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Abstract: Spatiotemporal models for the 3-D shape and motion of objects allowed large progress
in the 1980s in visual perception of moving objects observed from a moving platform. Despite the
successes demonstrated with several vehicles, the “4-D approach” has not been accepted generally.
Its advantage is that only the last image of the sequence needs to be analyzed in detail to allow
the full state vectors of moving objects, including their velocity components, to be reconstructed
by the feedback of prediction errors. The vehicle carrying the cameras can, thus, together with
conventional measurements, directly create a visualization of the situation encountered. In 1994, at
the final demonstration of the project PROMETHEUS, two sedan vehicles using this approach were
the only ones worldwide capable of driving autonomously in standard heavy traffic on three-lane
Autoroutes near Paris at speeds up to 130 km/h (convoy driving, lane changes, passing). Up to
ten vehicles nearby could be perceived. In this paper, the three-layer architecture of the perception
system is reviewed. At the end of the 1990s, the system evolved from mere recognition of objects in
motion, to understanding complex dynamic scenes by developing behavioral capabilities, like fast
saccadic changes in the gaze direction for flexible concentration on objects of interest. By analyzing
motion of objects over time, the situation for decision making was assessed. In the third-generation
system “EMS-vision” behavioral capabilities of agents were represented on an abstract level for
characterizing their potential behaviors. These maneuvers form an additional knowledge base. The
system has proven capable of driving in networks of minor roads, including off-road sections, with
avoidance of negative obstacles (ditches). Results are shown for road vehicle guidance. Potential
transitions to a robot mind and to the now-favored CNN are touched on.

Keywords: artificial Intelligence; spatiotemporal models; vehicle guidance

1. Introduction

The development of digital microprocessors (µPs) started in the 1970s; since then,
growth in performance of about one order of magnitude every 4 to 5 years has been
observed. The volume and power needed for a computer system stayed about the same, so
that the system could fit into a (ground) vehicle. Studying computer vision for guidance of
ground vehicles started in the 1960s [1] in the USA; the chapter cited gives a brief history
of early activities in the field. When the author in 1975 received a call to a newly founded
university in Munich, he decided to build a “Hardware-In-the-Loop” (HIL) simulation
laboratory for developing the sense of vision for vehicles in general. This unusual step
has paid off in the next decades. The first PhD thesis on vision for a road vehicle with
this simulation loop appeared in 1982. Details on the 4-D approach may be found in [2–5].
In 1984, the first real test vehicle, a 5-ton van, was purchased and equipped as a test
vehicle for autonomous mobility and computer vision: VaMoRs (Figure 1). In 1987, it
drove fully autonomously on a free stretch of the new Autobahn A94 near Dingolfing with
speeds up to the maximum of the vehicle: 96 km/h. After this demonstration, computer
vision was accepted for both longitudinal and lateral control in the EUREKA-project
PROMETHEUS from 1987 until 1994, replacing electromagnetic fields from buried cables
for lateral guidance. The underlying differential equations forming the core of the new
method for real-time visual perception based on feedback of prediction errors (Extended
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Kalman Filters, EKF) for the point “here and now” were widely unknown in the computer
vision community of that time.
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1994 near Paris, with the request to have passengers onboard the vehicle. We were 
willing to try this if twenty researchers could be funded by the project. To our surprise, 
the project was granted, and two Mercedes 500-SELs were selected as test vehicles, one 
each for DBAG and UniBwM. DBAG took care of all mechanical changes necessary in 
both vehicles, and UniBwM developed the vision system and all software necessary for 
autonomous driving with the new “Transputer”-system consisting of up to sixty 
processors. Figure 2 shows a survey of the UniBwM-system VaMP (short for VaMoRs-
PKW). Both vehicles were the only ones capable of driving autonomously in 1994 in 
public three-lane traffic at speeds up to the maximum speed allowed in France of 130 
km/h. Free driving, lane changing (see: https://dyna-vision.de/wp-
content/uploads/2021/03/1994-Twofold-LaneChange-Paris-VaMP.mp4 (accessed on 14 
October 2024)), and convoy-driving were demonstrated [5–9]. The structure of the 
second-generation vision system is shown in Figure 3. On the right-hand side, it shows 
the three levels with separate knowledge bases, as follows: gray: for features and 
generation of object hypotheses; green: for objects and subjects with the introduction of 
time by the 4-D approach; and red: for situation assessment and mission performance. 
Up to ten other vehicles could be detected and tracked in the own and the two 
neighboring lanes [10]. In total, more than 1000 km were driven autonomously. 

