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Abstract: This paper proposes a novel fault diagnosis methodology for oil-immersed transformers
to improve the diagnostic accuracy influenced by gas components in power transformer oil. Firstly,
the Random Forest (RF) algorithm is utilized to evaluate and filter the raw data features, solving the
problem of determining significant features in the dataset. Secondly, a multi-strategy Improved Parti-
cle Swarm Optimization (IPSO) is applied to optimize a double-hidden layer backpropagation neural
network (BPNN), which overcomes the challenge of determining hyperparameters in the model. Four
enhancement strategies, including SPM chaos mapping based on opposition-based learning, adaptive
weight, spiral flight search, and crisscross strategies, are introduced based on traditional Particle
Swarm Optimization (PSO) to enhance the model’s optimization capabilities. Lastly, AdaBoost is
integrated to fortify the resilience of the IPSO-BP network. Ablation experiments demonstrate an
enhanced convergence rate and model accuracy of IPSO. Case analysis using Dissolved Gas Analysis
(DGA) samples compares the proposed IPSO–BP–AdaBoost model with other swarm intelligence
optimization algorithms integrated with BPNN. The experimental findings highlight the superior
diagnostic accuracy and classification performance of the IPSO–BP–AdaBoost model.

Keywords: power transformer; fault diagnosis; random forest; backpropagation neural network;
improved particle swarm optimization; AdaBoost

1. Introduction

The oil-immersed transformer serves as the central component of the power grid,
playing a crucial role in the transmission of electrical power. When the transformer mal-
functions, it poses a dual risk to public safety and the economy, including incurring high
costs for equipment repairs and significant financial losses resulting from power disrup-
tions. Hence, it is necessary to precisely identify the internal problems of transformers
beforehand to ensure the secure and reliable operation of the power grid system [1].

Many electrical power experts developed diagnostic methods for transformers in the
1960s. These traditional methods included vibration testing, infrared testing, voltage and
current measurements, and dissolved gas analysis in oil [2]. Among these, the dissolved
gas analysis primarily determines the type of transformer fault based on the relative
concentrations of gases such as H2, CH4, C2H6, C2H4, and C2H2 produced during insulation
failures or aging [3]. However, a limitation of this method is that the diagnostic results rely
on expert experience and observations of the equipment parameters. With the emergence
of artificial intelligence technology, various machine learning methods, including Support
Vector Machines (SVMs), Multi-Layer Perceptrons (MLPs), and Extreme Learning Machines
(ELMs), have been applied to transformer fault diagnosis nowadays.

Jin et al. [4] enhance the BP neural network by stacking multiple residual network
modules and introducing an SVM to evaluate the extracted feature vectors from each
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layer. Ivanov and Palyukh [5] present a method for creating a training dataset specifically
tailored to fuzzy neural networks, which enables a rapid probability estimation of abnormal
critical events or accident causes within a transformer diagnostic system. Research by Kari
et al. [6] employs a deep belief network to extract features from dissolved gases in oil
and perform mean clustering for transformer fault classification. Song et al. propose [7]
a novel transformer fault diagnosis model called Meta–OSSA–KELM, which combines
Meta-Learning with a Kernel Extreme Learning Machine and opposition-based learning
Sparrow Search Algorithm. By integrating chaos mapping and opposition-based learning
concepts into the Sparrow Search Algorithm, the experiment results indicate that this model
provides a stable and high-performance approach for transformer fault diagnosis.

While the above methods have achieved beneficial results, determining the optimal
structure of the diagnostic model and its hyperparameters often faces challenges, limiting
further enhancements in diagnostic effectiveness. Furthermore, the uncertainty regarding
the types and quantities of features contained within fault samples restricts the widespread
application of deep learning and other neural network methods [8]. Moreover, input fea-
tures for fault diagnosis models typically rely on IEC or IEEE standard gas concentrations,
gas ratios, or relative percentages. Nevertheless, a universally accepted feature set for diag-
nosing faults in oil-immersed transformers remains elusive. Consequently, previous studies
have encountered issues such as a plethora of gas feature types, leading to inadequate
analysis of features [9].

Therefore, the shortcomings leave significant room for further improving fault di-
agnosis performance. To address these two issues, this paper proposes a transformer
fault diagnosis model based on feature selection and IPSO–BP–AdaBoost. The model first
establishes an optimal feature set predicated on differences in detection accuracy caused by
varying numbers of input features, employing the Random Forest (RF) method for feature
selection. Then, it utilizes the multi-strategy Improved Particle Swarm Optimization (IPSO)
method to optimize the key parameters in the backpropagation neural network (BPNN).
Lastly, the AdaBoost algorithm is applied to enhance the robustness and generalization of
the diagnosis model.

2. Feature Selection Based on Random Forest

In case of transformer failure, gases of different compositions and concentrations
are released, and the specific gas volume fraction increases rapidly, mainly including
methane (CH4), ethane (C2H6), ethylene (C2H4), acetylene (C2H2), and hydrogen (H2). The
relationship between dissolved gases in oil and faults is as follows:

(1) When high-energy discharge occurs inside the transformer, characteristic gases such
as acetylene C2H2 and H2 are mainly produced in the oil, followed by C2H4, CH4,
and C2H6.

(2) When low-energy discharge occurs inside the transformer, the dissolved gases in the
oil are mainly C2H2 and H2, followed by CH4 and C2H4.

(3) When partial discharge occurs inside the transformer, the characteristic gases pro-
duced in the oil vary with the discharge energy density. When the discharge density
is below 10−9C, the total hydrocarbon content is generally not high, and the main
component is H2, followed by CH4.

