. Only ESFuse and DEFusion achieved better fusion results in the night scenes.



In the highway scene from the RoadScene dataset, a comparison between the infrared and visible light images reveals that the character information on the road sign primarily originates from the visible light image. However, aside from LRRNet, most of the compared methods fail to retain the character information from the source visible image (see the yellow boxes in Figure 4). This indicates that most existing methods struggle to balance information between source images, often causing the fused image to be biased toward one source image, thereby losing complementary features across different modalities. In contrast, our ESFuse method enhances the complementary region features of the source images through the DIM, resulting in better fusion outcomes in the highway scene.



In the battlefield scene from the TNO dataset, efficient target discrimination is a crucial challenge. As shown in the orange box in Figure 4, the fusion results from U2Fusion, MURF, LRRNet, ReCoNet, and UMF contain less information, exhibit lower brightness, and retain more visible light data, leading to incomplete fusion of the visible light images. The targets in the fusion results of TarDAL and DeFusion are not prominent. In contrast, our ESFuse method fuses more information through a unified feature space, resulting in more prominent targets. Furthermore, due to the incorporation of multiscale reconstruction in the fusion module, our method produces results with clearer structures and improved contrast.



The green box in Figure 4 highlights the street scene from the M3FD dataset. The fused image produced by TarDAL contains more infrared information but lacks visible light details. In the fusion results from U2Fusion, MURF, and LRRNet, the overall brightness is relatively low, making the objects in the fused image less prominent. Although ReCoNet, DeFusion, and UMF-CMGR yield brighter fusion results, they exhibit over-smoothing, leading to reduced clarity and poor handling of object edges (e.g., tree edges in the green box). In contrast, our ESFuse method demonstrates superior fusion performance in street scenes, effectively integrating source information from both infrared and visible images. Our approach also provides enhanced background edge texture and improved character contrast.



We utilized remotely sensed data from natural environments, built landscapes, and urban scenes to evaluate the performance of our method. Figure 5 presents the fused images from these scenes. Our fusion technique effectively integrates valuable information from the source images, achieving satisfactory results in terms of illumination, detail, and structural integrity. The fused images in the first, second, and third columns demonstrate our method’s capability to successfully merge infrared and visible data with enhanced detail and structural clarity, as highlighted by the red boxes. Additionally, our approach enhances useful information while preserving critical features, as evidenced by the farmland scene in the first column. Despite the visible images in the second and third columns being somewhat dark and containing subtle details, our fusion results retain these details without being compromised by the unusual lighting conditions. Overall, our method is robust in preserving key information across various scenes and lighting conditions.




4.5. Quantitative Comparison


Table 1 provides quantitative comparisons between our method and the SOTA methods on the MSRS, RoadScene, TNO, and M3FD datasets, respectively, and summarizes the average metric values for our ESFuse and these methods. Our ESFuse stands out in terms of overall performance.



On the MSRS and M3FD datasets, our ESFuse scores very highly on all five metrics. In the RoadScene dataset, our method performs well in   Q  M I   ,   Q P  , and   Q S  , and ranks second in   A G  , and in the TNO dataset, we obtain the best results in   Q  M I   ,   Q P  ,   Q S  , and   A G  . It shows that the information of the source image is effectively integrated in our ESFuse while preserving the rich details in the fused image. It further confirms its excellent overall performance. In addition, Defusion achieves the second best results for   Q  M I    and   Q  C B    on the MSRS dataset, but it relies on complex decomposition algorithms and faces challenges in preserving the rich information of the source images. In contrast, U2Fusion achieves the second best scores for   Q P   and   Q  C B    on the TNO dataset and   Q S   and   Q  C B    on the M3FD dataset by combining the properties of the different similarities between the source images, but it relies on a specific multitask-oriented loss function and does not retain the source image contrast and details well.




4.6. Task-Driven Evaluation


To assess the generalization of the proposed approach to advanced tasks, we used (1) DeepLabV3+ [58], a semantic segmentation model, (2) YOLOv5 [59], a target detection model, (3) OpenPose [60], a pose estimation model, and (4) MiDaS [61], a depth estimation model to measure the contribution of various fusion algorithms to advanced visual tasks.