 

Figure 1. Test vehicle 5-t van VaMoRs 1986 of UniBwM.

After the successful midterm 1991 demonstration in Torino with van-type vehicles,
the up-to-then skeptical top management level of the car manufacturing company Daimler-
Benz AG (DBAG) asked for a system in a passenger car for the final demo in 1994 near
Paris, with the request to have passengers onboard the vehicle. We were willing to try this if
twenty researchers could be funded by the project. To our surprise, the project was granted,
and two Mercedes 500-SELs were selected as test vehicles, one each for DBAG and UniBwM.
DBAG took care of all mechanical changes necessary in both vehicles, and UniBwM devel-
oped the vision system and all software necessary for autonomous driving with the new
“Transputer”-system consisting of up to sixty processors. Figure 2 shows a survey of the
UniBwM-system VaMP (short for VaMoRs-PKW). Both vehicles were the only ones capable
of driving autonomously in 1994 in public three-lane traffic at speeds up to the maximum
speed allowed in France of 130 km/h. Free driving, lane changing (see: https://dyna-
vision.de/wp-content/uploads/2021/03/1994-Twofold-LaneChange-Paris-VaMP.mp4 (ac-
cessed on 14 October 2024)), and convoy-driving were demonstrated [5–9]. The structure
of the second-generation vision system is shown in Figure 3. On the right-hand side, it
shows the three levels with separate knowledge bases, as follows: gray: for features and
generation of object hypotheses; green: for objects and subjects with the introduction of
time by the 4-D approach; and red: for situation assessment and mission performance. Up
to ten other vehicles could be detected and tracked in the own and the two neighboring
lanes [10]. In total, more than 1000 km were driven autonomously.
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Figure 3. Second-generation vision system with up to 60 “transputers”: real-time processing of
four video-fields (top left) according to the 4-D approach. Three levels: The dynamic object data
base (DOB in green) reduces the data volume on the feature level for the upper situation level
(Situation Assessment for Behavior Decision and Control of Gaze and Attention (BDGA), as well as
for Locomotion (BDL)) by two to three orders of magnitude without loss of essential information.

In the following year, 1995, the transputer system was replaced by more modern PC
processors with ten times the computing power. This then allowed running the system
at a full video rate (40 ms cycle time instead of 80 before) on only one-fifth the number
of processors. With forward-looking cameras only, the fully autonomous long-distance
test drive of Munich—Odense—Munich was performed in November 1995 [10,11] (Section
9.4.2.5).

At the end of 1996, the cooperation with DBAG was ended since a new project in
cooperation with USA partners in the framework of an existing Memorandum of Under-
standing between the Departments of Defense was launched. The goal of the joint project
AutoNav was to develop a next-generation vision system based on the 4-D approach capa-
ble of driving in networks of minor roads with sequences off-road; in addition to obstacles
above the driving plane, negative obstacles (ditches) should also be detected and avoided
autonomously.

The development of the PC market had advanced in the meantime, so that standard
systems allowed building real-time vision systems by creating new software systems only.
What should be the essential characteristics of our third-generation vision system?

2. From Local 4-D to Extended Maneuvers and Missions

The systematic exploitation of characteristics over time as the fourth dimension was
the first goal: the local relations within the dotted yellow rectangle (upper left in Figure 4)
are exploited in the 4-D approach through spatiotemporal models (differential equations)
for feedback of prediction errors in order to adjust both state variables of the objects
observed and parameters in the models used. The mission to be performed (in the lower
right corner) is considered as a sequence of maneuvers, each maybe consisting of several
maneuver elements. Capabilities for executing these maneuvers and missions can only
be achieved by special time histories of control variables available in the real system. As
far as the own body of the acting subject is concerned, these relations are part of a special
knowledge base the subject has to learn. Since this action for control of motion is quite
separate from perception, a special knowledge base for control of motion has been selected.
It does not have to store the full trajectories of state variables but may be confined to just
the time histories of the control variables involved, leading to the desired final state.
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In Figure 4, the dotted blue rectangle in the lower right shows this extension in space
and time by the diagonal from the center to the bottom right. In the lower left corner,
a road scene with dense traffic is depicted, not by an image consisting of pixels but by
just five types of features yielding the same impression, as follows: white: image regions
with nonlinear intensity changes in orthogonal directions; inclined edges found by vertical
(red) and horizontal (green) search with special edge models according to [11] (chapter 5.2)
and [12]; blue crosses for corners in intensity; and in gray: linearly changing image intensity
values [13]. For a human observer of this artificial image of a scene, a correct interpretation
is immediate. Even the number of several relevant objects on the three-lane road, with their
approximate distances, will be recognized starting from nearby in the lowest row at the
bottom of the image.