(4) When the temperature at the fault point is low, the proportion of CH4 is high. As
the hot spot temperature increases (above 500 ◦C), the content of C2H4 and H2
components sharply increases, with C2H4 content exceeding CH4, but with H2 content
generally not exceeding 30% of the hydrogen hydrocarbon content [10].

Considering the large dispersion of contents among gases, the diagnosis accuracy
of the traditional ratio method is only about 70% [11]. Therefore, this study created
a comprehensive and diverse feature set. Through investigating relevant standards and
publications on dissolved gas analysis at home and abroad, the generation rules of dissolved
gas in transformer oil under different working conditions are summarized, and the non-
code ratios of gases are introduced into fault diagnosis. Ref. [12] verified that non-code
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ratios as the input of the fault diagnosis model can effectively improve the accuracy of
transformer fault diagnosis.

In this study, the fault sample dataset was collected from Refs. [13,14] and IEC TC10
databases, and a total of 596 DGA samples with known transformer operating states
were selected. Six types of faulty samples are under consideration, including normal
condition (NC), partial discharge (PD), low-energy discharge (D1), high-energy discharge
(D2), medium- and low-temperature thermal defect (T1), and high-temperature thermal
defect (T2), as shown in Table 1.

Table 1. Fault sample distribution.

Working Status Category Label Total Number of Samples

D1 1 108
D2 2 86
T2 3 104
T1 4 119
PD 5 113
NC 6 66

H2, CH4, C2H6, C2H4, and C2H2 are selected as the original gases, and 26 groups of
gas features are obtained by combining the gas concentration, three-ratio method, and
non-code ratio method, as shown in Table 2.

Table 2. Feature sets.

Number Feature Number Feature

1 H2 14 C2H2/TH
2 CH4 15 (CH4 + C2H2/TH
3 C2H6 16 (CH4 + C2H4)/TH
4 C2H4 17 (CH4 + C2H6)/TH
5 C2H2 18 (C2H4 + C2H2)/TH
6 TH 19 (C2H6 + C2H2)/TH
7 H2/TH 20 (C2H4 + C2H6)/TH
8 CH4/TH 21 TG
9 C2H2/C2H4 22 H2/TG
10 CH4/H2 23 (H2 + CH4)/TG
11 C2H4/C2H6 24 (H2 + C2H4)/TG
12 C2H6/TH 25 (H2 + C2H6)/TG
13 C2H4/TH 26 (H2 + C2H2)/TG

TH is the total hydrocarbon gas content, and TG is the total content of the five original characteristic gases.

Some of the 26 gas compositions may not be directly relevant to fault diagnosis,
potentially leading to redundancy. In addition, the multi-dimensional dataset has an
impact on the running time of the classification model. Therefore, it is crucial to determine
an informative and concise subset of features. In this study, the out-of-bag data (OOB)
error rate in Random Forest was used to calculate the importance of each feature. A higher
ranking indicates a greater contribution of the feature to fault diagnosis. OOB error rate is
the model error rate calculated on the out-of-bag data. Specifically, it involves using each
decision tree to predict the corresponding out-of-bag error rate and then calculating the
proportion of samples that predict errors [15]. The specific process is as follows.

Step 1: Calculate the initial OOB error rate:

For each decision tree in the Random Forest, its corresponding out-of-bag data error
rate is calculated, denoted as err1.

Step 2: Introduce noise interference:

Select a specific feature X and randomly add noise to all sample values of this feature
X in the out-of-bag data.
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Step 3: Recalculate OOB error rate:

After introducing noise interference to feature X, the error rate of data outside the bag
is calculated again and denoted as err2.

Step 4: Importance of calculation features:

The importance of feature X can be measured by comparing the difference between
err1 and err2. Specifically, the importance of feature X can be expressed as the mean of
(err2 − err1); the greater the value, the greater the influence of feature X on the model’s
prediction and therefore the greater its importance.

In the experiment, the RF algorithm was run 30 times to eliminate randomness,
and the average importance of 26 input features was calculated. Based on the average
value, a ranking list was created accordingly. Subsequently, these features are sequentially
used as inputs by incrementing or decrementing their ranking order until all features are
considered. The importance of inputs and their corresponding diagnostic accuracy are
depicted in Figure 1. For this research, the minimum leaf size is set at 8, and the number of
decision trees is set at 400.
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Figure 1. Feature importance evaluation and diagnostic accuracy curves.

The red curve illustrates how diagnostic accuracy evolves as more elements are
incorporated, whereas the blue curve demonstrates the accuracy changes as elements
are excluded. As can be seen from the red curve, the diagnostic accuracy increases from
51% to 87% as the first eight features are added sequentially, indicating that these gas
combinations contribute greatly to the accuracy of the results. However, after the eighth
feature, the accuracy remains relatively stable at around 83% ± 3, suggesting that the
further addition of features does not lead to a significant increase in accuracy, suggesting
that these additional features may be considered redundant. Through the analysis of
the blue curve, the diagnostic accuracy gradually improves as the number of elements
decreases from 26 to 14. As the number of features continues to decline, the diagnostic
performance fluctuates slightly but remains at about 85%

These results indicate that not all gas combinations are crucial for accurate fault
diagnosis models. The inclusion of features 9 to 26 did not significantly enhance diagnostic
accuracy, and the reduction in some features could even improve it. In summary, this
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research selects a subset of eight of the most critical gas characteristics, which can reduce
the workload of the model while providing optimal diagnostic performance, as shown in
Table 3.

