
Citation: Bogale, S.D.; Yao, C.-K.;

Manie, Y.C.; Dehnaw, A.M.; Tefera,

M.A.; Li, W.-L.; Zhong, Z.-G.; Peng,

P.-C. Demodulating Optical Wireless

Communication of FBG Sensing with

Turbulence-Caused Noise by Stacked

Denoising Autoencoders and the

Deep Belief Network. Electronics 2024,

13, 4127. https://doi.org/10.3390/

electronics13204127

Academic Editors: Wenyu Zhang,

Tianwei Hou and Sherali Zeadally

Received: 15 September 2024

Revised: 16 October 2024

Accepted: 18 October 2024

Published: 20 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Demodulating Optical Wireless Communication of FBG Sensing
with Turbulence-Caused Noise by Stacked Denoising
Autoencoders and the Deep Belief Network
Shegaw Demessie Bogale † , Cheng-Kai Yao † , Yibeltal Chanie Manie , Amare Mulatie Dehnaw ,
Minyechil Alehegn Tefera, Wei-Long Li, Zi-Gui Zhong and Peng-Chun Peng *

Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan;
t112659403@ntut.edu.tw (S.D.B.); t109658093@ntut.org.tw (C.-K.Y.); yibeshmamaru@gmail.com (Y.C.M.);
mulatieamare7@gmail.com (A.M.D.); t110659401@ntut.org.tw (M.A.T.); t112658007@ntut.org.tw (W.-L.L.);
t112658080@ntut.org.tw (Z.-G.Z.)
* Correspondence: pcpeng@ntut.edu.tw; Tel.: +886-2-2771-2171 (ext. 4671)
† These authors contributed equally to this work.

Abstract: Free-space optics communication (FSO) can be used as a transmission medium for fiber
optic sensing signals to make fiber optic sensing easier to implement; however, interference with the
sensing signals caused by the optical turbulence and scattering of airborne particles in the FSO path
is a potential problem. This work aims to deep denoise sensed signals from fiber Bragg grating (FBG)
sensors based on FSO link transmission using advanced denoising deep learning techniques, such as
stacked denoising autoencoders (SDAE). Furthermore, it will demodulate the sensed wavelength of
FBGs by applying the deep belief network (DBN) technique. This is the first time the real FBG sensing
experiment has utilized the actual noise interference caused by the environmental turbulence from
an FSO link rather than adding noise through numerical processing. Consequently, the spectrum
of the FBG sensors is clearly modulated by the noise and the issue with peak power variation. This
complicates the determination of the center wavelengths of multiple stacked FBG spectra, requiring
the use of machine learning techniques to predict these wavelengths. The results indicate that SDAE
is efficient in denoising from the FBG spectrum, and DBN is effective in demodulating the central
wavelength of the overlapped FBG spectrum. Thus, it is beneficial to implement an FSO link-based
FBG sensing system in adverse weather conditions or atmospheric turbulence.

Keywords: free-space optics communication; fiber Bragg grating; signal denoising; machine learning;
peak-wavelength prediction

1. Introduction

In situations requiring accurate measurements of strain [1], temperature [2], water
level [3], pressure [4], chemistry [5], manufacture [6], and vibration [7], FBG sensors have
emerged as a highly useful instrument in these relevant applications. Combining FBG
sensors with FSOs enables long-distance transmission without needing physical fiber
optic connections, circumventing cable laying and terrain obstacles. Consequently, this
integration approach’s flexibility, deployment speed, and cost-effectiveness are all very
favorable [8,9]. However, in real-world applications, FSOs might introduce extra spectral
noise because of ambient turbulence in addition to the spectral noise issue brought on by
fiber damage in FBGs [10–12]. All these aggravate the difficulty of FBG sensing. Many
papers have investigated the problem of noise interference in FBG spectra, in which noise
reduction, de-noising, and machine learning are utilized to interrogate the FBG spectra
to obtain sensing information to solve the noise interference problem [13–18]. However,
the noise interference of FBG sensing based on FSO architecture has never been studied.
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Incidentally, while distributed fiber optic sensing systems can integrate FSOs, they have
not yet explored the potential noise effects of these integrations [19].