3. Why Multi-Focal Sets of Cameras

Due to perspective projection and the gaze direction being almost parallel to the
ground, a pair of parallel lines on a planar ground (representing an idealized road) with
the camera at the center of the near end is mapped into a triangle in the image with the tip
at the far end (above the ground line nearby). The field of view of a sequence of single rows
in the image of a camera also is a triangle, but with the tip in the camera. Since light rays
are straight, a pixel in the image that transversally covers 1 cm at a distance of 10 m will
cover 0.2 m at 200 m and even 2 m at a 2 km range. A vehicle of 2 m width will be covered
by 200 pixels in one line at a range of 10 m and by ten pixels at 200 m; at a distance of 2 km,
the width of such a vehicle is covered by a single pixel, so that the features of one vehicle
are averaged away. This clearly shows that for understanding images of extended outdoor
scenes, different resolutions should be used for imaging parts of the scene depending on
the distance imaged and analyzed. This fact calls for multi-focal sets of cameras, at best
with active control of the gaze direction (see [14]).

Experience in the past with a bifocal set of cameras has shown that in order to efficiently
find the same region in the two images, the ratio in focal lengths should not exceed one
order of magnitude. A factor of 6 to 7 has been found a good compromise, but the smaller
the ratio, the easier it is to find the precise correspondence between image points. A
“vehicle-eye” with four cameras according to Figure 5 has been proposed in [14]. Since
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one American partner in the AutoNav project contributed a new stereo vision system with
two parallel-looking cameras, the configuration tested earlier looked like that shown in
Figure 6, with the parallel stereo pair above the divergent-looking wide-angle cameras that
may also be used for divergent stereo vision. At the center are the cameras with a standard
field of view (FoV) and with high resolution.
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Figure 6. Camera set used in VaMoRs in the AutoNav-project 1997–2003 with two pairs of stereo-
cameras (parallel, outside top and divergent looking, bottom).

The size of a modern “vehicle eye” would be one to two orders of magnitude smaller
than the test set shown here (see e.g., handy-cameras available actually). The request in
resolution for the high-resolution camera of such an eye is that it should be able to make
printed text readable with an acuity of edge localization of about 0.2 mrad/pixel (slightly
better than human performance). With 800 pixels per row, the image then laterally covers
an angle of about 9.2◦. At 10 m distance, the lateral range covered by the camera is ~2.6 m
with coverage of ~3.3 mm/pixel; at 200 m distance, the lateral range covered in the image
will be ~50 m with 2 pixel/0.13 m. This is sufficient for recognizing the lane boundaries or
the road limits marked by bright lines of, say, 0.12 m width. A divided highway with two
lanes in each direction and one parking lane to the side may have a width of 20 to 30 m; so,
at 200 m distance, just about twice the width of the highway is covered with high resolution.
According to Table 1 (row 3), the total spread in resolution is 12; the lateral fields of view
in degrees are 9.2 for high, 55 for medium, and 115 for low resolution selected. At a road
crossing, the wide-angle camera should yield information on both roads intersecting at an
approximately right angle.

In [14], a vision sensor covering the entire environment at different resolutions but
mounted fixed onto the body of the vehicle has also been discussed.

For vehicles experiencing strong angular perturbations, like those from driving on
rough ground, the images will be blurred under poor lighting conditions. Active control
of the gaze direction allows stabilizing the gaze by feedback of rotational rates measured
inertially by a set of inexpensive sensors directly on the platform of the eye. Figure 7
shows experimental results with VaMoRs for a standard braking maneuver. The reduction
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in amplitude for the gaze direction of the cameras (top curve) is more than one order of
magnitude relative to the vehicle body (lower curve). Especially for interpreting the images
of the high-resolution camera, this is an enormous alleviation when tracking a vehicle
far away.

Table 1. Parameters of the cameras in the ‘vehicle eye’.

Type (Resolution) Low Medium High Remark

Field Fields of view (in ◦)e 115 × 62 55 × 31 9.2 × 9.2 Left (−) and right (+) for ‘low’

Imaging
characteristics (resolution)

2.4
1⁄4 of med.

