
Citation: Liu, W.; Tan, H.; Cheng, X.;

Li, X. ESFuse: Weak Edge Structure

Perception Network for Infrared and

Visible Image Fusion. Electronics 2024,

13, 4115. https://doi.org/10.3390/

electronics13204115

Academic Editor: Silvia Liberata

Ullo

Received: 2 September 2024

Revised: 11 October 2024

Accepted: 15 October 2024

Published: 18 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

ESFuse: Weak Edge Structure Perception Network for Infrared
and Visible Image Fusion
Wuyang Liu 1,2, Haishu Tan 3,4 , Xiaoqi Cheng 1,2,* and Xiaosong Li 2,3,4,*

1 School of Mechatronic Engineering and Automation, Foshan University, Foshan 528000, China;
2112203023@stu.fosu.edu.cn

2 Guangdong Provincial Key Laboratory of Industrial Intelligent Inspection Technology, Foshan University,
Foshan 528000, China

3 School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China;
tanhaishu@fosu.edu.cn

4 Guangdong-HongKong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology,
Foshan University, Foshan 528225, China

* Correspondence: chexqi@163.com (X.C.); lixiaosong@fosu.edu.cn (X.L.)

Abstract: Infrared and visible image fusion (IVIF) fully integrates the complementary features
of different modal images, and the fused image provides a more comprehensive and objective
interpretation of the scene compared to each source image, thus attracting extensive attention in
the field of computer vision in recent years. However, current fusion methods usually center their
attention on the extraction of prominent features, falling short of adequately safeguarding subtle
and diminutive structures. To address this problem, we propose an end-to-end unsupervised IVIF
method (ESFuse), which effectively enhances fine edges and small structures. In particular, we
introduce a two-branch head interpreter to extract features from source images of different modalities.
Subsequently, these features are fed into the edge refinement module with the detail injection module
(DIM) to obtain the edge detection results of the source image, improving the network’s ability
to capture and retain complex details as well as global information. Finally, we implemented a
multiscale feature reconstruction module to obtain the final fusion results by combining the output
of the DIM with the output of the head interpreter. Extensive IVIF fusion experiments on existing
publicly available datasets show that the proposed ESFuse outperforms the state-of-the-art(SOTA)
methods in both subjective vision and objective evaluation, and our fusion results perform well in
semantic segmentation, target detection, pose estimation and depth estimation tasks. The source
code has been availabled.

Keywords: infrared and visible image fusion; weak edge structure perception; multiscale feature

1. Introduction

Images captured by a single sensor or within a single shooting setup can only rep-
resent the imaging scene from a limited perspective, and conventional image processing
techniques often struggle to acquire multiple pieces of information simultaneously [1].
Therefore, IVIF is essential for generating richer and clearer images. Recently, IVIF has
been widely applied in scene understanding [2], saliency detection [3], and pedestrian
re-identification [4].

Numerous image fusion methods have been developed over the past few decades.
Traditional image fusion techniques include multiscale decomposition [5–7], sparse repre-
sentation [8,9], and hybrid methods [10–12]. However, these traditional methods primarily
rely on pixel-level operations, and their lack of semantic understanding and effective analy-
sis of complex environments can result in fusion outputs that lack semantic consistency
and plausibility. With the rise of deep learning in recent years, end-to-end image fusion
solutions have demonstrated significant potential. Mainstream deep learning methods
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can be broadly categorized into three types: auto-encoder (AE), generative adversarial
networks (GANs), and convolutional neural networks (CNNs). Recent learning-based
approaches leverage CNNs [13–17] to address the shortcomings of traditional methods.
The feature extraction capability of CNNs excels in capturing valuable information about
image features. However, CNNs struggle with the challenge of lacking ground truth data,
necessitating sophisticated training strategies to enhance their fusion capabilities. AE-based
methods first train auto-encoders as feature extractors on large natural image datasets.
The feature extractor is then utilized to extract complementary information from multi-
modal images, merging these features using specific fusion rules [18], such as splicing [19]
and element summation [20,21]. However, the AE-based fusion framework is not fully
learnable, as it employs handcrafted fusion rules to combine depth features. Consequently,
Ma et al. [22] were the first to define image fusion as a game between a generator and a
discriminator. Specifically, they constrained the probability distribution between the fused
and source images to ensure the fused image possesses rich texture details. However, ex-
cessively strong constraints may introduce artificial textures into the fused image, limiting
the realism and accuracy of the fusion results. Recently, algorithmic unfolding models have
garnered significant attention. The core principle behind these models is that mathematical
optimization algorithms guide the construction of the network framework, enhancing the
interpretability of neural networks and effectively avoiding time-consuming empirical
network design. The most commonly used models for IVIF tasks include convolutional
sparse coding models [23] and learned low-rank representation models [24]. However,
these methods lack flexibility and may struggle to handle varying magnification factors,
blurring kernels, and other variations.

Significant modal differences exist between infrared and visible images due to varia-
tions in wavelengths, radiation sources, and acquisition sensors. These differences manifest
in texture, luminance, and structure, impacting the quality of image fusion. When such
modal differences lead to inconsistent feature fusion, the overall quality of the fusion result
often deteriorates. Decomposition-based representation methods can align the feature
spaces of images from different domains, reducing the impact of modal differences. How-
ever, these methods typically require complex decomposition and fusion rules, and when
dealing with complex inter-domain transformations or significant modal differences, fea-
ture space alignment may fail to capture the intricate relationships both within and between
domains. Additionally, many methods prioritize the extraction of salient features, neglect-
ing subtle image texture information from intermediate layers, which is crucial for effective
model learning [25]. Although dense connections [26] have been introduced in fusion
networks, they often result in increased computational costs.