Table 3. Optimal feature subset.

Number Feature Item Number Feature Item

1 C2H2/C2H4 5 H2
2 C2H2/TH 6 C2H6/TH
3 TH 7 C2H4/TH
4 (H2 + C2H4)/TG 8 C2H2

3. BPNN Network Model

The backpropagation neural network (BPNN) is a multi-layer feedforward neural
network trained with the error backpropagation algorithm. It comprises an input, a hidden,
and an output layer, exhibiting classification capabilities for arbitrarily complex problems
and excellent multi-dimensional function mapping abilities. It solves the XOR problem,
which simple perceptrons are unable to handle. Its workflow primarily consists of forward
and backward propagation, with the forward propagation formula being:

uj = f

(
n

∑
i=1

wijxi +
u
θ
j

)
(1)

y = f

(
m

∑
j=1

wjuj + θy

)
(2)

where xi represents the input variable; y represents the output variable; uj is the hidden
layer output; f is the mapping relationship of the activation function; wij is the weight of
the ith input variable and the jth hidden layer neuron; θu

j is the offset term of the jth neuron
of hidden layer u; wj is the weight of the jth neuron connected with y; θy is the offset of y.
The loss function is the mean square error between the real value and the predicted value,
and the objective function is:

E =
1
n

n

∑
i=1

(|yi − ŷi|)2 (3)

where yi is the predicted value and ŷi is the actual value. In the process of backpropagation,
the gradient descent method is used to adjust the weights and biases of each neuron
according to the error. The updating formulas of the weights and biases of the output layer
are as follows:

wij = wij − α

(
δj

(
n(u−1)

)T
+ wij

)
(4)

θu
j = θu

j − αδj (5)

where α is the learning rate, which determines the speed of moving parameters to the
optimal value, and δj is the error term of neuron j.

In addition, a BPNN typically contains one or more hidden layers that introduce
nonlinear transformations to approximate complex nonlinear functions. The addition of
a hidden layer can enhance the nonlinear fitting ability of the model and improve the
expression ability of the model. For some complex problems, a single hidden layer may
not be enough to capture the underlying structure of the data, while two hidden layers
can provide a richer representation of features [16]. The backpropagation neural network
structure used in this paper is shown in Figure 2.
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4. Theoretical Basis of AdaBoost Algorithm

AdaBoost is an ensemble learning method that assigns initial weights to training
samples, trains the first weak classifier, and dynamically adjusts sample weights based
on the classification accuracy of the weak classifier, giving more attention to misclassified
samples [17,18]. After each round, the weight of the weak classifier is adjusted based on its
error ϵt. The formula for calculating the weight of the weak classifier is as follows:

αt =
1
2

ln
(

1 − ϵt

ϵt

)
(6)

Before generating the next base classifier, AdaBoost will amplify the weights of the
misclassified samples while reducing the weights of the correctly classified samples. This
approach makes the next iteration of the algorithm more focused on the misclassified
samples [19,20]. The formula for updating the sample weights is as follows:

wt+1(i) =
wt(i)loge(−αtyi Ht(xi))

Zt
(7)

Finally, a strong classifier is obtained based on the weights of all weak classifiers.
When the number of weak classifiers is set to T, the strong classifier outputs according to
the following formula:

f (x) =
T

∑
t=1

αtHt(xi) (8)

where αt represents the weight of each weak classifier and Ht(xi) represents the output of
each weak classifier. The model structure based on BP–AdaBoost is shown in Figure 3.
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5. The Improved Particle Swarm Optimization Algorithm Used in This Research

The performance of a backpropagation neural network is often highly sensitive to the
initial weight setting. Inappropriate initial weights may lead to the network converging to
suboptimal solutions or failing to converge altogether [21]. To address this issue, this paper
utilizes an enhanced IPSO algorithm to optimize the weights and biases of neurons in the
BP network. By using prediction accuracy as the objective function, the IPSO algorithm
aims to minimize the fitness value of particles while achieving rapid convergence.

5.1. The Basic Principle of Particle Swarm Optimization

In a D-dimensional target search space, there are N particles forming a community,
each of which is a D-dimensional vector, and its spatial position can be represented as:

xi = (xi,1, xi,2, . . . , xi,D) (9)

The flight speed of the ith particle is also a D-dimensional vector, denoted as:

vi = (vi,1, vi,2, . . . , vi,D) (10)

The optimal position found by the ith particle is called the individual optimal position,
and the optimal position in the population is called the global optimal position, respectively,
denoted as:

Pbesti = (Pbesti,1, Pbesti,2, . . . , Pbesti,D) (11)

Gbesti = (Gbesti,1, Gbesti,2, . . . , Gbesti,D) (12)

In traditional particle swarm optimization algorithms, the position of particles is deter-
mined by their position and velocity in the previous iteration. Each particle demonstrates
individual and collective behavior, adjusting its speed and position based on the historical
optimal values of both the individual and the population [22]. The velocity updating
formula of particles in the particle swarm is:

vij(t + 1) = wvij(t) + c1r1
(

Pbestij(t)− xij(t)
)
+ c2r2

(
Gbestij(t)− xij(t)

)
(13)

The position updating formula of particles is:

xij(t + 1) = xij(t) + vij(t + 1) (14)

Based on the formula, it is evident that the initialization stage plays a crucial role in the
optimization effect of the swarm intelligence algorithm itself, as the random distribution of
the particle swarm and its uncertain quality can sometimes lead to local optima in early
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iterations. Furthermore, subsequent iterations face challenges in achieving fast convergence
due to the lack of a mutation mechanism. To address these issues, this paper proposes four
collaborative optimization strategies that aim to enhance global search and local exploration
capabilities, accelerate convergence, and improve the algorithm’s accuracy.