0.6
1⁄3 of high 0.2 mrad/pixel,

acuity of edge localization

Pixel/line 800 1600 800 These are rough estimates
according to a pinhole modelNumber of lines 450 900 800

Data volume/frame 2.16 MB 4.32 MB 1.92 MB 3 Bytes/pixel; sum = 8.4 MB/cycle
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4. Efficiency Calls for Saccadic Gaze Control

A factor of 12 in resolution in both coordinates of the image leads to an increase
in the number of pixels of 144 times for the high-resolution image as compared to low
resolution. If the high-resolution cameras would be able to simultaneously deliver images
of two pyramid stages (each yielding a reduction of ¼ additional pixels), that is (1 + 1/4 +
1/16) = 1.3125 times 144, this yields 189 times the number of low-resolution pixels in total
on three image levels. For a total field of view of 360◦ × 45◦, this results in ~212 Giga-pixels
per video cycle. Beside the large number of high-resolution cameras needed for covering a
360◦ × 45◦ field of view (about 32 with ~2400 pixel per row and column), the total number
of images per video cycle would increase to 52 {32 of 5.76 Giga-pixels plus (8 × 2 = 16) on
the first pyramid level (with 1200 × 600 = 0.72 Giga-pixels for medium resolution) and 4
on the second pyramid level (with 600 × 600 = 0.36 Giga-pixels for low resolution)}; so
the total number of image points would be (32 × 5.76 + 16 × 0.72 + 4 × 0.36) = 196.96
Giga-pixels, where, on the second pyramid level, two images in the same azimuth direction
have been merged.

With two gaze-controllable eyes according to Figure 5 and Table 1, the number of
cameras is reduced to eight (=25%), each with a much smaller image size and only one
image per video cycle and camera (a reduction to 15%). The total number of image points is
2.8 Giga-pixels, corresponding to 1.4% of the sensor data from the high-resolution cameras
mounted fixed onto the vehicle body. The factor of about 70 in data volume strongly favors
the gaze-controlled vehicle-eye in addition to the reduced locations needed for mounting
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them around the vehicle. In [14], the two locations at the top end of the A-frame have
been proposed as a promising compromise from several points of view. In particular, the
tracking of traffic signs even up to a close approach in the second or third lane is easily
handled. Experience has shown that tracking traffic lights and traffic signs at the side of
the road and about 2 m above the ground clearly favors gaze control during approach. The
black curve 2 in the right of Figure 8 shows two saccades of about 20◦ amplitude realized
within 0.04 s each. Nowadays, the gaze direction could easily be controlled by locking in
onto features of the sign, so that the green curve around 0.6 s would cover the ψ = 0 line.
As can be seen from the video during the saccades, the blurred images of the scene cannot
be used; during this short period, the vehicle has to live with the dynamical models and the
resulting predictions. It takes about eight video cycles (20 to 30 msec) until the images can
be interpreted correctly again. This corresponds to the delay time we humans also notice in
our biological vision system [15].
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Figure 8. Detection and tracking of a traffic sign by saccadic vision in 1994 with VaMoRs. During
this approach, both pan and tilt angles may become rather large. Curve 2 shows the gaze angle in
degrees relative to the vehicle (see video https://dyna-vision.de/survey-of-experimental-results/
table-of-firsts-in-dynamic-machine-vision-visual-guidance-of-autonomous-vehicles/ (accessed on
14 October 2024)).

Once gaze control is available in the “vehicle eye”, it also allows precise tracking
of special objects so that the high-resolution images are easier to interpret. With two
independently gaze-controllable eyes, two single objects may be tracked and analyzed
in parallel.

5. Three Levels of Scene Interpretation
5.1. Structuring the Task Domain on Temporal and Spatial Scales

An experienced human looking at the image in the lower left corner of Figure 4 cannot
but recognize a road scene with at least three lanes; several types of vehicles drive in
these lanes (represented in the rounded green square at the center). Bottom-up feature
extraction and data evaluation at the point “here and now” are done for the entire last
image (upper-left corner). The results are communicated to the central box in Figure 4
running at the video rate; this central unit tracks the hypotheses for objects and subjects in
3-D space over time. The results are stored in a dynamic object data base (DOB) using a
scene tree (see Figure 9, white field within the green rectangle) as a communication device
to the situation level 3. On level 2, time is introduced, allowing temporally deeper scene
understanding with respect to maneuvers and to the overall mission.

https://dyna-vision.de/survey-of-experimental-results/table-of-firsts-in-dynamic-machine-vision-visual-guidance-of-autonomous-vehicles/
https://dyna-vision.de/survey-of-experimental-results/table-of-firsts-in-dynamic-machine-vision-visual-guidance-of-autonomous-vehicles/
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Three levels have been implemented for visual cognition and task performance;
Figures 4 and 9 indicate that an organization of the overall process of performing a mission
autonomously should be structured according to three levels:

1. Image features and other sensor data (bottom-up in each cycle);
2. Objects (objects proper and subjects as separate classes) in 3-D space and time (4-D)

{in green};
3. Mission performance with a special knowledge base on maneuvers: missions consist

of a consecutive list of mission elements which are built by a sequence of maneuvers
and their elements (top, magenta).