Therefore, the shortcomings of the current research can be summarized in the following
five points. (1) Lack of semantic understanding: Traditional image fusion methods primarily
rely on pixel-level operations, lacking effective analysis and semantic understanding of
complex environments. (2) Over-reliance on ground truth: CNN-based methods struggle
in the absence of ground truth and require complex training strategies to enhance fusion
capabilities. (3) Limitations of manual fusion rules: While AE methods can extract features,
their manual fusion rules limit learning capacity and adaptability to complex scenes.
(4) Inadequate handling of modal differences: Current methods often fail to capture complex
feature relationships effectively when addressing significant modal differences between
infrared and visible images. (5) High computational cost: Although dense connections are
introduced to extract more information, they result in a significant computational overhead.

To address these challenges, we propose a novel weak edge structure perception
network (ESFuse). To generate high-quality fused images, our method first employs a
two-branch head interpreter to extract common features and reduce feature differences
between the infrared and visible light modalities while preserving their unique information.
The two-branch outputs from the head interpreter are then combined and processed by
an edge refinement module, which captures feature location information from the source
images of each modality and integrates these data into the fusion process to enhance



Electronics 2024, 13, 4115 3 of 21

performance. Second, since the performance of a fusion network relies heavily on the
spatial location of its features, we propose the DIM. This module utilizes the deep semantic
information extracted by the head interpreter module, along with the edge detection re-
sults from the edge refinement, to update the gradient map using residuals and generate
attention weights. These attention weights emphasize the complementary regions of the
source image, thereby enhancing the network’s performance. Finally, we implement a
multiscale feature reconstruction module, which combines the outputs of the DIM and
the head interpreter to produce the final fusion results. Our method outperforms existing
SOTA approaches both quantitatively and qualitatively on publicly available datasets. Ad-
ditionally, we demonstrate the effectiveness of our approach in various downstream tasks,
including semantic segmentation, target detection, pose estimation, and depth estimation.
We also conduct ablation studies to evaluate the effectiveness of each component of our
approach. In summary, the contributions of this paper are as follows:

• We propose a novel two-branch unsupervised end-to-end IVIF model that effectively
predicts weak edge structure and texture features in different modal images, and re-
duces the feature differences between modalities to preserve the unique information
of each modal image.

• We propose a feature reconstruction module that optimizes the fusion process by
comprehensively preserving the details and structural features by multiscale computa-
tion; thus, the fused image can more realistically reflect the information of the source
images, significantly improving the fusion performance.

• We propose using the DIM to highlight the features in the complementary regions of
the source images by multiplying the attention weights generated from the gradient
map with the depth semantic information.The DIM can effectively enhance the impor-
tance and expressiveness of their features by means of fine-tuning them, and efficiently
preserves and exploits the semantic structure.

• Extensive experiments cover IVIF image fusion, and downstream tasks such as seman-
tic segmentation, target detection, pose estimation and depth estimation, the corre-
sponding subjective and quantitative evaluation results consistently demonstrate the
competing SOTA performance of the proposed ESFuse.

2. Related Work

In this section, we review various IVIF methods, categorizing them into traditional,
AE-based, GAN-based and diffusion model-based methods.

2.1. Traditional-Based Methods

In the study of traditional methods for IVIF, various techniques have been proposed,
including multiscale decomposition and saliency detection [27]. Multiscale decomposition
methods [28–31] decompose and reconstruct the features of infrared and visible images at
various levels to better fuse details and structures. These approaches align the processing of
scale information with the human visual system. Saliency detection methods [32] enhance
fusion performance for important targets by assigning higher weights to salient regions or
objects. Sparse representation techniques [33] utilize dictionaries learned from large sets
of images to encode and preserve essential information from the source images during
the fusion process. Together, these traditional approaches lay the groundwork for IVIF,
enabling the retention of image details and improvement of visual quality.

2.2. AE-Based Methods

The core idea of auto-encoder AE-based IVIF algorithms is to achieve information
extraction and fusion from multiple input modalities by learning a compact representation
(coding) and the reconstruction process of an image. Li et al. [34] first proposed the
DenseFuse method, connecting the output of each layer in the encoder to every other layer
to obtain more features from the source image. Following the introduction of DenseFuse,
AE-based IVIF methods have seen significant development. Huang et al. [35] enhanced the
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fusion and denoising capabilities of the model by employing decomposition techniques.
Tang et al. [19] utilized convolutional neural networks (CNNs) as the basic units for
the encoder and decoder, constructing a global feature extraction module embedded
after feature encoding through the use of a transformer. This combination of CNNs and
transformers is a common approach in AE-based models, effectively capturing local and
global features of multimodal images, respectively.

2.3. GAN-Based Methods

The GAN-based IVIF algorithm primarily achieves multimodal information extraction
through the adversarial training of generators and discriminators. Ma et al. [22] were the
first to extend GANs to the IVIF task by balancing the fusion of infrared intensity informa-
tion and visible gradient information during the adversarial process, thereby demonstrating
the effectiveness of generative adversarial networks in infrared and visible image fusion.
Additionally, Xu et al. [36] developed a conditional GAN with dual discriminators, each
trained on infrared and visible images, respectively. This approach effectively balances the
features of the two image types, thus enhancing fusion performance. Notable architectural
innovations based on the GAN approach have emerged, as researchers have explored the
use of multiple discriminators to improve fusion outcomes. For instance, Song et al. [37]
introduced a novel GAN-based method for IVIF that employs a triple discriminator to
generate detailed fused images.

2.4. Diffusion Model-Based Methods

Recently, diffusion models have been enhanced to produce images of higher quality
than previous generative models, such as GANs [38,39]. This approach generates high-
quality images by simulating the diffusion process, which transforms noise-corrupted
images into clean ones, thereby alleviating common issues such as training instability
and mode collapse associated with GANs. Zhao et al. [40] were the first to propose the
use of Denoising Diffusion Probabilistic Models (DDPM) for fusion tasks, employing a
hierarchical Bayesian approach to model the subproblem of maximum likelihood estimation.
Xu et al. [41] introduced the FS-Diff diffusion model, which is based on a stochastic iterative
denoising process for the task of tri-modal image fusion with super-resolution. Additionally,
DPS [42] employs the Laplace approximation to compute the log-likelihood gradient for
posterior sampling, effectively addressing many noisy nonlinear inverse problems.