5.2. SPM Chaos Mapping Based on Opposition-Based Learning

In the traditional particle swarm optimization algorithm, the population initialization
process exhibits strong randomness, often resulting in poor performance of each particle.
Chaos mapping, known for its excellent space ergodicity, can distribute particles more
evenly [23] and is commonly employed in various swarm algorithms. Among these
methods, the SPM chaotic function has been shown to enhance the diversity of particles in
the population [24]. Therefore, this paper adopts the SPM function as the chaotic function.
The SPM function formula is:

x(i + 1) =



mod
(

x(i)
η + µsin(πx(i)) + r , 1

)
,

0 ≤ x(i) < η

mod
(

x(i)
0.5−η + µsin(πx(i)) + r , 1

)
,

0 ≤ x(i) < 0.5

mod

(
(1−x(i))

η

0.5−η + µsin(π(1 − x(i))) + r , 1

)
,

0.5 ≤ x(i) < 1 − η

mod
(
(1−x(i))

η + µsin(π(1 − x(i))) + r , 1
)

,
1 − η ≤ x(i) < 1

(15)

where x(i + 1) represents the (i+1)th particle, η ∈ (0, 1), and when µ ∈ (0, 1) the system
is in a chaotic state. The generated initial solution is determined based on the upper and
lower bounds Ub and Lb of the optimized weights and biases. The particle distribution and
spectrogram of the SPM chaotic function and three other chaotic functions are shown in
Figure 4.
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When the population size is large, chaos mapping significantly enhances the con-
vergence efficiency of the algorithm. However, obtaining points of good quality is of-
ten challenging when the population size is small. Therefore, this paper introduces an
opposition-based learning (OBL) strategy [25], which aims to find as many high-quality
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points as possible to accelerate the convergence speed. Initially, N solutions are generated
using SPM mapping during population initialization, followed by the generation of N
opposite solutions using opposition-based learning. Subsequently, fitness evaluation and
sorting are conducted for a total of 2N solutions, with the top N solutions selected based
on better fitness. This approach enhances the diversity and exploration capabilities of the
population during the search process. Such a strategy facilitates the algorithm in escaping
local optima and accelerating convergence rates. The effectiveness of this strategy has been
validated through the improvement of various swarm intelligence optimization algorithms.

The SPM chaotic function is then reapplied to evenly distribute the selected solutions
in the solution space. The formula for opposition-based learning is as follows:

xo(t) = (Lb + Ub)− J ∗ x(t) (16)

where Lb and Ub are the lower and upper bounds of solution variables, respectively. J is a
random number in the range [0,1].

5.3. Nonlinear Adaptive Weight

According to the updating formula of particle velocity, the influence of vij(t) on
vij(t + 1) mainly depends on the size of the weight w. Therefore, this paper introduces a
new nonlinear function to calculate w. The nonlinear function formula is:

w =

(
1 − t

tmax

) 1
3

(17)

During the initial phases of iteration, the value of w should be relatively large with a
small rate of change, enabling particles to conduct a wide range of explorations across the
entire solution space. During the later stages of iteration, the value of w should decrease but
have a high rate of change, which facilitates local exploration and accelerates convergence.
Therefore, Equation (17) possesses functional attributes that effectively fulfill the needs for
both global and local particle exploration. Figure 5 shows the comparison of the change
curve of w during the iteration process before and after the improvement.
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5.4. Crossover Mutation Strategy

To enhance the diversity of the population and avoid becoming stuck in suboptimal
solutions, this paper introduces a mutation strategy to modify the population and global
optimal solutions [26]. In the early stages of particle iteration, as the individual positions
within the particle swarm may still be relatively dispersed, employing horizontal crossover
during this phase can further augment particle diversity, facilitate global searches, and
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prevent premature convergence to local optima. The mathematical formula for horizontal
crossover is:

Mxhc
i,d = r1 ∗ xi,d + (1 − r1) ∗ xj,d + s1 ∗

(
xi,d − xj,d

)
(18)

Mxhc
j,d = r2 ∗ xj,d + (1 − r2) ∗ xi,d + s2 ∗

(
xj,d − xi,d

)
(19)

where xi,d and xj,d represent the parents xi and xj of dimension d, respectively; Mxhc
i,d

and Mxhc
j,d are the offspring of xi and xj after crossing in the d dimension; r1 and r2 are

random numbers in the range [0, 1], which are used to control the weight distribution in the
crossover operation. In horizontal crossover, these random numbers determine the degree
of information mixing between parent particles. r1 controls the linear combination ratio
between xi,d and xj,d, while (1 − r1) controls the linear combination ratio of another part.
Because r1 is random, each crossover operation will generate different offspring particles,
which helps to increase the diversity of the population. s1 and s2 are random numbers in
the range [−1, 1], which are used to introduce disturbance or mutation in the crossover
operation. This disturbance helps the algorithm jump out of the local optimal solution
and explore a broader search space. In the formula, s2 ∗

(
xj,d − xi,d

)
is a disturbance term,

which adjusts the value of offspring particles according to the difference between xi,d and
xj,d and the random value of s1.

Through the randomness of r1 and r2, each crossover operation will generate different
offspring particles, which increases the diversity of the population. At the same time, the
disturbance introduced by s1 and s2 makes the offspring particles different from the parent
particles, which further increases the diversity of the population.