To enhance the capacity of the FBG sensor arrangement and improve sensing efficiency,
it is crucial to address the spectral overlap issue arising from using multiple FBGs. The
overlapping spectra of FBGs present challenges in identifying the center wavelength of
the FBGs for interpreting sensed information. This challenge can be effectively mitigated
through the application of machine learning techniques. The challenge of spectral overlap
in FBG and the issue of demodulating spectral incidental noise have been documented in
the existing literature. For instance, previous studies have successfully addressed these
challenges using methods such as integrating discrete wavelet transform denoising and
long short-term memory [13], employing a convolutional neural network-based autoen-
coder [14], integrating a convolutional time-domain audio separation network and long
short-term memory [16], and utilizing a convolutional time-domain audio separation
network [18]. These approaches have demonstrated the ability to demodulate the FBG
overlapping spectrum in the presence of noise.

In the transmission channel of FSO, the airflow can alter the air density and refractive
index [20], and it may contain various airborne particles. Consequently, in cases of high
air pollution and strong airflow, the transmission power of the FSO may fluctuate over
time. Photons emitted by the FSO will encounter airborne particles, leading to scattering.
Additionally, rapid changes in refractive index can cause optical turbulence, resulting in
scintillation from beam distortion, which can seriously interfere with the FBG spectra by
creating noise. Previous studies have shown that machine learning such as DBN, with its
strong interpretation capability, can effectively solve the FBG overlapping problem [21].
However, it remains to be verified whether DBN can still effectively solve the wavelength
interpretation of FBG spectra under overlapping conditions to successfully interrogate
the sensed information when subjected to the noise additions caused by FSO devices.
According to the above question, it is conceivable to use DBN to interpret the FBG spectrum
with and without FSO noise, and the FBG spectrum without noise will surely enable
DBN to obtain better results in wavelength interrogation. Previous research results have
demonstrated that when using machine learning to interpret signals, the denoised signals
can be more accurately interpreted by machine learning [22]. This is because noise blurs the
signal characteristics, which may result in the loss of key information, and the chaotic effect
of noise may cause the same signal to be recognized as a different signal. To this end, it is
necessary to perform denoising before wavelength demodulation using machine learning
to obtain better-interrogated results for FBG spectra experiencing FSO noise. SDAE is an
unsupervised neural network model for feature extraction and dimensionality reduction in
deep learning and works by stacking multiple denoising autoencoders. This model has
a wide range of applications in many fields, such as image processing, natural language
processing, and machine translation [23–25]. Therefore, SDEA will serve to clean the FBG
spectrum from the noise traces due to the interference from FSO noise, thus converting the
FBG spectrum into a smooth curve for subsequent demodulation of the sensed wavelengths
of the FBGs using machine learning.

This paper proposes an integrated machine learning system to demodulate sensed
information in the presence of FBG spectral noise due to optical turbulence and particle
scattering in the FSO channel, first utilizing SDAE for noise reduction and DBN to detect the
peak wavelengths of each FBG sensor in both overlapping and non-overlapping spectra. To
discern between noise and correlation, SDAE applies a deep learning technique to learn the
underlying structure of the clean sensor signals. The FBG spectrum is denoised by SDAE to
improve signal clarity, which enables the DBN to interpret sensor readings more accurately.
Hence, for resolving noise and peak detection issues, this combined approach improves the
accuracy and dependability of FBG sensor data and is especially well-suited for sensing
environments where ambient turbulence contributes to noise in FSO transmissions.
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Key novelties of the work and heavyweight clarifications:

• The proposed work integrates the SDAE and DBN models to demodulate the FBGs
overlapping sensing spectra of FSO transmission with incidental noise due to optical
turbulence and scattering.