3. Method

In this section, we introduce the head interpreter, edge refinement, detail injection
module, and fusion module. The framework of the proposed method is illustrated in
Figure 1.

3.1. Head Interpreter

The head interpreter is designed to learn and comprehend the embeddings of high-
level image semantics. Therefore, a large receptive field is essential for effectively encoding
structures that exhibit variations in scale. To address this requirement, we employed
convolutional layers with varying kernel sizes to fully leverage contextual information.
As shown in Figure 1, by utilizing a mixture of convolutional kernel sizes (3, 5, and 7) instead
of a fixed size of 3, we obtained dense receptive fields of different dimensions. To facilitate
information propagation in convolutional neural networks (CNNs), we combined residual
connections with convolutional layers of varying kernel sizes, forming a residual block.
Additionally, we utilized the spatial and channel attention block (SCAB) [43] to generate an
attention map for visible image information, which we then multiplied element-wise with
the infrared feature map. This process injects crucial information captured by the visible
image into the infrared image features, thereby aiding the head interpreter in extracting
these features.
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Figure 1. Workflow of the proposed framework, head interpreter is our proposal to implicitly learn
contextual information from the source image using residual block. To further highlight the features of
the source image, we propose edge refinement and the DIM, which utilizes the attention mechanism
to regulate the head interpreter. The last part is the fusion model, which utilizes the learned head
interpreter and the DIM to improve the fusion performance.

The input paired infrared and visible images are denoted as Iir ∈ RH×W and
Ivi ∈ RH×W×3 , respectively, and the head interpreter is denoted as H(·). The head
interpreter aims at extracts the respective depth features {F1,F2} from the infrared and
visible inputs {Iir,Ivi}, which are formulated as follows:

{F1, F2} = H(Iir, Ivi) (1)

3.2. Spatial and Channel Attention Block

As shown in Figure 1, adaptive feature enhancement and fusion is performed using
SCAB after each multi-layer feature extraction in the head interpreter.

As shown in Figure 2, the SCAB consists of two cascaded attention units. The node
data I1 and I2 from the head interpreter are processed by the 1D channel attention graph
Mc ∈ RCi×1×1 and a 2D spatial attention graph Ms ∈ R1×Hi×Wi . The channel attention first
performs global maximum pooling and global average pooling of spatial dimensions on
an input feature map I of size Hi × Wi × Ci to obtain two 1 × 1 × Ci feature maps; then,
the results of global maximum pooling and global average pooling are fed into a shared
multilayer perceptual machine (MLP) for learning, respectively, to obtain two 1 × 1 × Ci
feature maps. Finally, the outputs of the MLP are summed up and then go through the
mapping process of the Sigmoid activation function to obtain the channel attention weight
matrix. The channel attention process can be summarized as follows:

Mc(I) = σ

[
MLP(AvgPool(I)) + (MLP(MaxPool(I))

]
(2)
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I′ = Mc(I)⊗ I (3)

where ⊗ denotes the element-wise multiplication, σ denotes sigmoid function, Ci, Hi,
Wi denote the number of channels, height, and width of input I1 and I2. AvgPool(·)
and MaxPool(·) denote average pooling and maximum pooling with a step size of 2,
respectively. Before multiplication, the attention maps Mc(I) are stretched to the size of
Mc(I) ∈ RCi×Hi×Wi .

Similar to the channel attention process, spatial attention is paid to the fact that
the input feature map of size H × W × C is first subjected to global maximum pooling
and global average pooling in the channel dimension to obtain two feature maps of size
H × W × 1. Then, the results of global maximum pooling and global average pooling are
spliced according to the channel to obtain a feature map of size H × W × 2, and finally,
a 7 × 7 convolution operation is performed on the spliced results to obtain a feature map
of size H × W × 1, and then the Sigmoid activation function is used to obtain the spatial
attention weight matrix. The spatial attention process can be summarized as follows:

Ms
(
I′
)
= σ( f 7×7([AvgPool(I′); MaxPool(I′)])) (4)

I′′ = Ms(I′)⊗ I′ (5)

where f 7×7 represents a convolutional operation with the filter size of 7 × 7. The attention
maps Ms(I) are also stretched to the size of Ms(I) ∈ RCi×Hi×Wi before multiplication.

Feature

Concatennate

Spatial and 

channel 

attention 

Spatial Attention 

Module

Channel Attention 

Module

Spatial and Channel Attention Block

Figure 2. Spatial and channel attention block. The SCAB is used to reduce the semantic gap at the
multi-layer feature fusion stage in the head interpreter.

3.3. Edge Refinement

CNNs are typically more adept at identifying the texture of an image than its shape [25].
This characteristic simplifies the learning process; however, it compromises the robustness
when applied to real-world scenarios. To improve the retention of subtle and small-scale
structures within an image, we implemented an edge refinement module. This module was
designed to bridge the gap between the fusion outcome and the actual structural layers
of the original image. Rather than using existing edge prediction methods to generate
pseudo ground truth, this aims to give the model an overall improved ability to capture
and preserve complex detail, thus enhancing its generalisation and utility. Edge refinement
(denoted by E(·)) aims to extract the edge details of the source image and is formulated as

Fedge = E(F1) (6)
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As shown in Figure 1, this module explores more new features by encouraging the
edge refinement module to learn residual from the input image. The refinement module
comprises two convolutional layers and three cascaded residual blocks.