Figure 6 presents the visualization results of semantic segmentation and target detection on the MSRS dataset. Since both DeepLabV3+ and YOLOv5 are trained on visible image datasets, a fusion method that mitigates the interference from thermal radiation in infrared images yields better segmentation and detection performance. Our method preserves structural information while enhancing texture details and effectively fuses the complementary information from both infrared and visible images. For instance, as shown in Figure 6, the car in the yellow box and the pedestrian in the red box demonstrate how our approach significantly improves the scene understanding for segmentation and target detection models.



The visualization results for pose estimation and depth estimation are presented in Figure 7. In the human pose estimation task, inaccuracies in the spatial structure of figures obtained by other methods degrade the quality of the fused images, resulting in incomplete or inaccurate outcomes. This can lead to confusion and incorrect conclusions in applications such as action recognition and video surveillance. In the depth estimation task, the performance results of fused images obtained through different methods exhibited significant discrepancies, attributable to variations in fusion accuracy, which caused varying degrees of visual differences. In contrast, the stabilized fusion achieved by our proposed method offers a robust representation of the objects within the image.



The results of the quantitative comparison are presented in Table 2 and Table 3. To ensure a fair assessment, we retrained the segmentation network [62] on the MFNet dataset. It is important to note that since the MSRS dataset only provides segmented labels, we retrained YOLOv5 on the M3FD dataset for a quantitative comparison of target detection. Segmentation performance is measured using pixel intersection and union (IoU), while mean average precision (mAP) is utilized to evaluate detection performance, where AP@0.5 indicates the mAP value for an IoU threshold of 0.5.



From the results, it is evident that infrared (IR) images perform well in detecting people, as indicated by both the mean Intersection over Union (mIoU) and average precision at a 0.5 IoU threshold (AP@0.5). This suggests that IR images offer the detector ample semantic information regarding salient targets, such as individuals. However, the detection results for cars in infrared images are disappointing. Conversely, visible images supply the detector with substantial semantic information about vehicles. Our ESFuse effectively achieves intensity preservation and texture retention through the guidance of the detail injection module (DIM) and multiscale reconstruction, successfully balancing complementary and irrelevant information between the source images. Consequently, as illustrated in Table 2 and Table 3, our algorithm achieves the highest IoU in semantic segmentation across nearly all categories, ranks first in mIoU, and also demonstrates higher accuracy in target detection. In summary, the proposed method opens up new possibilities for applications such as augmented reality (AR), autonomous driving, and coastline safety monitoring.




4.7. Qualitative Results of DIM


To further elucidate the effectiveness of our detail injection module (DIM) in the image fusion task, we present the visualizations of   F edge   and    F ¯  edge   in Figure 8. Our module successfully identifies key common features across different modalities and assigns higher weights to these regions. Notably, it can effectively recognize significant features even in low-light conditions with insufficient illumination. As illustrated in the right half of Figure 8, our DIM generalizes well to nighttime image fusion tasks. These results convincingly demonstrate the efficacy of the module and contribute to advancing the field of image fusion.




4.8. Ablation Studies


To demonstrate the effectiveness of edge refinement, multiscale reconstruction, and the detail injection module (DIM), we conducted ablation experiments on the MSRS dataset. Specifically, for edge refinement, we removed it and replaced the detail map in the subsequent DIM input with the gradient map obtained using the Sobel operator. For the DIM, we excluded it entirely and fed the outputs f and   F edge   directly into the fusion module instead of the original inputs R and   F edge  . For multiscale reconstruction, we transformed its parallel three-branch structure into a single-branch structure consisting of four residual blocks.



As shown in Figure 9, the method lacking edge refinement struggles to perceive the information between the source images effectively, resulting in blurred characters. In contrast, our approach utilizing edge refinement yields detailed fusion results, particularly for salient features. Figure 10 illustrates that the method without multiscale reconstruction suffers from insufficient clarity in the figures and increased noise in the fused image. Compared to this method, our approach not only reduces noise but also preserves the details and structure of the image. Without multiscale reconstruction, the salient features and relationships across different layers are not learned effectively, making the reconstruction of key features challenging and leading to a lack of structural detail in the fused results. The DIM emphasizes features within the complementary region by generating attention weights from the gradient map, thereby enhancing the importance of these regions in the source images. As demonstrated in Figure 11, without DIM, details such as leaves and the floor appear less sharp. In contrast, our fusion results exhibit greater richness in detail and clarity.