• In addition to the spectrum being inlaid with noise, the peak power of individual FBGs
after denoising is different even if the wavelength position of individual FBGs is set in
the same situation. That is, the wavelengths of the FBGs under the same conditions
can be demodulated by DBN even if the peak power of the FBGs is different each time
the data are collected.

• In the past, the utilization of demodulation based on FBG spectral denoising lacked
strong practical relevance and applicability. This was primarily due to optical fibers
being usually well-protected and not easily damaged. Significantly induced noise in
the spectrum required a substantial optical loss of 25 dB or more, as it emits a beam
power of 10 dB. Even if the fiber is severely damaged, the optical switch could be
employed to reroute the fiber transmission path, obviating the necessity for denoising
in purely fiber optic systems. Conversely, the application relevance and applicability
of denoising in systems with FSO communication are substantial.

• The length of the FSO link is not the focus of this paper, and an increase in the length
of the FSO link usually only increases optical loss. This work aims to investigate the
demodulation of FBG spectra by the noise generated by ambient turbulence in the FSO
path. In addition, according to the systematic tests in this work, the pouring of water
and fog into the FSO path only produces optical loss and does not impose noise on the
spectrum. Even in the case of heavy rain, there is a possibility that the FBG spectrum
may be impaired. However, the spectrum with noise has already been collected from
the FSO transmission that is disturbed by the airflow, so there is no need to collect data
specifically from rainy days. In addition, weather conditions are difficult to control.

2. Experimental Setup

The experimental setup is shown in Figure 1. The broadband light source (BLS) first
emits a probe beam, which is routed to the 2 m FSO link by port 1 of the circulator (Cir.) to
port 2 of the circulator for transition and then transmitted to the FBG array. The sensing
information, sensed by the FBG array and its reflected Bragg wavelength, will be returned
originally, first through the FSO link and then by port 2 of the circulator to port 3 of the
circulator, and then to the optical spectrum analyzer for sensing spectral presentation. The
collected spectrum is finally transmitted to the PC for machine-learning AI for denoising
and FBG wavelength demodulation. The initial three FBG wavelengths are separated as
shown in the upper right corner of Figure 1. The wavelength variation of the FBG sensing
spectrum is realized by applying strain to the FBG sensor.
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3. Data Collection and SDAE Denoise
In the data collection section, three FBGs were used, in which the reflected

wavelength of FBG 1 was defined as changing, and the reflected wavelengths of FBG 2
and FBG 3 were fixed at 1546.3 nm and 1546.69 nm, respectively. The reflected
wavelength of FBG 1 underwent 16 strain steps from the beginning of the change to the
end of the change, and the corresponding wavelengths were 1545.95 nm, 1546.01 nm,
1546.07 nm, 1546.13 nm, 1546.19 nm, 1546.25 nm, 1546.36 nm, 1546.44 nm, 1546.52 nm,
1546.6 nm, 1546.68 nm, 1546.76 nm, 1546.84 nm, 1546.92 nm, 1547 nm, and 1547.08 nm,
respectively, as presented in Figure 2. In addition, the wavelength difference of FBG 1 is
0.06 nm for each step before the 7th strain step, while the wavelength difference of FBG 1
is 0.08 nm for each step after the 7th strain step; this inconsistency is to verify the
performance of the wavelength demodulation function of machine learning. It is also
used to misalign the wavelengths of FBG 1 and FBG 2 since there is no need for
demodulation when the wavelengths are the same. The total number of spectra collected
is 304, namely, 19 spectra with different noise patterns are collected for each strain step.