3.4. Detail Injection Module

In the image fusion task, the performance of a fused image depends heavily on the
spatial location of its features. Therefore, an image fusion model should be able to handle
individual regions with different priorities. Using a head interpreter to represent the spatial
information of the regions to be fused, we further emphasize the importance of these
regions in the attention mechanism. Specifically, we propose a detail injection module
(DIM). It uses the deep semantic information extracted by the head interpreter module
and updates the gradient map with residuals. The updated gradient map is then used to
generate attention weights, which increase the importance of the complementary regions
of the source image and suppress other irrelevant regions. Finally, the features within the
complementary regions are emphasized by multiplying the elements of deep semantic
information and attention weights. The DIM can be described as follows:

{Fedge, f } = D(Fedge, R) (7)

where Fedge and R are the final gradient map and the deep semantic information extracted
from the residual blocks in the edge refinement module, respectively. D(·) denotes our
detail injection module. Fedge and f are the modulation outputs and feature tensor, respec-
tively, ready to be fed into the feature reconstruction module.

3.5. Fusion Module

To retain as much structural information as possible in the final fused image, we used
multiscale reconstruction. As shown in Figure 3, multiscale reconstruction uses residual
blocks combined in a parallel fashion to capture structural information at different scales
in the source image and enhance the fusion effect. Denoting the fusion module as MU(·),
which is formulated as follows:

Ifus = MU{(F1 + Fedge), (F2 + Fedge), f } (8)

where f is the a prior output of the DIM, F1, F2, Fedge are the outputs of the head interpreter
and update edge refinement, respectively.
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Figure 3. Workflow of the fusion module, which uses the learned head interpreter and the DIM as inputs
and adds multiscale reconstruct at the end to emphasize the recovery of the source image structure.

3.6. Loss Function

Fusion loss: Constraining the network using the structural similarity index measure
(SSIM) [44] is an effective approach for preserving luminance information. The SSIM
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considers luminance, contrast, and structural metrics, which agree with the perception of
human vision. LSSIM is expressed by the following loss function:

LSSIM = (1 − SSIM(Ifus, Iir)) + (1 − SSIM(Ifus, Ivi)) (9)

In addition, we expected the fused image to maintain an optimal intensity distribution
consistent with that of the source image. We designed the following intensity loss Lint to
guide our fusion model in capturing the appropriate intensity information:

Lint = ∥max(Iir, Ivi), Ifus∥1 (10)

Here, ∥(·)∥1 denotes the L1 norm and max(·) denotes the element-by-element maximum
selection.

Edge loss: The main idea of our network was to introduce additional effective con-
straints on the texture details. For edge detection, we used the L1 norm to constrain the
detailed prediction results directly, which can be written as

Le =
∥∥∥∇Iir, Fedge

∥∥∥
1
+

∥∥∥∇Ivi, Fedge

∥∥∥
1

(11)

Here, ∇(·) denotes the gradient map in the horizontal and vertical directions, and in this
study, we utilize the Sobel operator to compute the gradient map.

Total loss: The ultimate goal is to achieve the combined goal of edge detection and
image fusion. The overall loss function is expressed as

Ltotal = λ1LSSIM + λ2Lint + λ3Le (12)

Here, λ1, λ2, and λ3 are hyperparameters that control the trade-offs of each sub-loss term.
In this study, we empirically set them to 5, 10, and 3, respectively.

4. Experiments
4.1. Datasets

We used four popular benchmarks to validate our fusion model: MSRS [45], Road-
scene [46], TNO [47] and M3FD [14]. We trained our network on the MSRS training set
(1083 pairs). The test datasets included the MSRS (361 pairs), RoadScene (221 pairs), TNO
(107 pairs) and M3FD (300 pairs) test sets. In total, we use 1083 image pairs for training,
and 989 for testing. Among these datasets, RoadScene includes both daytime and nighttime
road scenarios, MSRS and M3FD offer a variety of scenarios across different conditions,
while TNO focuses specifically on infrared and visible light data in military applications.

4.2. Implementation Details

The source images of the training dataset were cropped into 64 × 64 patches to increase
data volume. The parameters were updated using the Adam optimizer at a learning rate
of 1 × 10−4. Training was performed for 30 epochs, with a batch size of 32. The proposed
approach was implemented in PyTorch1.12.1 with two NVIDIA 3090 GPUs for training.
The source code is available at https://github.com/lwy12345678/ESFuse.

4.3. Evaluation Metrics

To evaluate the image fusion capability of our model, we employed four objective
evaluation metrics: normalized mutual information (QMI), phase congruency (QP), average
gradient (AG), Chen–Blum Metric (QCB), and Piella’s Metric (QS). Higher values for these
metrics generally indicate better quality in the fused images. These metrics assess various
aspects of the merged images, including the amount of information conveyed, fidelity to
the original source images, and overall visual quality.

QMI is a modification of mutual information (MI). Specifically, MI is a quantitative
measure of the mutual dependence of two variables. The definition of mutual information
for two discrete random variables U and V is

https://github.com/lwy12345678/ESFuse
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MI(U; V) = ∑
v∈V

∑
u∈U

p(u, v) log2
p(u, v)

p(u)p(v)
, (13)

where p(u, v) is the joint probability distribution function of U and V , and p(u) and p(v)
are the marginal probability distribution functions of U and V , respectively. Actually, MI
quantifies the distance between the joint distribution of U and V, i.e., p(u, v), and the joint
distribution when U and V are independent, i.e., p(u)p(v). Mutual information can be
equivalently expressed with joint entropy {H(U, V)} and marginal entropy {H(U, V)} the
two variable U and V as

MI(U, V) = H(U) + H(V)− H(U, V), (14)

where
H(U) = −∑

u
p(u) log2 p(u),

H(V) = −∑
v

p(v) log2 p(v),

H(U, V) = −∑
u,v

p(u, v) log2 p(u, v).