In the later stages of iteration, the particle swarm may gradually converge around
local optimal solutions. Vertical crossover can assist in breaking the positional inertia of
particles and guide them toward new search areas by performing crossover operations in
different dimensions [27]. The mathematical equation for vertical crossover is:

Mxvc
i,d = p ∗ xi,d1 + (1 − p) ∗ xi,d2 (20)

where Mxvc
i,d is generated by the vertical crossover of xi in the d1 and d2 dimensions;

p ∈ (0, 1). By employing both horizontal crossover and vertical crossover, particles can
share information and update their positions across many dimensions and particles. This
enables them to thoroughly explore the search space.

5.5. Spiral Search Strategy

Inspired by the prey encirclement behavior of the leading whales in the Whale Op-
timization Algorithm (WOA), in the iterative process of the whale algorithm, individual
whales utilize a spiral search strategy to update their positions relative to prey. This not
only ensures the convergence speed of the algorithm but also enhances individual diver-
sity [28]. In the early stages of the search phase, this paper assigns a higher probability of
selecting the traditional PSO particle update strategy to improve the convergence speed
of the algorithm, and in the later stages, it selects the spiral search method with a higher
probability to accelerate convergence [29,30]. The spiral formula is as follows:

x(t + 1) = D′·ez·l ·cos (2πl)+x∗(t + 1) (21)

D′ = |x∗(t + 1)− x(t)| (22)

where l represents a random number in the range [0, 1]. The spiral parameter Z cannot
remain constant because it limits the search to a monotonic pattern, which may trap particles
in local optima and impair the overall search capability of the algorithm. Consequently,
Z is designed as an adaptive variable, dynamically adjusting the spiral shape of particle
search trajectories. This design enhances the particles’ exploration of unknown regions,
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ultimately improving the algorithm’s search efficiency and global search performance. The
formula is as follows:

Z = ek· cos(π·(1− t
tmax )) (23)

where k represents the variation coefficient, and in this paper, k = 5. Z varies with the
number of operations. Specifically, the value of Z will vary between e−k and ek. When Z
approaches its maximum value (ek) and l approaches 1, ek will be very large, thus having
a significant impact on the particle position. On the other hand, when Z approaches its
minimum value (ek) and l approaches 0, ezl approaches 1, with a smaller impact on the
particle position. Through the above stages, the whole process of the IPSO algorithm is
complete, and its flowchart is shown in Figure 6.
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6. Ablation Experiment

To assess the impact of four strategies on enhancing the performance of the particle
swarm model, this paper compares the traditional PSO with an improved version, IPSO,
which incorporates these strategies alongside the backpropagation neural network. Table 4
illustrates the enhanced PSO incorporating various strategies and relevant parameter
settings. The experimental setup of this study is based on Intel Corporation's Core i7-
12700H hardware processor and MATLAB 2020 software platform.

Table 4. Improved PSO with the introduction of different strategies.

Algorithm Introduced Strategies Parameter Setting

PSO None C1 = C2 = 2

IPSO1 Nonlinear weight
Crossover strategy C1 = C2 = 2

IPSO2
Nonlinear weight
Crossover strategy

Chaos mapping
C1 = C2 = 2η = 0.4µ = 0.5

IPSO3
Nonlinear weight
Crossover strategy

Chaos mapping based on opposition-based learning
C1 = C2 = 2η = 0.4µ = 0.5

IPSO4

Nonlinear weight
Crossover strategy

Chaos mapping based on opposition-based learning
Spiral search strategy

C1 = C2 = 2η = 0.4µ = 0.5k = 5

In the ablation experiment, the model iteration count was set to 30, the population size
was 20, and both the individual learning factor C1 and social learning factor C2 were 2.

As can be seen from Figure 7, the introduction of the nonlinear weight and crossover
strategy in IPSO1 enhances the algorithm’s local optimization ability in the later stages.
After introducing chaos mapping, the convergence speed of IPSO2 is improved in the early
iteration stages, but its optimization ability has not improved much. By introducing chaos
mapping based on opposition-based learning, IPSO3 can find a superior global optimum
during the later stages of iteration. After introducing spiral search, IPSO4 can obtain a
better set of optimal parameters faster than IPSO3, which proves the effectiveness of the
proposed strategy.
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7. Test Function Experiment

To validate the performance of the improved algorithm, the DBO, SSA, PSO, and
HO algorithms and the proposed IPSO in this paper were tested using single-peak and
multi-peak test functions from the CEC2017 test suite. Parameter Settings for the DBO,
SSA, PSO, and HO algorithms can be found in Appendix A.

The single-peak test functions F1, F3, and F4 were employed to assess the local
exploration capabilities of the algorithms, while the multi-peak test functions F5–F10
served to evaluate their global search abilities. The mathematical formulas and boundaries
for all functions are shown in Table 5.

Table 5. Standard test function table.