Figure 1. Experimental framework for FBG array sensing based on FSO transmission with incidental
particle scattering. The sensed data are used for AI model training and testing. (BLS: broadband light
source; Cir.: circulator; OSA: optical spectrum analyzer; PC: personal computer).
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In addition, to create ambient turbulence in the FSO channel, a strong airflow is
manually ejected through the FSO transmission path by a hair dryer. The presence of air
currents induces fluctuations in air density within the FSO transmission channel, leading
to variations in the refractive index over time. This phenomenon gives rise to optical
turbulence and consequent scintillation, causing variations in power and incidental noise
in the FBG spectrum. The scintillation index σ1

2 can be expressed as Formula (1) [26]:

σ1
2 = 1.23·Cn

2·K
7
6 ·L

11
6 (1)

where Cn
2 is the refractive index structural parameter, K is the wave number, and L is the

transmission distance. Moreover, the airflow will attach a large number of air particles
and will accelerate the particles through the FSO transmission path, which increases the
probability of the beam contacting with the air particles in the relative period and causes
scattering. As a result, the scattering causes some wavelengths of the beam to deviate from
their original trajectories, which also results in noise embedded in the FBG spectrum, and
the noise pattern changes with time. The wind speeds generated by the hair dryer used in
the experiment were in the range of 2.5 m/s to 3.1 m/s, and the fluctuations were usually
0.2 m/s. To obtain the turbulence intensity (TI), Formula (2) is generally used as follows:

TI = (σ2/V)× 100 (2)

where σ2 is the standard deviation of wind speed (m/s) and V is the mean wind speed (m/s).
Therefore, it is estimated that the turbulence intensity generated by the experimental setup is
between 3% and 10%, which is in the range of medium and high turbulence. The proposed
SDAE and DBN model was implemented using the TensorFlow 2. 10. 0 framework, along
with the Keras and Sklearn libraries. The training was conducted on a PC equipped with
an Intel Core i7-4790 3.60 GHz CPU and 20 GB of RAM.

3. Data Collection and SDAE Denoise

In the data collection section, three FBGs were used, in which the reflected wavelength
of FBG 1 was defined as changing, and the reflected wavelengths of FBG 2 and FBG 3
were fixed at 1546.3 nm and 1546.69 nm, respectively. The reflected wavelength of FBG
1 underwent 16 strain steps from the beginning of the change to the end of the change,
and the corresponding wavelengths were 1545.95 nm, 1546.01 nm, 1546.07 nm, 1546.13 nm,
1546.19 nm, 1546.25 nm, 1546.36 nm, 1546.44 nm, 1546.52 nm, 1546.6 nm, 1546.68 nm,
1546.76 nm, 1546.84 nm, 1546.92 nm, 1547 nm, and 1547.08 nm, respectively, as presented
in Figure 2. In addition, the wavelength difference of FBG 1 is 0.06 nm for each step before
the 7th strain step, while the wavelength difference of FBG 1 is 0.08 nm for each step
after the 7th strain step; this inconsistency is to verify the performance of the wavelength
demodulation function of machine learning. It is also used to misalign the wavelengths of
FBG 1 and FBG 2 since there is no need for demodulation when the wavelengths are the
same. The total number of spectra collected is 304, namely, 19 spectra with different noise
patterns are collected for each strain step.