Qu et al. [48] used the summation of the MI between the fused image F(i, j) and two
input images, A(i, j) and B(i, j), to represent the difference in quality. The expression of the
MI-based fusion performance measure MAB

F is

MAB
F = MI(A, F) + MI(B, F)

= ∑
i,j

(
hAF(i, j) log2

hAF(i, j)
hA(i)hF(j)

+ hBF(i, j) log2
hBF(i, j)

hB(i)hF(j)

)
,

(15)

where hAF(i, j) indicates the normalized joint gray level histogram of images A(i, j) and
F(i, j); hK(i, j)(K = A, B, and F) is the normalized marginal histogram of images A, B, or F,
respectively. However, (15) mixes two joint entropies measured at different scales. This can
lead to unstable measurements, so Hosny et al. [49] modified (15) as follows:

QMI = 2
[

MI(A, F)
H(A) + H(F)

+
MI(B, F)

H(B) + H(F)

]
. (16)

We used Hossny’s definition in our experiments.
QP is an image feature-based metric. Zhao et al. [50] and Liu et al. [51] used the phase

congruency, which provides an absolute measure of image feature, to define an evaluation
metric. The metric is defined as a product of three correlation coefficients:

QP = (Pp)
α(PM)β(Pm)

γ, (17)

where p, M, m refers to phase congruency (p), maximum, and minimum moments, respec-
tively, and there are

Pp = max
(
Cp

AF, Cp
BF, Cp

SF
)
,

PM = max
(
CM

AF, CM
BF, CM

SF
)
,

Pm = max
(
Cm

AF, Cm
BF, Cm

SF
)
.

Herein, Ck
xy, {k|p, M, m} stands for the correlation coefficients between two sets x and y:

Ck
xy =

σk
xy + C

σk
xσk

y + C
, (18)
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σxy =
1

N − 1

N

∑
i=1

(xi − x)(yi − y). (19)

The suffixes A, B, F, and S correspond to the two inputs, fused image, and maximum-
select map. The exponential parameters α, β, and γ can be adjusted based on the importance
of the three components.

QCB is a human perception-inspired fusion metric. There are five steps involved:
Contrast sensitivity filtering: Filtering is implemented in the frequency domain.

Image IA(i, j) is transformed into the frequency domain and we obtain IA(m, n). The filtered
image is obtained: ĨA(m, n) = IA(m, n)S(r), where S(r) is the CSF filter in polar form with
r =

√
m2 + n2. In [52], there are three choices suggested for CSF, which include Mannos–

Sakrison, Barton, and DoG filter.
Local contrast computation: Peli’s contrast is defined as

C(i, j) =
ϕk(i, j) ∗ I(i, j)

ϕk+1(i, j) ∗ I(i, j)
− 1. (20)

A common choice for ϕk would be

Gk(x, y) =
1

(
√

2πσk)
e

x2+y2

2σ2
k , (21)

with a standard deviation σk = 2.
Contrast preservation calculation: The masked contrast map for input image IA(i, j)

is calculated as

C′
A =

t(CA)
p

h(CA)q + Z
. (22)

Here, t, h, p, q, and Z are real scalar parameters that determine the shape of the nonlinearity
of the masking function.

Saliency map generation: The saliency map for IA(i, j) defined as

λA(i, j) =
C′

A
2(i, j)

C′
A

2(i, j) + C′
B

2(i, j)
. (23)

The information preservation value is computed as

QAF(i, j) =


C′

A(i,j)
C′

F(i,j)
, if C′

A(i, j) < C′
F(i, j),

C′
F(i,j)

C′
A(9i,j) , otherwise.

(24)

Global quality map:

QGQM(i, j) = λA(i, j)QAF(i, j) + λB(i, j)QBF(i, j). (25)

The metric value is obtained by average the global quality map, i.e., QCB = QGQM(i, j).
QS is an image-structure similarity-based metric. Piella and Heijmans [53] defined

three fusion quality indices. Assume the local Q(A, B|w) value is calculated in a sliding
window w. There are

QS =
1

|W| ∑
w∈W

[λ(w)Q0(A, F|w) + (1 − λ(w))Q0(B, F|w)], (26)

QW = ∑
w∈W

c(w)[λ(w)Q0(A, F|w) + (1 − λ(w))Q0(B, F|w)], (27)

QE = QW(A, B, F) · QW(A′, B′, F′)α, (28)
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where the weight λ(w) is defined as

λ(w) =
s(A|w)

s(A|w) + s(B|w)
. (29)

Herein, s(A|w) is a local measure of image salience. In Piella’s implementation,
s(A|w) and s(B|w) are the variance of images A and B within the window w, respectively.
The coefficient c(w) in (27) is

c(w) =
max[s(A|w), s(B|w)]

∑w′∈W [s(A|w′), s(B|w′)]
. (30)

In (28), QW(A′, B′, F′) is the Qw calculated with the edge images, i.e., A′, B′, and F′ 0,
and is a manually adjustable parameter to weight the edge-dependent information.

AG is a non-reference metric, which calculates the average gradient value across all
pixels, representing the overall spatial variation (sharpness) in the images.

AG =
1

MN

M

∑
i=1

N

∑
j=1

√
∇F2

x (i, j) +∇F2
y (i, j)

2
. (31)

where ∇Fx(i, j) = F(i, j) − F(i + 1, j) and ∇Fy(i, j) = F(i, j) − F(i + 1, j). A higher AG
metric indicates an enhanced presence of gradient information within the fused image,
implying that the algorithm effectively integrates gradient details, potentially leading to
superior performance in image fusion tasks.

These five metrics can comprehensively measure the performance of the fusion method.
The higher the value of all metrics, the better.

4.4. Qualitative Comparison

The results of the qualitative comparison are presented in Figure 4. For each of the
four datasets, we selected a set of images to compare the supervised fusion performance.
To effectively distinguish the fusion effects of different methods across various scenarios,
we chose diverse scenes, including nighttime, highway, battlefield, and street, from the
respective datasets.

From the nighttime scene of the MSRS dataset, it is evident that most methods exhibit
poor robustness under low-light conditions (see the red boxes in Figure 4). For instance,
in the fused images produced by TarADL, U2Fusion, ReCoNet, and LRRNet, the human
figure is difficult to recognize. In comparison, UMF-CMGR and MURF perform worse than
DEFusion and the proposed method in terms of detail retention and character contrast.
Only ESFuse and DEFusion achieved better fusion results in the night scenes.