Table 4 summarizes the results of the ablation experiments. As shown, the removal of the DIM led to a significant reduction in AG, highlighting its crucial role in the fusion process and in preserving rich information. Conversely, the absence of edge refinement and multiscale reconstruction resulted in decreased values for   Q  M I   ,   Q S  ,   Q P  , and   Q  C B   , suggesting that these proposed strategies effectively retain more information from the source images. Both qualitative and quantitative results demonstrate that the DIM, edge refinement, and multiscale reconstruction are vital for constructing fully fused images and enhancing image quality.





5. Conclusions


In this study, we propose a detailed enhanced infrared and visible image fusion (IVIF) network. First, to minimize the feature discrepancies between the different modalities of infrared and visible light while preserving their unique information, we design a deep feature extractor—referred to as the head interpreter—to extract common features from the source images. Subsequently, the two-branch outputs of the head interpreter are superimposed and fed into an edge refinement module, which reveals the feature location information in the source images of different modalities, enhancing the overall performance in the fusion module. Next, we introduce the detail injection module, which increases the importance of the detailed features identified by the edge refinement module, enabling the fusion model to better recover ambiguous information across different modal features. Finally, the feature maps at varying scales are reconstructed into fused images using a multiscale reconstruction strategy. Both subjective and objective experimental results demonstrate that the proposed ESFuse exhibits exceptional image fusion performance, surpassing existing algorithms. Additionally, it performs well in downstream tasks such as semantic segmentation, target detection, pose estimation, and depth estimation, showcasing the robustness of our proposed approach.
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Figure 2. Spatial and channel attention block. The SCAB is used to reduce the semantic gap at the multi-layer feature fusion stage in the head interpreter. 
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Figure 3. Workflow of the fusion module, which uses the learned head interpreter and the DIM as inputs and adds multiscale reconstruct at the end to emphasize the recovery of the source image structure. 






Figure 3. Workflow of the fusion module, which uses the learned head interpreter and the DIM as inputs and adds multiscale reconstruct at the end to emphasize the recovery of the source image structure.



[image: Electronics 13 04115 g003]







[image: Electronics 13 04115 g004] 





Figure 4. Qualitative comparisons of the SOTA methods with the proposed ESFuse on the Roadscene, MSRS, TNO, and M3FD datasets. 
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Figure 5. Fusion results in remote sensing imagery. The red boxes are enlarged to highlight the fusion performance on image details. 
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Figure 6. Visualization results of pose estimation and depth estimation for infrared images, visible images, and different fusion images on MSRS dataset. 
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Figure 7. Visualization results of semantic segmentation and target detection for infrared images, visible images, and different fusion images on MSRS dataset. 
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Figure 8. Visualizations of the DIM on infrared and visible images, where   F edge   is the input of the DIM. For better comparison, two local areas are enlarged in each image. 
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Figure 9. The visual comparison of ablation with and without the DIM. The yellow boxes are enlarged to highlight the fusion performance on image details. 
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Figure 10. The visual comparison of ablation with and without edge refinement. The yellow boxes are enlarged to highlight the fusion performance on image details. 






Figure 10. The visual comparison of ablation with and without edge refinement. The yellow boxes are enlarged to highlight the fusion performance on image details.



[image: Electronics 13 04115 g010]







[image: Electronics 13 04115 g011] 





Figure 11. The visual comparison of ablation with and without multiscale reconstruction. The yellow boxes are enlarged to highlight the fusion performance on image details. 






Figure 11. The visual comparison of ablation with and without multiscale reconstruction. The yellow boxes are enlarged to highlight the fusion performance on image details.
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Table 1. Quantitative comparison of the proposed algorithm and different comparison methods on the Roadscene, MSRS, TNO and M3FD datasets. Bold is the best, red is the second.






Table 1. Quantitative comparison of the proposed algorithm and different comparison methods on the Roadscene, MSRS, TNO and M3FD datasets. Bold is the best, red is the second.