SDAE is a neural network designed to reconstruct clean data from noisy observations,
and its architecture consists of multiple layers of autoencoders stacked on top of each other.
Each autoencoder learns to encode and decode the input data through its hidden layer.
The layered structure of SDAE allows it to capture and reconstruct the fine details of a
clean FBG spectrum, even when the FBG spectrum has significant noise problems. Prior
to the application of SDAE, each of the collected data contained wavelength and intensity
values representative of the original sensor data, which were subjected to an initial cleaning
process to deal with missing values and anomalies. Subsequently, data standardization is
performed to normalize the input features to ensure that the scaling of the input SDAE
and DBN models is consistent. Common normalization methods include min–max scaling,
which rescales the intensity values to a range between 0 and 1. After data processing, the
dataset is divided into a training set (80%) and a test set (20%). The coding process isolates
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the relevant noise signal features, while the decoding process reconstructs the noise-cleared
spectrum to produce less distorted and more accurate data for further analysis. Thus, the
final layered structure of the SDAE ensures that the main features of the FBG spectrum are
preserved and the noise is effectively suppressed.
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SDAE is a neural network designed to reconstruct clean data from noisy
observations, and its architecture consists of multiple layers of autoencoders stacked on
top of each other. Each autoencoder learns to encode and decode the input data through
its hidden layer. The layered structure of SDAE allows it to capture and reconstruct the
fine details of a clean FBG spectrum, even when the FBG spectrum has significant noise
problems. Prior to the application of SDAE, each of the collected data contained
wavelength and intensity values representative of the original sensor data, which were
subjected to an initial cleaning process to deal with missing values and anomalies.
Subsequently, data standardization is performed to normalize the input features to
ensure that the scaling of the input SDAE and DBN models is consistent. Common
normalization methods include min–max scaling, which rescales the intensity values to a
range between 0 and 1. After data processing, the dataset is divided into a training set
(80%) and a test set (20%). The coding process isolates the relevant noise signal features,
while the decoding process reconstructs the noise-cleared spectrum to produce less
distorted and more accurate data for further analysis. Thus, the final layered structure of
the SDAE ensures that the main features of the FBG spectrum are preserved and the
noise is effectively suppressed.

Figure 3a shows the cross-contrast of some spectra before and after denoising with
SDAE, which are step 1, step 8, and step 16, respectively. It can be observed that the
magnitude of the noise is very large, and the power change reaches half of the extinction
ratio of the FBGs. Even though the noise obliterates the original features of the FBG
spectrum, a clean spectrum is obtained after SDAE denoising. As shown in Figure 3b, all
the FBG spectra show smooth curves after SDAE denoising; even though the extinction
ratio of the FBGs is changed after denoising, it does not affect the wavelength
demodulation of the machine learning. The analysis of the signal-to-noise ratio (SNR) in
Figure 4 corresponds to the spectrum depicted in Figure 3b. Figure 4a illustrates the SNR
outcome without utilizing SDAE, while Figure 4b showcases the results following
denoising with SDAE. The average SNR result without SDAE is 10.27 dB, whereas the
average SNR result after SDAE denoising is 32.08 dB. This demonstrates an
improvement in SNR of approximately 22 dB through the use of SDAE. It is important to
note that this 22 dB improvement reflects the difference in SNR between the noisy and
denoised spectra, rather than a fixed improvement solely attributed to SDAE.

Figure 2. The corresponding values of the three FBG reflected wavelengths in each strain step.

Figure 3a shows the cross-contrast of some spectra before and after denoising with
SDAE, which are step 1, step 8, and step 16, respectively. It can be observed that the
magnitude of the noise is very large, and the power change reaches half of the extinction
ratio of the FBGs. Even though the noise obliterates the original features of the FBG
spectrum, a clean spectrum is obtained after SDAE denoising. As shown in Figure 3b, all the
FBG spectra show smooth curves after SDAE denoising; even though the extinction ratio of
the FBGs is changed after denoising, it does not affect the wavelength demodulation of the
machine learning. The analysis of the signal-to-noise ratio (SNR) in Figure 4 corresponds
to the spectrum depicted in Figure 3b. Figure 4a illustrates the SNR outcome without
utilizing SDAE, while Figure 4b showcases the results following denoising with SDAE. The
average SNR result without SDAE is 10.27 dB, whereas the average SNR result after SDAE
denoising is 32.08 dB. This demonstrates an improvement in SNR of approximately 22 dB
through the use of SDAE. It is important to note that this 22 dB improvement reflects the
difference in SNR between the noisy and denoised spectra, rather than a fixed improvement
solely attributed to SDAE.
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Furthermore, as mentioned above, the ambient turbulence of the FSO can cause the
peak power of the FBGs to be disturbed over time in addition to the noise. Figure 5
shows the power corresponding to each FBG peak after 19 spectral denoising for each of
the three train steps 1, 8, and 16. The peak wavelength positions of the FBGs are set
according to Figure 2. In previous studies, the peak powers of FBGs collected from
repeated data with the same FBG position are mostly similar, and the differences, if any,
are linear. However, in the FSO link used in this work, due to the turbulence floating,
each FBG’s peak power varies independently and randomly, which means that the peak
spectra of FBGs are presented in a nonlinear manner. Therefore, the demodulation of
non-linear peak power FBG spectra is also verified by machine learning for the first time.