Function Search Range

F1(x) = x2
1 + 106

D
∑

i=2
x2

i
[−100,100]

F3(x) =
D
∑

i=1
x2

i +

(
D
∑

i=1
0.5xi

)2

+

(
D
∑

i=1
0.5xi

)4
[−100,100]

F4(x) =
D−1
∑

i=1

(
100
(

x2
i − xi+1

)2
+ (xi − 1)2

)
[−100,100]

F8(x) =
D
∑

i=1

(
z2

i − 10cos (2πzi) + 10
)
+ F13∗ [−100,100]

F9(x) =

sin2(πw1) +
D−1
∑

i=1
(wi − 1)2[1 + 10sin2(πwi + 1)

]
+(wD − 1)2[1 + sin2(πwD)

] [−100,100]

F10(x) = 418.9829 × D −
D
∑

i=1
g(zi)

[−100,100]

All algorithms underwent 500 iterations with a population size of 100. Specifically,
the dimension of test function F1 was set to 30, and the dimensions of F3, F4, F8, F9,
and F10 were set to 50. To ensure the reliability of the results, each algorithm was tested
independently 30 times on each test function, yielding best, worst, and average values and
standard deviations. The experimental results are summarized in Table 6.

The outcomes of the single-peak test function reveal that the IPSO algorithm exhibits
superior optimization capabilities and convergence rates in comparison to three other
benchmark algorithms. In the context of multimodal test functions, the IPSO algorithm
stands out with exceptional optimization performance, particularly when confronted with
complex, multi-dimensional functions. Furthermore, analysis of the standard deviation un-
derscores the significantly higher stability of the IPSO function, attributable to its enhanced
population diversity. The integration of spiral search and crossover strategies ensures com-
prehensive exploration of the global search space, thereby effectively mitigating the issue of
severe homogeneity among individuals during late iterations. Overall, the IPSO algorithm
introduced in this study has undergone substantial improvements in terms of precision and
stability, with notable enhancements in convergence accuracy and stability, particularly for
both unimodal and multimodal functions. To display the effect of optimization intuitively,
this paper selects the optimization graphs of six functions, as shown in Figure 8.

Based on the iteration curves, it can be concluded that compared to the improved
IPSO, the DBO, SSA, PSO and HO algorithms require more iterations to achieve the optimal
value or to reach the same accuracy.

This is because, in the iterative process of IPSO, the introduction of multiple strategies
not only increases the diversity of high-quality particles in the population but also effec-
tively balances the global search and local search so that the particles can find better global
optimal values and improve the convergence speed of the algorithm.
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Table 6. Evaluation indicators of test function results.

Function Result IPSO DBO PSO HO SSA

F1

Best value 3.22 × 103 1.83 × 106 1.47 × 104 6.8 × 105 3.88 × 103

Standard deviation 2.18 × 104 5.81 × 107 7.08 × 108 2.42 × 107 4.11 × 103

Average value 2.08 × 104 4.83 × 107 3.17 × 108 1.44 × 107 9.87 × 103

Worst value 5.79 × 104 1.41 × 108 1.58 × 109 5.73 × 107 1.5 × 104

F3

Best value 8.4 × 103 3.37 × 104 1.43 × 104 2.37 × 104 3.26 × 104

Standard deviation 7.46 × 103 2.8 × 104 1.1 × 104 7.43 × 103 7.56 × 103

Average value 2.16 × 104 9.49 × 104 3.16 × 104 4.14 × 104 5.25 × 104

Worst value 4.28 × 104 1.65 × 105 6.46 × 104 5.47 × 104 6.8 × 104

F4

Best value 4.99 × 102 8.23 × 102 6.37 × 102 6.79 × 102 5.27 × 102

Standard deviation 59.9 2.25 × 102 1.96 × 102 2.62 × 102 2.52 × 102

Average value 5.9 × 102 1.21 × 103 9.1 × 102 1.06 × 103 7.75 × 102

Worst value 7.06 × 102 1.77 × 103 1.45 × 103 1.75 × 103 1.59 × 103

F8

Best value 9.57 × 102 1.11 × 103 1.1 × 103 1.06 × 103 1.02 × 103

Standard deviation 33.4 84.1 40.2 33 54.6
Average value 1.03 × 103 1.24 × 103 1.20 × 103 1.14 × 103 1.17 × 103

Worst value 1.08 × 103 1.41 × 103 1.29 × 103 1.2 × 103 1.28 × 103

F9

Best value 6.86 × 103 9.4 × 103 9.6 × 103 9.46 × 103 9.97 × 103

Standard deviation 7.14 × 102 6.67 × 103 1.49 × 103 5.19 × 103 1.46 × 103

Average value 7.99 × 103 1.92 × 104 1.36 × 104 1.78 × 104 1.36 × 104

Worst value 8.62 × 103 3.84 × 104 1.80 × 104 2.87 × 104 1.76 × 104

F10

Best value 6.86 × 103 7.41 × 103 5.91 × 103 6.36 × 103 6.39 × 103

Standard deviation 7.14 × 102 9.95 × 102 1.25 × 103 1.1 × 103 8.23 × 102

Average value 7.99 × 103 9.22 × 103 8.15 × 103 8.36 × 103 8.31 × 103

Worst value 8.62 × 103 1.16 × 104 1.12 × 104 1.1 × 104 1 × 104
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On the other hand, statistical analysis helps to confirm the significance of differences
between the results obtained by different algorithms. This study uses a nonparametric
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statistical test called the Wilcoxon rank sum test. Statistical testing has an output parameter
called a p-value, which determines the significance level of two algorithms. In this study,
two algorithms are considered statistically different only if the p-value resulting from the
Wilcoxon rank sum test is less than 0.05. Details are shown in Table 7.

Table 7. p-values obtained from test function.