	
Methods

	
Venue

	
MSRS




	
   Q MI   

	
   Q S   

	
   Q P   

	
   Q CB   

	
  AG  






	
MURF [13]

	
TPAMI 2023

	
0.2575

	
0.6626

	
0.2242

	
0.3665

	
3.0720




	
LRRNET [24]

	
TPAMI 2023

	
0.4607

	
0.7110

	
0.3372

	
0.3928

	
2.6509




	
U2Fusion [54]

	
TPAMI 2020

	
0.3834

	
0.7599

	
0.3141

	
0.4686

	
2.3203




	
ReCoNet [55]

	
ECCV 2022

	
0.3927

	
0.3705

	
0.3760

	
0.3780

	
3.0006




	
Defusion [56]

	
ECCV 2022

	
0.4702

	
0.7483

	
0.3757

	
0.5142

	
2.6539




	
TarDAL [14]

	
CVPR 2022

	
0.3841

	
0.4855

	
0.1639

	
0.4088

	
1.7156




	
UMF-CMGR [57]

	
IJCAI 2022

	
0.3278

	
0.6560

	
0.2104

	
0.3510

	
2.1364




	
ESFuse

	
-

	
0.5690

	
0.7714

	
0.4771

	
0.5247

	
3.3181




	

	

	
Road Sence




	
MURF [13]

	
TPAMI 2023

	
0.3489

	
0.8017

	
0.3370

	
0.4852

	
6.6474




	
LRRNET [24]

	
TPAMI 2023

	
0.3936

	
0.5942

	
0.2460

	
0.5096

	
4.6399




	
U2Fusion [54]

	
TPAMI 2020

	
0.3604

	
0.8135

	
0.3705

	
0.5178

	
4.6377




	
ReCoNet [55]

	
ECCV 2022

	
0.4341

	
0.7414

	
0.3049

	
0.4785

	
3.8011




	
Defusion [56]

	
ECCV 2022

	
0.4085

	
0.7583

	
0.2870

	
0.4982

	
3.5582




	
TarDAL [14]

	
CVPR 2022

	
0.4536

	
0.7462

	
0.3038

	
0.4060

	
4.1746




	
UMF-CMGR [57]

	
IJCAI 2022

	
0.4183

	
0.8133

	
0.4022

	
0.5029

	
4.0954




	
ESFuse

	
-

	
0.5486

	
0.7581

	
0.4536

	
0.4986

	
4.7343




	

	

	
TNO




	
MURF [13]

	
TPAMI 2023

	
0.2297

	
0.7809

	
0.2077

	
0.4906

	
4.7921




	
LRRNET [24]

	
TPAMI 2023

	
0.3479

	
0.6771

	
0.2348

	
0.5514

	
4.3380




	
U2Fusion [54]

	
TPAMI 2020

	
0.2791

	
0.8333

	
0.2657

	
0.5592

	
3.4423




	
ReCoNet [55]

	
ECCV 2022

	
0.3304

	
0.7771

	
0.2291

	
0.5403

	
3.0014




	
Defusion [56]

	
ECCV 2022

	
0.3027

	
0.7671

	
0.1465

	
0.5165

	
2.2102




	
TarDAL [14]

	
CVPR 2022

	
0.4110

	
0.7684

	
0.2394

	
0.4402

	
3.3909




	
UMF-CMGR [57]

	
IJCAI 2022

	
0.2836

	
0.8178

	
0.2503

	
0.4990

	
2.7568




	
ESFuse

	
-

	
0.4845

	
0.7852

	
0.3167

	
0.5575

	
4.8459




	

	

	
M3FD




	
MURF [13]

	
TPAMI 2023

	
0.3468

	
0.7973

	
0.1816

	
0.4931

	
3.4529




	
LRRNET [24]

	
TPAMI 2023

	
0.3917

	
0.8447

	
0.3218

	
0.4479

	
2.4001




	
U2Fusion [54]

	
TPAMI 2020

	
0.4202

	
0.8790

	
0.4132

	
0.5481

	
2.7574




	
ReCoNet [55]

	
ECCV 2022

	
0.4498

	
0.8421

	
0.3304

	
0.4510

	
2.7424




	
Defusion [56]

	
ECCV 2022

	
0.4348

	
0.8512

	
0.3585

	
0.4677

	
1.8383




	
TarDAL [14]

	
CVPR 2022

	
0.4777

	
0.8257

	
0.2584

	
0.4030

	
1.8877




	
UMF-CMGR [57]

	
IJCAI 2022

	
0.4655

	
0.8624

	
0.4200

	
0.4273

	
2.0321




	
ESFuse

	
-

	
0.5582

	
0.8832

	
0.4653

	
0.5487

	
3.5437











 





Table 2. The detection accuracy of the comparison methods and ESFuse on various categories in the M3FD dataset. Bold is the best, red is the second, blue is the third.