In the highway scene from the RoadScene dataset, a comparison between the infrared
and visible light images reveals that the character information on the road sign primarily
originates from the visible light image. However, aside from LRRNet, most of the compared
methods fail to retain the character information from the source visible image (see the
yellow boxes in Figure 4). This indicates that most existing methods struggle to balance
information between source images, often causing the fused image to be biased toward
one source image, thereby losing complementary features across different modalities.
In contrast, our ESFuse method enhances the complementary region features of the source
images through the DIM, resulting in better fusion outcomes in the highway scene.

In the battlefield scene from the TNO dataset, efficient target discrimination is a crucial
challenge. As shown in the orange box in Figure 4, the fusion results from U2Fusion,
MURF, LRRNet, ReCoNet, and UMF contain less information, exhibit lower brightness,
and retain more visible light data, leading to incomplete fusion of the visible light images.
The targets in the fusion results of TarDAL and DeFusion are not prominent. In contrast, our
ESFuse method fuses more information through a unified feature space, resulting in more
prominent targets. Furthermore, due to the incorporation of multiscale reconstruction in the
fusion module, our method produces results with clearer structures and improved contrast.
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Figure 4. Qualitative comparisons of the SOTA methods with the proposed ESFuse on the Roadscene,
MSRS, TNO, and M3FD datasets.

The green box in Figure 4 highlights the street scene from the M3FD dataset. The fused
image produced by TarDAL contains more infrared information but lacks visible light details.
In the fusion results from U2Fusion, MURF, and LRRNet, the overall brightness is relatively
low, making the objects in the fused image less prominent. Although ReCoNet, DeFusion,
and UMF-CMGR yield brighter fusion results, they exhibit over-smoothing, leading to reduced
clarity and poor handling of object edges (e.g., tree edges in the green box). In contrast,
our ESFuse method demonstrates superior fusion performance in street scenes, effectively
integrating source information from both infrared and visible images. Our approach also
provides enhanced background edge texture and improved character contrast.

We utilized remotely sensed data from natural environments, built landscapes, and ur-
ban scenes to evaluate the performance of our method. Figure 5 presents the fused images
from these scenes. Our fusion technique effectively integrates valuable information from
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the source images, achieving satisfactory results in terms of illumination, detail, and struc-
tural integrity. The fused images in the first, second, and third columns demonstrate our
method’s capability to successfully merge infrared and visible data with enhanced detail
and structural clarity, as highlighted by the red boxes. Additionally, our approach enhances
useful information while preserving critical features, as evidenced by the farmland scene
in the first column. Despite the visible images in the second and third columns being
somewhat dark and containing subtle details, our fusion results retain these details without
being compromised by the unusual lighting conditions. Overall, our method is robust in
preserving key information across various scenes and lighting conditions.

In
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E

S
F

u
se

Figure 5. Fusion results in remote sensing imagery. The red boxes are enlarged to highlight the fusion
performance on image details.

4.5. Quantitative Comparison

Table 1 provides quantitative comparisons between our method and the SOTA meth-
ods on the MSRS, RoadScene, TNO, and M3FD datasets, respectively, and summarizes the
average metric values for our ESFuse and these methods. Our ESFuse stands out in terms
of overall performance.

On the MSRS and M3FD datasets, our ESFuse scores very highly on all five metrics.
In the RoadScene dataset, our method performs well in QMI , QP, and QS, and ranks second
in AG, and in the TNO dataset, we obtain the best results in QMI , QP, QS, and AG. It
shows that the information of the source image is effectively integrated in our ESFuse
while preserving the rich details in the fused image. It further confirms its excellent overall
performance. In addition, Defusion achieves the second best results for QMI and QCB on
the MSRS dataset, but it relies on complex decomposition algorithms and faces challenges
in preserving the rich information of the source images. In contrast, U2Fusion achieves
the second best scores for QP and QCB on the TNO dataset and QS and QCB on the M3FD
dataset by combining the properties of the different similarities between the source images,
but it relies on a specific multitask-oriented loss function and does not retain the source
image contrast and details well.
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Table 1. Quantitative comparison of the proposed algorithm and different comparison methods on
the Roadscene, MSRS,TNO and M3FD datasets. Bold is the best, red is the second.

Methods Venue
MSRS

QMI QS QP QCB AG

MURF [13] TPAMI 2023 0.2575 0.6626 0.2242 0.3665 3.0720
LRRNET [24] TPAMI 2023 0.4607 0.7110 0.3372 0.3928 2.6509
U2Fusion [54] TPAMI 2020 0.3834 0.7599 0.3141 0.4686 2.3203
ReCoNet [55] ECCV 2022 0.3927 0.3705 0.3760 0.3780 3.0006
Defusion [56] ECCV 2022 0.4702 0.7483 0.3757 0.5142 2.6539
TarDAL [14] CVPR 2022 0.3841 0.4855 0.1639 0.4088 1.7156

UMF-CMGR [57] IJCAI 2022 0.3278 0.6560 0.2104 0.3510 2.1364
ESFuse - 0.5690 0.7714 0.4771 0.5247 3.3181

Road Sence

MURF [13] TPAMI 2023 0.3489 0.8017 0.3370 0.4852 6.6474
LRRNET [24] TPAMI 2023 0.3936 0.5942 0.2460 0.5096 4.6399
U2Fusion [54] TPAMI 2020 0.3604 0.8135 0.3705 0.5178 4.6377
ReCoNet [55] ECCV 2022 0.4341 0.7414 0.3049 0.4785 3.8011
Defusion [56] ECCV 2022 0.4085 0.7583 0.2870 0.4982 3.5582
TarDAL [14] CVPR 2022 0.4536 0.7462 0.3038 0.4060 4.1746