Function IPSO versus DBO IPSO versus PSO IPSO versus HO IPSO versus SSA

F1 5.26 × 10−4 1.95 × 10−3 7.94 × 10−3 9.52 × 10−2

F3 2.61 × 10−10 0.42 7.62 × 10−3 1.68 × 10−3

F4 7.77 × 10−9 4.36 × 10−4 3.34 × 10−11 0.22
F8 3.67 × 10−3 1.46 × 10−10 1.17 × 10−3 4.24 × 10−2

F9 4.23 × 10−3 3.64 × 10−2 1.41 × 10−9 3.01 × 10−4

F10 3.55 × 10−1 7.22 × 10−6 4.55 × 10−1 9.63 × 10−2

It is observed that the p-value is less than 0.05 in most cases, which indicates that the
optimization ability of IPSO is statistically superior compared with other algorithms.

8. Example of Transformer Fault Data Diagnosis
8.1. Transformer Fault Diagnosis Model Based on Improved IPSO–BP–AdaBoost

To verify the effectiveness of the model in practical transformer fault diagnosis, DGA
samples collected from previously published literature and IEC TC10 databases were used
to create a fault diagnosis model. Among them, 70% of the sample dataset (417 samples)
was used as a training set, and the remaining 30% of the samples (179 samples) were used
as a test set. The model operation steps are as follows:

Step 1: Initialize the relevant parameters of IPSO: population size, maximum iteration
times, spatial dimensions, upper and lower bounds of the solution, and learning factors.
Initialize AdaBoost-related parameters: weak classifier weight α and sample weight D.
Step 2: Use the SPM function to generate N solutions according to Equation (15).
Step 3: Use opposition-based learning to generate N opposite solutions according to
Equation (16).
Step 4: Calculate the fitness of a total of 2N solutions and select the top N ranked solutions.
Step 5: Update the particle positions according to Equations (13) and (21).
Step 6: Determine whether the maximum iteration times have been reached. If so, output
the global optimal individual position; otherwise, return to the loop.
Step 7: Calculate the weight of each sample according to Equation (7).
Step 8: Calculate the weight of the weak classifier according to Equation (6).
Step 9: Determine whether each weak classifier has been trained. If so, integrate them
according to the weight of the weak classifier and output the result, which is the strong
classifier result according to Equation (8). Otherwise, return to the loop.

The diagnostic model used in this paper is shown in Figure 9.

8.2. Diagnostic Accuracy of Different Models and Feature Combinations

Firstly, the experiment aims to determine the optimal number of neurons in the two
hidden layers of the backpropagation neural network (BPNN). The initial configuration is
set at 8 neurons, with a subsequent increase to 16. To mitigate randomness, the experiment
was conducted over 30 iterations, and the average values were calculated. The results are
presented in Figure 10.

It is evident that the BPNN achieves optimal diagnostic performance when the number
of neurons is set at 12. However, it is noteworthy that without undergoing algorithmic
optimization, the diagnostic accuracy remains relatively low. Secondly, the experiment
compares the key parameters of the backpropagation neural network (BPNN) based on
various optimization algorithms, including the Sparrow Search Algorithm (SSA), Particle
Swarm Optimization (PSO), the Dung Beetle Optimization Algorithm (DBO), and the
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Hippopotamus Optimization (HO) algorithm. The number of iterations for each optimiza-
tion algorithm in the experiment is set to 30, the population size is 20, and the BPNN is
configured with 8 input nodes, 2 hidden layers each containing 12 neurons, and 6 output
nodes. The iteration curves of all models are shown in Figure 11.
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The experimental results indicate that, compared to other optimization algorithms,
the proposed IPSO algorithm in this paper possesses excellent global and local search
capabilities, achieving the fastest convergence while obtaining the smallest fitness value.
Some other algorithms lack local search capabilities in the later stages of iteration or require
longer iteration times to complete optimization. It is noteworthy that the optimization
ability of IPSO has significantly enhanced compared to PSO, further substantiating the
effectiveness of incorporating the four proposed strategies.

To further validate the effectiveness of the feature selection and models used in this
paper for practical transformer fault diagnosis, a comparative experiment was conducted
between the Duval triangle method, the Rogers ratios method [31], the IEC standard code
method, the clustering method, the ANN method, the conditional probability method, the
modified Rogers ratios method, the modified IEC code method, and the IPSO–BP–AdaBoost
method. The conditional probability method uses a Multivariate Normal Probability
Density Function (MVNPDF). Each method was tested independently 30 times, and the
average values were taken to minimize the randomness of single experimental results. The
experimental results are summarized in Figure 12, where the modified Rogers ratio method
and IEC code method are represented as *Rogers4 and *IEC60599, respectively. The closer
the color of the bar chart is to yellow, the higher the average accuracy; conversely, the closer
the color is to blue, the lower the average accuracy.

As seen in Figure 12, the accuracies of different methods for fault diagnosis are 64.34%
for Duval triangles, 47.87% for Rogers’ 4-ratios, 56.19% for IEC, 77.07% for clustering,
79.96% for the ANN technique, 74.02% for the conditional probability method, 68.93% for
refining IEC, and 62.98% for refining Rogers’ 4-ratios. The IPSO–BP–AdaBoost used in
this paper has the highest diagnostic accuracy (89.6%), which proves the effectiveness of
the method.

To verify the superiority of feature selection, PSO, DBP, SSA, HO, and IPSO algorithms
are used to optimize BP–AdaBoost, and the accuracy of 26 input features and 8 input
optimal features is compared. All results are averaged after 30 experiments, as shown in
Figure 13.