Level 1 is mainly bottom-up and has to deal with large amounts of sensor data. Levels
2 and 3 may interact every now and then with level 1 with respect to looking for special
features derived from knowledge on classes of objects and on mission elements. Level
3 represents the best adaptations of the internal mental visualizations to the external
real world by 3-D spatial models of objects and of temporal processes (4-D); this is the
knowledge base for perceiving the semantics of the outside world (derived from the sensor
data from levels 1 and 2) and for efficient performance of the mission.

The result is a set of capabilities both for perception and for mission performance;
each of these capabilities achieved by a subject is called a skill it has. There are capabilities
for behavior decision in gaze and attention (top row in Figure 10a), which link the mental
decisions for gaze control to the actual hardware for realizing them in the subject (bottom
row). This shows the capability network for Behavior Decision for Gaze and Attention
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(BDGA); the group of software that leads to certain skills for realizing the capabilities is
marked by a blue background. The arrows indicate which subsystems are involved in
realizing the behavior. Figure 10b shows the capability networks for Behavior Decision in
Locomotion of ground vehicles (BDL). Again, the capabilities are shown in the top row,
and the actuators available for realizing them are seen at the bottom. Before activation of a
skill, it is checked whether all subsystems needed are actually available; this is important
for autonomous detection of errors that might have occurred in the meantime. Figure 10a,b
show the capabilities as a flexible concept for linking the mental world to real-world
hardware in order to perform maneuvers and missions.
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Figure 10. (a) Behavior Decision for Gaze and Attention (BDGA). Bottom: activation of hardware;
center: learned skills; top: tested and proven knowledge about capabilities of a subject. (b) Behavior
Decision for Locomotion of ground vehicles (BDL). Left-hand side: longitudinal control; right-hand
side: lateral control.
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The transition from mental decisions in the main computer system to their realization
in the real world with the actuators of the subject is done by a dual representation:

1. With AI-methods on the mental side with extended state charts containing the condi-
tions for transition between the modes [16];

2. With methods from systems dynamics for realization on (embedded, distributed)
processors close to the actuators by feed-forward and feedback control laws [17] (see
Figure 11).
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Figure 11. Dual representation of behavioral modes with methods from artificial intelligence (top,
dashed) and systems dynamics (bottom).

Details on the realization may be found in [16–21], summarizing the results of the
AutoNav project until that year, and in [22–24]. A video on the final demo may be
viewed under https://dyna-vision.de/wp-content/uploads/2021/03/2003%20EMS-On-
OffroadDriving%20VaMoRs.mp4 (accessed on 14 October 2024).

5.2. Multiple Parallel Feedback Loops in Perception and in Control of Behavior

Many parallel feedback loops result in an overall system for perception of the actual
situation and for autonomous execution of a mission. Figure 12 presents a survey on the
third-generation system of UniBwM for perception and control of a mission. The mental
part, encompassing values and goals in decision making, has become dominant (see top
of the figure). The subject now is no longer just part of the material evolution, but starts
understanding at least part of the observed processes of evolution. Beside its own mental
model for the processes observed, it has its own values and goals, and in general it will try
to move towards an improved state with respect to its individual feelings and its thoughts
about the mission. Note that the individual and the cultural value systems of the group
may diverge in several points of view, yielding potential conflicts in decision making.

At the bottom of Figure 12 is the material body of the subject with all its sensors and
actuators. State prediction to the next point of sensor data evaluation and control output is
the central activity of the mind (upper-right corner of the figure). This triggers both the
feed-forward control for maneuvers performed and feedback components for minimizing
prediction errors due to unforeseen perturbations from the environment (wide downward
arrow on the right-hand side). From the assessment of the actual situation (in the upper-
left corner) the best direction for visual perception by multi-focal vision is derived and
communicated to the corresponding actuators for the control of viewing direction (pink
arrow). Another set of feedback loops is included for tracking the features of all objects of
interest (black arrow).