Figure 3. (a) Comparison of some FBG spectra before and after denoising; (b) Presentation of all FBG
spectra (step 1 to step 16 in order) before and after denoising.
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Furthermore, as mentioned above, the ambient turbulence of the FSO can cause the
peak power of the FBGs to be disturbed over time in addition to the noise. Figure 5 shows
the power corresponding to each FBG peak after 19 spectral denoising for each of the three
train steps 1, 8, and 16. The peak wavelength positions of the FBGs are set according to
Figure 2. In previous studies, the peak powers of FBGs collected from repeated data with
the same FBG position are mostly similar, and the differences, if any, are linear. However, in
the FSO link used in this work, due to the turbulence floating, each FBG’s peak power varies
independently and randomly, which means that the peak spectra of FBGs are presented in
a nonlinear manner. Therefore, the demodulation of non-linear peak power FBG spectra is
also verified by machine learning for the first time.
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4. DBN for Peak Wavelength Prediction
ADBN is a type of generative model that comprises a series of pre-trained layers of

restricted Boltzmann machines (RBMs) [27–32]. This hierarchical arrangement enables
DBNs to progressively acquire an abstract representation of the input data as it traverses
through the layers. The training process for DBNs typically involves two primary phases:
pre-training and fine-tuning. During the pre-training phase, each RBM captures the
statistical properties of the input data and gradually learns deeper and more abstract
features linked to the peak wavelength information. This approach enables the DBN to
effectively model the intricate relationships among signals from various FBG sensors,
particularly when dealing with overlapping spectra. Once all layers have been
pre-trained, the complete DBN can undergo fine-tuning using supervised learning
methods, provided labeled data are available. This fine-tuning process entails adding the
final output layer and utilizing backpropagation to adjust the network weights to
minimize prediction errors. In the concluding stage of fine-tuning, the entire DBN is
tuned through backpropagation to optimize the detection of peak wavelengths.

Figure 6 illustrates the main flow chart for the demodulation of the FBG spectrum
with noise using DBN. After the FBG spectrum collection and SDAE denoising process,
the data are also processed, labeled, and normalized for DBN model training. During
DBN training, various parameters such as epoch number, batch size, hidden layer,
hidden cell, and optimizer and activation functions need to be adjusted to achieve the
optimal value of the detected peak wavelength. After the training process, it is
confirmed whether the peak wavelength has converged or not, and if not, the
parameters of the model are further modified. If the convergence is confirmed, the DBN
model is used for wavelength prediction, and if the result is unsatisfactory, the stage of
modifying various parameters of the model is reversed. If the result of the DBN model is
satisfactory, then test data (20% of the total data) can be used to verify the effectiveness
of the DBN model in predicting the wavelength. Various parameters of the adopted
SDAE and DBN models are shown in Figure 7. Incidentally, the Adam optimizer is
preferred in deep learning because of its computing efficiency and flexible learning rate
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4. DBN for Peak Wavelength Prediction

A DBN is a type of generative model that comprises a series of pre-trained layers
of restricted Boltzmann machines (RBMs) [27–32]. This hierarchical arrangement enables
DBNs to progressively acquire an abstract representation of the input data as it traverses
through the layers. The training process for DBNs typically involves two primary phases:
pre-training and fine-tuning. During the pre-training phase, each RBM captures the statis-
tical properties of the input data and gradually learns deeper and more abstract features
linked to the peak wavelength information. This approach enables the DBN to effectively
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model the intricate relationships among signals from various FBG sensors, particularly
when dealing with overlapping spectra. Once all layers have been pre-trained, the complete
DBN can undergo fine-tuning using supervised learning methods, provided labeled data
are available. This fine-tuning process entails adding the final output layer and utilizing
backpropagation to adjust the network weights to minimize prediction errors. In the con-
cluding stage of fine-tuning, the entire DBN is tuned through backpropagation to optimize
the detection of peak wavelengths.