It is obvious that the diagnostic accuracy of all models is improved after the use
of the best feature set. Meanwhile, IPSO–BP–AdaBoost, proposed in this paper, has the
highest accuracy regardless of the input of all feature sets or the input of the best feature
set. Figure 14 shows the best performance of each model in 30 tests.
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As illustrated in Figure 14, the IPSO demonstrates the highest accuracy in classifying
various fault categories. This not only validates the effectiveness of the improved strategy
proposed in this paper when compared to traditional PSO but also highlights its advantages
over other intelligent algorithms.

In addition to the average diagnostic accuracy, this paper summarizes the kappa
coefficient, F1-scores, precisions, and recalls of various models. The kappa coefficient is
a measure that assesses the agreement between the predictions of a classification model
and the actual results. It effectively solves the problem of data imbalance and random
prediction. Precision represents the proportion of predicted positive instances that are
actually positive, while recall represents the proportion of actual positive instances that the
model correctly identifies. The F1-score is a measure that combines precision and recall. A
higher F1-score means better model performance, making it more reliable than accuracy in
scenarios involving unbalanced sample classes, as shown in Table 8.
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Table 8. Comparative evaluation of model diagnostic performance.

Models Kappa Coefficient F1-Score Recall Precision

PSO–BP–AdaBoost 0.7723 0.8090 0.8111 0.8068
DBO–BP–AdaBoost 0.8126 0.8398 0.8379 0.8418
SSA–BP–AdaBoost 0.8327 0.8617 0.8614 0.8620
HO–BP–AdaBoost 0.8326 0.8589 0.8599 0.8579

IPSO–BP–AdaBoost 0.8928 0.9145 0.9166 0.9124

It can be concluded from Table 8 that among the five models, IPSO–BP–AdaBoost
shows the best performance, which is superior to other models in classification accuracy
(Kappa coefficient), comprehensive performance (F1-score), ability to find all positive
samples (recall), and prediction accuracy (precision). SSA–BP–AdaBoost and HO–BP–
AdaBoost also showed better performance but were slightly inferior to IPSO–BP–AdaBoost
in various indexes. DBO–BP–AdaBoost and PSO–BP–AdaBoost, on the other hand, display
a degree of effectiveness, yet their performance is comparatively less robust when compared
to the other three models, particularly IPSO–BP–AdaBoost.



Electronics 2024, 13, 4149 20 of 22

This article further compares four deep learning models—DBNs (Deep Belief Net-
works), CNNs (Convolutional Neural Networks), ELMs (Extreme Learning Machine), and
BiGRUs (Bidirectional Gated Recurrent Units)—with IPSO–BP–AdaBoost. All models
utilized the dataset that had undergone feature selection, and each model was run 30 times
to obtain the average accuracy, as presented in Table 9.

Table 9. Comparison results with four deep learning models.

Models Highest
Accuracy Rate (%)

Minimum
Accuracy Rate (%)

Average
Accuracy Rate (%)

DBN 80.00% 50.83% 64.27%

CNN 86.03% 79.88% 82.64%

ELM 89.38% 80.44% 85.27%

BiGRU 85.47% 81.00% 83.89%

IPSO–BP–AdaBoost 91.06% 87.68% 89.60%

From Table 9, DBN has the lowest average accuracy and the largest difference between
the highest and lowest accuracy, indicating poor stability of the model. The average
accuracy of CNN and ELM is higher than that of DBN, but the robustness of both models
needs improvement. Although BiGRU exhibits good robustness, its average accuracy is
relatively low. The IPSO–BP–AdaBoost proposed in this paper can maintain high accuracy
while ensuring minimal fluctuation in each running result. This indicates that the model
has good robustness and consistency and can provide reliable diagnostic results.

9. Conclusions

In this article, the IPSO-BP AdaBoost algorithm, integrated with advanced feature
selection techniques, is employed to diagnose faults in power transformers. The feature
selection method utilizes Random Forests to construct more compact, precise, and informa-
tive feature subsets. The optimally selected features include C2H2/C2H4, C2H2/TH, TH,
(H2 + C2H4)/TG, H2, C2H6/TH, C2H4/TH, and C2H2. The IPSO algorithm, augmented
with multiple strategic enhancements, is utilized to optimize the initial weights and biases
of the BPNN. The innovative application of chaos mapping and opposition-based learning
methods for generating initial solutions has proven to be advantageous for parameter
optimization and mitigates the initialization sensitivity issue of the BPNN.

DGA samples sourced from domestic transformer data and the IEC-TC10 database
were employed to validate the efficacy of the optimal feature subset. Comparative analysis
of fault diagnosis performance between the optimal feature subset and other gas ratio meth-
ods revealed that the proposed feature subset delivers superior diagnostic performance
with an accuracy of 91.06%. This substantiates the advantages and effectiveness of the
proposed methodology. Additionally, comparisons with other models underscore the high
accuracy and robustness of the IPSO–BP–AdaBoost diagnostic model. However, due to its
high precision, it requires a longer training time. Consequently, future research will focus
on optimizing the model further to reduce training duration while simultaneously enhanc-
ing accuracy. On the other hand, in future research, in addition to the gas characteristics in
the oil, it is necessary to further study the relationship between other physical parameters
and transformer faults, to comprehensively judge transformer faults from multiple angles.
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Appendix A

Table A1. Parameter description of other algorithms in this paper.

Algorithm Parameter Settings

PSO Cognitive and social constants: 2 and 2
Inertia weight: linear reduction from 0.9 to 0.1

DBO

Probability of encounter: 0.1
Deflection coefficient: 0.1

Natural coefficient: 1 or −1
Constant: 0.3

SSA Leader position update probability: 0.5
Proportion of the number of leaders: 0.2
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