The “Gestalt”-idea of spatial objects mapped from 3-D to 2-D by perspective projection
assists in deriving hypotheses for objects discovered from collections of features in the
images (green arrow). For validated hypotheses of objects, the blue arrows support efficient
tracking of objects over time. The broad horizontal arrow forms the basis for detecting
effects of perturbations on the vehicle carrying the sensors. Finally, temporal predictions

https://dyna-vision.de/wp-content/uploads/2021/03/2003%20EMS-On-OffroadDriving%20VaMoRs.mp4
https://dyna-vision.de/wp-content/uploads/2021/03/2003%20EMS-On-OffroadDriving%20VaMoRs.mp4
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allow changes in the given situation to be expected (dark green arrow). The mental aspects
of all these loops have thus become predominant in control of perception and behavior.
Note that the knowledge bases for the three levels feature the following:

1. Extraction and grouping of image features for the step following;
2. Generation of object hypotheses and their tracking over time;
3. Situation assessment, including derivation of control for mission performance, which

has to be supported by special interconnected software systems representing the
foundation of skills that link the mental world to applications in the real world.
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Figure 12. Multiple feedback loops of the 4-D approach for autonomous performance of a mission
form the core of the “robot mind”.

Figure 13 sketches the overall resulting system. The stereotypical capabilities shown
on the horizontal connection between BDGA (red rectangle on the left side) and BDL (blue
rectangle on the right) in the vertical center of the gray-shaded region now constitute the
core of the autonomous system. The upper part shows, by the arrows, the capabilities
that are needed for each task (road/lane following, turning off onto a crossroad, following
a sequence of waypoints). The lower part indicates the basic skills that are needed for
each capability. The dashed block at the left-hand side in Figure 13 indicates that the
mission to be performed (mission plans, lower right corner in Figure 4) and the behavioral
capabilities actually available have to be provided by the human initiator of the mission.
More details may be found in the set of publications at the International Symposium on
Intelligent Vehicles [16–21] in Dearborn USA. The large rectangle shaded in gray contains
all behavioral capabilities available, the stereotypical capabilities to realize them (between
BDGA and BDL) in the center, and the skills realized with the subsystems (small circles in
the lower part). The lower small rectangles group these skills into three behavioral fields:
gaze control (left), visual perception (center), and vehicle control (bottom right). Depending
on the sensor systems and the control systems available in the subject, the set of capabilities
and skills may be extended to perform other types of missions.
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Figure 13. Behavior Decision for Gaze and Attention (BDGA in red) and for Locomotion (BDL in
blue); abbreviations: OVB = Optimization of Viewing Behavior, 3-DS = 3-D Search, RDT = Road
Detection and Tracking, CRDT = Cross Road Detection and Tracking, ODT = Object Detection and
Tracking, RLR = Road and Lane Recognition, WPN = Way-Point Navigation.

6. From the 4-D Approach to Expectation-Based, Multi-Focal, Saccadic EMS-Vision

The 4-D approach at the core of EMS-vision allows generating around the point “here
and now”, by feedback of prediction errors, some kind of consciousness grounded on the
internal knowledge bases and the adaptation of spatiotemporal models available in them.
The strict distinction between state and control variables in these models helps to reduce
storage requirements for extended maneuvers and missions. Time histories of control
variables specify maneuver elements and maneuvers for achieving desired final values of
the state variables. Unforeseeable perturbations during performance of maneuvers can
immediately be counteracted by feedback of errors between the desired and the actually
developing trajectory (see right-hand side of Figure 12). Figure 14 shows a typical result
for a lane-change maneuver with the test vehicle VaMP. The green straight lines in the
upper-left sub-image show the commanded constant steer rates between seconds 55 and 63.
It can be seen that the actual steer rates (black curve) deviate quite a bit from the nominal
green one. The other sub-images show the corresponding state variables, as follows: top
right: the steer angle λ; bottom left: the yaw angle of the vehicle; and bottom right: the
lateral offset with the switch to the new lane as reference at the center of the maneuver.