Table 2. The detection accuracy of the comparison methods and ESFuse on various categories in the M3FD dataset. Bold is the best, red is the second, blue is the third.





	Method
	Background
	Car
	Person
	Bike
	Curve
	Car Stop
	Color Tone
	AP@0.5





	Infrared Image
	0.944
	0.586
	0.806
	0.184
	0.867
	0.821
	0.000
	0.384



	Visible Image
	0.974
	0.873
	0.407
	0.823
	0.660
	0.555
	0.481
	0.682



	MURF
	0.979
	0.871
	0.739
	0.823
	0.645
	0.515
	0.466
	0.720



	TarDAL
	0.982
	0.888
	0.811
	0.827
	0.660
	0.550
	0.464
	0.740



	U2Fusion
	0.981
	0.880
	0.823
	0.815
	0.667
	0.429
	0.261
	0.694



	ReCoNet
	0.982
	0.886
	0.823
	0.829
	0.659
	0.540
	0.462
	0.740



	Defusion
	0.980
	0.871
	0.820
	0.797
	0.645
	0.357
	0.440
	0.701



	LRRNet
	0.971
	0.816
	0.639
	0.754
	0.388
	0.302
	0.300
	0.553



	UMF-CMGR
	0.981
	0.884
	0.819
	0.820
	0.656
	0.514
	0.464
	0.734



	ESFuse
	0.984
	0.889
	0.805
	0.827
	0.659
	0.543
	0.484
	0.741










 





Table 3. Comparison of segmentation accuracies of the method ESFuse on different classes of the MSRS dataset. Bold is the best, red is the second, blue is the third.






Table 3. Comparison of segmentation accuracies of the method ESFuse on different classes of the MSRS dataset. Bold is the best, red is the second, blue is the third.





	Method
	Background
	Car
	Person
	Bike
	Curve
	Car Stop
	Guardrail
	mIoU





	Visible Image
	97.92
	86.79
	39.97
	70.51
	53.33
	71.84
	85.90
	72.32



	Infrared Image
	96.14
	61.90
	70.00
	24.46
	33.64
	20.67
	0.06
	39.53



	LRRNet
	98.34
	89.09
	68.12
	69.29
	52.02
	71.57
	81.95
	74.77



	Defusion
	98.46
	89.11
	73.82
	71.44
	64.27
	73.21
	80.59
	76.03



	UMF-CMGR
	98.17
	87.06
	70.87
	66.00
	51.39
	68.22
	73.59
	70.99



	ReCoNet
	97.56
	83.12
	56.55
	57.38
	37.84
	55.91
	77.91
	64.73



	U2Fusion
	98.42
	88.84
	72.88
	70.92
	59.30
	72.09
	79.15
	75.22



	TarDAL
	98.45
	89.50
	73.17
	69.84
	61.49
	72.21
	80.53
	75.60



	MURF
	98.30
	87.88
	73.19
	68.40
	53.37
	70.22
	75.07
	72.67



	ESFuse
	98.50
	89.64
	74.40
	69.48
	60.30
	73.46
	81.76
	76.33










 





Table 4. Ablation experiments for edge refinement, DIM and multiscale reconstruction.






Table 4. Ablation experiments for edge refinement, DIM and multiscale reconstruction.





	Methods
	    Q MI    
	    Q S    
	    Q P    
	    Q CB    
	   AG   





	w/o DIM
	0.4696
	0.6507
	0.3838
	0.5040
	2.4739



	w/o edge refinement
	0.5394
	0.7668
	0.4382
	0.5087
	3.1434



	w/o multiscale reconstruction
	0.4994
	0.7080
	0.4119
	0.5287
	3.2434



	ESFuse
	0.5690
	0.7714
	0.47709
	0.5247
	3.3181
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