Figure 6 illustrates the main flow chart for the demodulation of the FBG spectrum
with noise using DBN. After the FBG spectrum collection and SDAE denoising process,
the data are also processed, labeled, and normalized for DBN model training. During
DBN training, various parameters such as epoch number, batch size, hidden layer, hidden
cell, and optimizer and activation functions need to be adjusted to achieve the optimal
value of the detected peak wavelength. After the training process, it is confirmed whether
the peak wavelength has converged or not, and if not, the parameters of the model are
further modified. If the convergence is confirmed, the DBN model is used for wavelength
prediction, and if the result is unsatisfactory, the stage of modifying various parameters of
the model is reversed. If the result of the DBN model is satisfactory, then test data (20%
of the total data) can be used to verify the effectiveness of the DBN model in predicting
the wavelength. Various parameters of the adopted SDAE and DBN models are shown
in Figure 7. Incidentally, the Adam optimizer is preferred in deep learning because of its
computing efficiency and flexible learning rate capabilities. Faster and more dependable
convergence is made possible by Adam’s adjustment of learning rates for each parameter
based on the first and second moments of gradients, in contrast to classical stochastic
gradient descent (SGD), particularly in situations involving sparse gradients or noisy
data [33]. Especially, according to the results of the previous study [21], the accuracy of the
Adam optimizer is better than that of other optimizers, which is why this scheme adopts
the Adam optimizer.