UMF-CMGR [57] IJCAI 2022 0.4183 0.8133 0.4022 0.5029 4.0954
ESFuse - 0.5486 0.7581 0.4536 0.4986 4.7343

TNO

MURF [13] TPAMI 2023 0.2297 0.7809 0.2077 0.4906 4.7921
LRRNET [24] TPAMI 2023 0.3479 0.6771 0.2348 0.5514 4.3380
U2Fusion [54] TPAMI 2020 0.2791 0.8333 0.2657 0.5592 3.4423
ReCoNet [55] ECCV 2022 0.3304 0.7771 0.2291 0.5403 3.0014
Defusion [56] ECCV 2022 0.3027 0.7671 0.1465 0.5165 2.2102
TarDAL [14] CVPR 2022 0.4110 0.7684 0.2394 0.4402 3.3909

UMF-CMGR [57] IJCAI 2022 0.2836 0.8178 0.2503 0.4990 2.7568
ESFuse - 0.4845 0.7852 0.3167 0.5575 4.8459

M3FD

MURF [13] TPAMI 2023 0.3468 0.7973 0.1816 0.4931 3.4529
LRRNET [24] TPAMI 2023 0.3917 0.8447 0.3218 0.4479 2.4001
U2Fusion [54] TPAMI 2020 0.4202 0.8790 0.4132 0.5481 2.7574
ReCoNet [55] ECCV 2022 0.4498 0.8421 0.3304 0.4510 2.7424
Defusion [56] ECCV 2022 0.4348 0.8512 0.3585 0.4677 1.8383
TarDAL [14] CVPR 2022 0.4777 0.8257 0.2584 0.4030 1.8877

UMF-CMGR [57] IJCAI 2022 0.4655 0.8624 0.4200 0.4273 2.0321
ESFuse - 0.5582 0.8832 0.4653 0.5487 3.5437

4.6. Task-Driven Evaluation

To assess the generalization of the proposed approach to advanced tasks, we used
(1) DeepLabV3+ [58], a semantic segmentation model, (2) YOLOv5 [59], a target detection
model, (3) OpenPose [60], a pose estimation model, and (4) MiDaS [61], a depth estimation
model to measure the contribution of various fusion algorithms to advanced visual tasks.

Figure 6 presents the visualization results of semantic segmentation and target de-
tection on the MSRS dataset. Since both DeepLabV3+ and YOLOv5 are trained on visible
image datasets, a fusion method that mitigates the interference from thermal radiation
in infrared images yields better segmentation and detection performance. Our method
preserves structural information while enhancing texture details and effectively fuses the
complementary information from both infrared and visible images. For instance, as shown
in Figure 6, the car in the yellow box and the pedestrian in the red box demonstrate how
our approach significantly improves the scene understanding for segmentation and target
detection models.
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Figure 6. Visualization results of pose estimation and depth estimation for infrared images, visible
images, and different fusion images on MSRS dataset.

The visualization results for pose estimation and depth estimation are presented
in Figure 7. In the human pose estimation task, inaccuracies in the spatial structure of
figures obtained by other methods degrade the quality of the fused images, resulting in
incomplete or inaccurate outcomes. This can lead to confusion and incorrect conclusions
in applications such as action recognition and video surveillance. In the depth estimation
task, the performance results of fused images obtained through different methods exhibited
significant discrepancies, attributable to variations in fusion accuracy, which caused varying
degrees of visual differences. In contrast, the stabilized fusion achieved by our proposed
method offers a robust representation of the objects within the image.

The results of the quantitative comparison are presented in Tables 2 and 3. To ensure
a fair assessment, we retrained the segmentation network [62] on the MFNet dataset. It
is important to note that since the MSRS dataset only provides segmented labels, we
retrained YOLOv5 on the M3FD dataset for a quantitative comparison of target detection.
Segmentation performance is measured using pixel intersection and union (IoU), while
mean average precision (mAP) is utilized to evaluate detection performance, where AP@0.5
indicates the mAP value for an IoU threshold of 0.5.

From the results, it is evident that infrared (IR) images perform well in detecting peo-
ple, as indicated by both the mean Intersection over Union (mIoU) and average precision
at a 0.5 IoU threshold (AP@0.5). This suggests that IR images offer the detector ample
semantic information regarding salient targets, such as individuals. However, the detection
results for cars in infrared images are disappointing. Conversely, visible images supply
the detector with substantial semantic information about vehicles. Our ESFuse effectively
achieves intensity preservation and texture retention through the guidance of the detail
injection module (DIM) and multiscale reconstruction, successfully balancing complemen-
tary and irrelevant information between the source images. Consequently, as illustrated
in Tables 2 and 3, our algorithm achieves the highest IoU in semantic segmentation across
nearly all categories, ranks first in mIoU, and also demonstrates higher accuracy in target
detection. In summary, the proposed method opens up new possibilities for applications
such as augmented reality (AR), autonomous driving, and coastline safety monitoring.
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Figure 7. Visualization results of semantic segmentation and target detection for infrared images,
visible images, and different fusion images on MSRS dataset.

Table 2. The detection accuracy of the comparison methods and ESFuse on various categories in the
M3FD dataset. Bold is the best, red is the second, blue is the third.

Method Background Car Person Bike Curve Car Stop Color Tone AP@0.5

Infrared Image 0.944 0.586 0.806 0.184 0.867 0.821 0.000 0.384
Visible Image 0.974 0.873 0.407 0.823 0.660 0.555 0.481 0.682

MURF 0.979 0.871 0.739 0.823 0.645 0.515 0.466 0.720
TarDAL 0.982 0.888 0.811 0.827 0.660 0.550 0.464 0.740

U2Fusion 0.981 0.880 0.823 0.815 0.667 0.429 0.261 0.694
ReCoNet 0.982 0.886 0.823 0.829 0.659 0.540 0.462 0.740
Defusion 0.980 0.871 0.820 0.797 0.645 0.357 0.440 0.701
LRRNet 0.971 0.816 0.639 0.754 0.388 0.302 0.300 0.553

UMF-CMGR 0.981 0.884 0.819 0.820 0.656 0.514 0.464 0.734
ESFuse 0.984 0.889 0.805 0.827 0.659 0.543 0.484 0.741

Table 3. Comparison of segmentation accuracies of the method ESFuse on different classes of the
MSRS dataset. Bold is the best, red is the second, blue is the third.