Since, beside the state variables in the models for the dynamic behavior of objects
observed, parameters in the structure of these models may also be adapted, the overall
system will look like that shown in the sketch in Figure 15. In parallel to the real world (at
left), an internally represented imaginary world is constructed by feedback of prediction
errors exploiting spatiotemporal (4-D) models (lower right part, “tracking”). Groups of
features are assigned to hypothesized objects mapped by the laws of perspective projection.
A number of objects, n (including subjects), are tracked in parallel (upper-left part of
the “tracking”-circle in the lower right). Unassigned features lead to hypotheses of new
objects (“detection”, center upward), which are tested for a few cycles before a new object
is added to the list for tracking. Parameters of the models used may also be adapted
to reduce prediction errors (“learning” in center top). By storing new successful sets of
parameters, the background knowledge is increased from experience (center top). The
results of analyzing all observations together with the mission to be performed lead to the
control output onto the real vehicle (top loop); these control variables are also fed into the
models used for object recognition and their adaptation. This may be a first small step in
the direction of a robot mind (see area shaded in gray in Figure 15).
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The complex robotic system that has evolved on the basis of the 4-D approach is hard
to describe in single figures like Figures 13 and 15. The system realized in the project
AutoNav has proven to be able to drive autonomously on a network of minor roads and
off-road on hard ground, detecting and avoiding an unknown ditch. The video on the final
demonstration with VaMoRs in 2003 may be viewed under https://dyna-vision.de/wp-
content/uploads/2021/03/2003%20EMS-On-OffroadDriving%20VaMoRs.mp4 (accessed
on 14 October 2024).

https://dyna-vision.de/wp-content/uploads/2021/03/2003%20EMS-On-OffroadDriving%20VaMoRs.mp4
https://dyna-vision.de/wp-content/uploads/2021/03/2003%20EMS-On-OffroadDriving%20VaMoRs.mp4


Electronics 2024, 13, 4133 14 of 18

7. On the Way to a Robot Mind

In the long run, when several subjects observe the same scene by using similar dynamic
models, these subjects may exchange their results in order to agree on the models best
suited for the actual situation. The availability of a language including common terms for
objects, subjects, values, and different actions is a prerequisite for developing a robot mind.
A robotic subject with a mind should be able to distinguish between itself (the “I”) and
the rest of the world (summarized in Figure 16 within the dash-dotted ellipse). The five
words (I think, therefore I am) printed in large bold letters are the once famous statement
of Descartes, who claimed in 1637 the mind to be a separate substance; in the meantime,
that became obsolete with Damasio [25].
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Today, the mind is even often considered not to be a separate subject but a new
quality in the material world that emerged after biological subjects had developed the
capabilities of sensing, storing, retrieving, and processing of data and knowledge, as well as
decision making and acting towards certain goals. Mind emerged when these capabilities
had reached a higher level of evolution [26–31]. In the meantime, very advanced robotic
vehicles may also have these capabilities. Will they have a mind?

Humans tend to talk of an object (subject) having a mind if it can make decisions,
increasing the value of an observed system or of improving its own state. A system realizing
all feedback loops in Figure 12 certainly may be considered to have a mind. If goals and
values for all potential points in the 4-D matrix of Figure 4 are essential for decision making,
this over-arching concept may be called a mind. Of course, there will be many different
levels of mind depending on the knowledge bases and the capabilities for both perception
and for action of the subject. At present, many of the capabilities for communication and
for adaptation of the dynamic models used are with the human operators of the systems;
however, there is no reason why this could not also be implemented in robotic vehicles.
An exception is the fear sometimes mentioned that these capabilities could make humans
superfluous. Another approach to mind generated by technology may be found in [32–34]
from our American partners in the AutoNav project.

8. General Development in the Field “Autonomous Driving”

A survey of the development of automatic driving and autonomous road vehicles
is given in [35,36]. Computer vision has become a field of intensive research since the
mid-1980s with the project “Strategic Computing” in the USA [37] and the European project
“Prometheus” [38]. Developments in the USSR are summarized in [39], where actions of
several agents (subjects) in spatial environments are considered essential for developing
a mind.

Since 1992, an “International Symposium on Intelligent Vehicles” has been held, with
locations changing regularly between three regions: USA, Europe, and Asia (abbreviated
IV’xy, where xy stands for the last two numbers of the year). To obtain an overview of
the development of intelligent vehicles, scanning the proceedings of the IV’xy is a good
starting point. However, there continue to be relevant publications in conferences and
journals, like SPIE-Mobile Robots, ICCV, ICPR, ICRA, IROS etc.
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Even though the 4-D approach has been published regularly at various international
conferences and workshops since 1987, its acceptance for own developments has been rather
low. Our ten-year cooperation with Daimler-Benz AG from 1986 to 1996 has led, at least, to
partial acceptance. The cooperation with the US American National Institute for Standards
and Technology (NIST) from 1997 until 2003 in the project AutoNav resulted in the adoption
of the name “4D” into their software system [33]. The successful demonstrations with the
American test vehicles led to the announcement of the “Grand Challenge” by DARPA in
2002. However, since, in the meantime, the Global Positioning System GPS, funded by
DARPA, had become functioning, the demo requested for the “Grand Challenge” was no
longer required to find the path for vehicle guidance by vision with an onboard video
system. The route was prescribed by a dense sequence of GPS waypoints handed to the
participants a few minutes before the start.