The final optimized DBN model is executed with 3 hidden layers, 32 batch sizes, and
200 epochs. These settings introduce non-linearity and enhance the network’s ability to
model complex relationships in the data. Figure 8 illustrates the training performance of
the DBN in terms of training and validation loss and training and validation accuracy using
these optimal parameters. The training loss decreases rapidly and stabilizes around zero
at 200 epochs, reflecting effective learning of the training data. Similarly, the validation
loss drops significantly early on and then stabilizes, indicating good generalization to
unseen data without overfitting. By epoch 200, the training accuracy is close to 95% and
the validation accuracy is close to 100%, albeit with some variance. Overall, DBN shows
strong performance in learning and generalizing from data efficiently with high accuracy
and low loss metrics.
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Figure 9 shows the comparison of the wavelength prediction performance of different
machine learning models in FBG spectra, in which the actual wavelength value of FBG
and the predicted wavelength value of FBG can be used as parameters to substitute into
the mean squared error (MSE), mean absolute error (MAE), and root mean square errors
(RMSE) loss function to evaluate the performance. Gated Recurrent Unit (GRU) and Multi-
Layer Perceptron (MLP) are very common machine learning models, which are used here
to compare their performance with the DBN model for FBG wavelength prediction. DBNs
are designed to learn hierarchical data representations through multiple layers of random
latent variables, which enables them to capture complex and abstract features. Therefore,
DBNs are particularly adept at complex signal demodulation compared to MLPs, which
usually rely on more linear feature extraction methods and have difficulty capturing non-
linear relationships. While GRUs are effective in handling time dependence in continuous
data, they may not be able to adequately handle nonlinear spectral variations in FBG
signals. DBN’s multi-layer architecture combined with the robust reconstruction capability
of SDAE enhances the model’s ability to detect and remove noise at different scales. In
addition, DBN usually requires fewer parameters to achieve comparable or even better
performance, which reduces the risk of overfitting, especially when the training data is
limited. Therefore, from the results, it can be seen that DBN gives the best results after the
demodulation of the SDAE-denoised FBG spectrum by DBN, GRU, and MLP, no matter in
terms of MSE, MAE, or RMSE. The performance of DBN with SDAE is expected to be better
than without SDAE in terms of MSE, MAE, and RMSE metrics by 0.00277, 0.02353, and
0.02645, respectively. Hence, from the results, it can be seen that DBN gives the best results
after the demodulation of SDAE-denoised FBG spectrum by DBN, GRU, and MLP, no
matter in terms of MSE, MAE, or RMSE. The performance of DBN with SDAE is expected
to be better than without SDAE. In comparison with the previous FBG demodulation
work [21], the MSE, MAE, and RMSE obtained in this work are 0.00153, 0.019, and 0.0391,
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respectively, which are close to the MSE, MAE, and RMSE obtained in the previous work,
which are 0.0012, 0.015, and 0.0187, respectively, under the same use of DBN. Because
of the similarity of the model setup and spectral sampling, the comparison is justified.
Furthermore, the methodology employed in this study induces a non-linear variation in the
individual FBG peak power over time for each sample, as opposed to consistent sampling
in the previous work. This variation contributes to a slightly inferior demodulation of the
FBG wavelengths compared with the previous study.
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Figure 10. (a) FBG peak wavelength prediction after applying SDAE and DBN models. (b) FBG
peak wavelength prediction after applying the DBN model only.
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Figure 10 illustrates the comparison between the actual FBG wavelength and the
predicted FBG wavelength with 44 random selecting strain step points. Figure 10a shows
the predicted wavelengths with SDEA denoising and then demodulated by DBN, while
Figure 10b shows the predicted wavelengths without SDEA denoising and directly de-
modulated by DBN. It is obvious that the wavelength prediction results of FBG 1, FBG 2,
and FBG 3 are better after SDEA denoising and then demodulation by DBN, regardless of
whether the FBG spectra are overlapped or not. Incidentally, the resolution of OSA may
limit the resolution of FBG wavelength demodulation to an upper limit of 0.02 nm [34],
while the resolution of the smallest FBG wavelength demodulation in this work is 0.06 nm.
Theoretically, the resolution of FBG wavelength demodulation using machine learning can
be as high as 0.02 nm, but the present work focuses on FBG wavelength demodulation
based on the denoising of noise caused by FSO rather than on resolution refinement.
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Figure 10. (a) FBG peak wavelength prediction after applying SDAE and DBN models. (b) FBG
peak wavelength prediction after applying the DBN model only.
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Figure 10. (a) FBG peak wavelength prediction after applying SDAE and DBN models. (b) FBG peak
wavelength prediction after applying the DBN model only.
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5. Conclusions

This study represents pioneering validation of the FBG sensing architecture based on
FSO transmission, accounting for the non-linear peak power variation and spectral inciden-
tal noise arising from optical turbulence and airborne particle scattering. Additionally, it
demonstrates the application of machine learning for the demodulation of FBG sensing
wavelengths within this architecture. These results have encouraging ramifications for
FBG sensing architectures that use FSO transmission in turbulent environments. Utilizing
a sophisticated deep learning denoising method (the SDAE), noise in the FBG sensing
spectrum is effectively reduced regardless of the wavelength and peak power distribution.
Then, the FBG peak power attached to each data is inconsistent, and even in overlapping
situations, the denoised FBG sensed spectrum can be demodulated by applying the DBN
technique to precisely identify the sensed wavelengths of FBGs. The FBG wavelength
demodulation results of the latter case are better than the former case by 0.00277, 0.02353,
and 0.02645 in terms of MSE, MAE, and RMSE metrics when DBN is used alone versus
when SDAE is used first and then DBN is used. As a result, the combined application of
SDAE and DBN shows great promise for demodulating FBG spectra tainted by turbulence
in the surrounding environment within the FSO architecture, thereby improving sensing
accuracy and performance.
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