Method Background Car Person Bike Curve Car Stop Guardrail mIoU

Visible Image 97.92 86.79 39.97 70.51 53.33 71.84 85.90 72.32
Infrared Image 96.14 61.90 70.00 24.46 33.64 20.67 0.06 39.53

LRRNet 98.34 89.09 68.12 69.29 52.02 71.57 81.95 74.77
Defusion 98.46 89.11 73.82 71.44 64.27 73.21 80.59 76.03

UMF-CMGR 98.17 87.06 70.87 66.00 51.39 68.22 73.59 70.99
ReCoNet 97.56 83.12 56.55 57.38 37.84 55.91 77.91 64.73
U2Fusion 98.42 88.84 72.88 70.92 59.30 72.09 79.15 75.22
TarDAL 98.45 89.50 73.17 69.84 61.49 72.21 80.53 75.60
MURF 98.30 87.88 73.19 68.40 53.37 70.22 75.07 72.67
ESFuse 98.50 89.64 74.40 69.48 60.30 73.46 81.76 76.33
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4.7. Qualitative Results of DIM

To further elucidate the effectiveness of our detail injection module (DIM) in the image
fusion task, we present the visualizations of Fedge and Fedge in Figure 8. Our module
successfully identifies key common features across different modalities and assigns higher
weights to these regions. Notably, it can effectively recognize significant features even
in low-light conditions with insufficient illumination. As illustrated in the right half
of Figure 8, our DIM generalizes well to nighttime image fusion tasks. These results
convincingly demonstrate the efficacy of the module and contribute to advancing the field
of image fusion.

FedgeInfraredVisible Fedge

_

FedgeInfraredVisible Fedge

_

Figure 8. Visualizations of the DIM on infrared and visible images, where Fedge is the input of the
DIM. For better comparison, two local areas are enlarged in each image.

4.8. Ablation Studies

To demonstrate the effectiveness of edge refinement, multiscale reconstruction, and the
detail injection module (DIM), we conducted ablation experiments on the MSRS dataset.
Specifically, for edge refinement, we removed it and replaced the detail map in the subse-
quent DIM input with the gradient map obtained using the Sobel operator. For the DIM, we
excluded it entirely and fed the outputs f and Fedge directly into the fusion module instead
of the original inputs R and Fedge. For multiscale reconstruction, we transformed its parallel
three-branch structure into a single-branch structure consisting of four residual blocks.

As shown in Figure 9, the method lacking edge refinement struggles to perceive the
information between the source images effectively, resulting in blurred characters. In con-
trast, our approach utilizing edge refinement yields detailed fusion results, particularly for
salient features. Figure 10 illustrates that the method without multiscale reconstruction
suffers from insufficient clarity in the figures and increased noise in the fused image. Com-
pared to this method, our approach not only reduces noise but also preserves the details
and structure of the image. Without multiscale reconstruction, the salient features and
relationships across different layers are not learned effectively, making the reconstruction
of key features challenging and leading to a lack of structural detail in the fused results.
The DIM emphasizes features within the complementary region by generating attention
weights from the gradient map, thereby enhancing the importance of these regions in the
source images. As demonstrated in Figure 11, without DIM, details such as leaves and
the floor appear less sharp. In contrast, our fusion results exhibit greater richness in detail
and clarity.

Table 4 summarizes the results of the ablation experiments. As shown, the removal
of the DIM led to a significant reduction in AG, highlighting its crucial role in the fusion
process and in preserving rich information. Conversely, the absence of edge refinement
and multiscale reconstruction resulted in decreased values for QMI , QS, QP, and QCB,
suggesting that these proposed strategies effectively retain more information from the
source images. Both qualitative and quantitative results demonstrate that the DIM, edge
refinement, and multiscale reconstruction are vital for constructing fully fused images and
enhancing image quality.
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Infrared Visible w/o  Edge Refineme ESFuse

Figure 9. The visual comparison of ablation with and without the DIM. The yellow boxes are enlarged
to highlight the fusion performance on image details.

Infrared Visible
w/o  multiscale 

reconstruction
ESFuse

Figure 10. The visual comparison of ablation with and without edge refinement. The yellow boxes
are enlarged to highlight the fusion performance on image details.

Infrared Visible w/o  DIM ESFuse

Figure 11. The visual comparison of ablation with and without multiscale reconstruction. The yellow
boxes are enlarged to highlight the fusion performance on image details.

Table 4. Ablation experiments for edge refinement, DIM and multiscale reconstruction.

Methods QMI QS QP QCB AG

w/o DIM 0.4696 0.6507 0.3838 0.5040 2.4739
w/o edge refinement 0.5394 0.7668 0.4382 0.5087 3.1434

w/o multiscale reconstruction 0.4994 0.7080 0.4119 0.5287 3.2434
ESFuse 0.5690 0.7714 0.47709 0.5247 3.3181

5. Conclusions

In this study, we propose a detailed enhanced infrared and visible image fusion (IVIF)
network. First, to minimize the feature discrepancies between the different modalities of
infrared and visible light while preserving their unique information, we design a deep
feature extractor—referred to as the head interpreter—to extract common features from
the source images. Subsequently, the two-branch outputs of the head interpreter are
superimposed and fed into an edge refinement module, which reveals the feature location
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information in the source images of different modalities, enhancing the overall performance
in the fusion module. Next, we introduce the detail injection module, which increases the
importance of the detailed features identified by the edge refinement module, enabling
the fusion model to better recover ambiguous information across different modal features.
Finally, the feature maps at varying scales are reconstructed into fused images using a
multiscale reconstruction strategy. Both subjective and objective experimental results
demonstrate that the proposed ESFuse exhibits exceptional image fusion performance,
surpassing existing algorithms. Additionally, it performs well in downstream tasks such as
semantic segmentation, target detection, pose estimation, and depth estimation, showcasing
the robustness of our proposed approach.
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