Of course, this alleviated the vision task considerably, since the autonomous vehicle
now had to just avoid obstacles above the driving plane. In order to detect obstacles reliably,
DARPA had also funded the development of LIDAR-based obstacle detectors. This has led
to the fact that one of the test vehicles for the demo in 2005 did not even have video cameras
on board. The test results were widely publicized, so that for many readers and viewers,
this was the beginning of autonomous driving. In the Urban Challenge of 2007, there were
additional driving vehicles in the specially built village that was used as a test site. The
routes to be driven were again prescribed by (now more widely separated) GPS waypoints.

After these events, the company Google generously installed a special institute for
the winner of the 2005 Grand Challenge on its campus. This has led to the fact that
the approach based on GPS-waypoints and high-precision maps, together with a 360◦

revolving laser-system, in addition to a few video cameras mounted fixed onto the body
of the car, has become the standard approach in the civil market for autonomous driving.
A few companies offering the capability of partially autonomous driving with their cars
prefer to have laser range finders at the corners of the vehicle closer to the ground instead
of on the roof. This type of vision on preselected routes for driving has been named
“confirmation-type” vision [40], since characteristic stationary objects near the route with
well-recognizable features are usually also indicated in the high-definition maps provided
to the autonomous vehicle.

On the contrary, the 4-D approach taking the dimension of time directly into the
models for visual perception leads to results with less delay time and to a strong reduction
in the amount of data to be handled in parallel. This has been dubbed “scout-type” vision
in [40]. The critical point here is to find an early transition from feature data in the image to
3-D objects moving in the outside world in real-time. A few video cycles have been shown
to be sufficient for supporting hypotheses for interpretation, leading to a time delay for
object recognition of a few tenths of a second (similar to human perception).

Computational neural net approaches were investigated early (e.g., [41]) but did
not make it to market applications, due partially to the high computing power needed.
This changed lately when deep neural nets profited from the µP development. In recent
publications on convolutional neural networks (CNNs) and vision applications, one can
find the topic “Machine vision applications that require real-time performance”. Typical
for these papers is that the computational neural nets work on several images of the
video sequence simultaneously [42–53]. This involves large amounts of data and leads to
increased time delay for controlling real-time processes. Many researchers now seem to
also believe in CNNs for perceiving general road environments and for vehicle guidance.
The future has to show the best approach available.

The advantage of the “4-D approach” is that due to the dynamical models involved,
only the last image of the sequence needs to be worked on, both for state estimation of
the real-world objects seen and for simultaneously adapting parameters in the models
used. This eliminates the old arguments of the Greek philosophers Plato and Aristotle that
either the sensor data or the mind has to be accepted as basic elements for perception and
thinking. However, evolution of the mind in groups of communicating and cooperating
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individual subjects dealing with real-world challenges had not been considered. This is the
achievement of the 4-D approach in robotics.

The group at UniBw Munich over the last two decades has concentrated on recognizing
unstructured scenes with vision and laser range finders. They developed the capability
of autonomous driving with real cars in this usually complex environment using the
conventional approach [54–58]. Several car manufacturers already offer level-3 autonomous
driving in some of their high-end cars; Daimler in September 2024 announced it for highway
driving up to speeds of 60 km/h. Other international car makers have been more daring in
the past, but had to reconsider their decision after accidents. The general attitude towards
autonomous driving seems to have become more cautious since the potential scenes to be
recognized may be quite varying.

9. Conclusions and Outlook

The 4-D approach to dynamic vision at the core of EMS-vision allows an immediate
realization of the central part of consciousness for a robotic vehicle. It knows where
it is relative to the road, and what type of objects and other subjects are relative to its
own position. Including the capabilities of performing maneuvers based on sequences of
simple maneuver elements and of counteracting perturbations experienced by feedback
of prediction errors makes the method very efficient, including for environments that are
hard to correctly predict.

It is interesting to note that feedback of prediction errors has recently become a topic
in cognition in the fields of psychology and philosophy [59–63]. It would be interesting to
check whether EMS-vision combined with neural net methods could merge the positive
aspects of both approaches.
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