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Abstract: In dynamic scenarios, the status of a Radio Frequency Identification (RFID) system fluc-
tuates with environmental changes. The key to improving system efficiency lies in the real-time
monitoring and evaluation of the system status, along with adaptive adjustments to the system pa-
rameters and read algorithms. This paper focuses on the status changes in RFID systems in dynamic
scenarios, aiming to enhance system robustness and reading performance, ensuring high link quality,
reasonable resource scheduling, and real-time status evaluation under varying conditions. This
paper comprehensively considers the system parameter settings in dynamic scenarios, integrating
the interaction model between readers and tags. The system’s real-time status is evaluated from
both the physical layer and the Medium Access Control (MAC) layer perspectives. For the physical
layer, a link quality evaluation model based on Uniform Manifold Approximation and Projection
(UMAP) and K-Means clustering is proposed from the link quality. For the MAC layer, a multi-criteria
decision-making evaluation model based on combined weighting and the Technique for Order Pref-
erence by Similarity to Ideal Solution (TOPSIS) is proposed, which comprehensively considers both
subjective and objective factors, utilizing the TOPSIS algorithm for an accurate evaluation of the
MAC layer system status. For the RFID system, this paper proposes a real-time status evaluation
model based on the Classification and Regression Tree (CART), which synthesizes the evaluation
results of the physical layer and MAC layer. Finally, engineering tests and verification were conducted
on the RFID robot system in mobile scenarios. The results showed that the clustering average silhou-
ette coefficient of the physical layer link quality evaluation model based on K-Means was 0.70184,
indicating a relatively good clustering effect. The system status evaluation model of the MAC layer,
based on the combined weighting-TOPSIS method, demonstrated good flexibility and generalization.
The real-time status evaluation model of the RFID system, based on CART, achieved a classification
accuracy of 98.3%, with an algorithm runtime of 0.003 s. Compared with other algorithms, it had a
higher classification accuracy and shorter runtime, making it well suited for the real-time evaluation
of the RFID robot system’s status in dynamic scenarios.

Keywords: dynamic scenarios; RFID robot; system status; combined weighting-TOPSIS; k-means;
CART

1. Introduction

UHF passive RFID technology is widely used in the fields of logistics and warehous-
ing [1], anti-counterfeiting and traceability, and apparel retailing [2] due to its advantages
of low-cost, long-range, and batch fast identification, and it has had a far-reaching impact
on life. However, traditional RFID systems typically employ static deployment and fixed
parameter configurations, making it difficult to meet the growing performance demands
in complex, large-scale application scenarios, like unmanned warehousing, apparel retail,
and library and archive management. In recent years, with the development of RFID
technology and the continuous upgrading of industry applications, RFID usage has ex-
panded from static scenarios to dynamic applications, such as mobile robots, drones, and
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conveyor belts [3–5]. In these dynamic applications, how to achieve intelligent mobile
sensing capabilities for readers has become a key innovation in RFID technology. This not
only depends on the integration of RFID systems with technologies like 5G, intelligent
computing, automatic control, and deep learning but also reflects the inevitable trend of
RFID systems expanding into dynamic application scenarios.

In an RFID system, the tag and the reader are two key components, each with distinct
functions within the system. Tags are typically passive elements attached to objects, relying
on the energy received from the reader to respond. Passive RFID tags do not require an
internal battery and depend on the radio frequency signals emitted by the reader for power.
The reader is responsible for emitting electromagnetic waves and receiving reflected signals
from the tags to read the tag information. It plays an active role in the RFID system, not
only communicating with the tags but also adjusting communication parameters such as
power and frequency as needed. The efficiency and performance of the reader directly
affect the system’s recognition rate, the accuracy of data transmission, and the overall
reliability. In dynamic applications, the mobility of the reader and its real-time status
evaluation mechanism are crucial factors influencing the stability of the system.

The integration of mobile robots and RFID technology has become an important
approach for achieving mobile recognition through readers. In the integration of RFID
technology with mobile robots, several innovative applications have already emerged, for
instance, LibBot [6], which is used for automated inventory and location detection of books;
MONITOR [7], which is equipped with a rotating antenna and uses synthetic aperture
radar (SAR) for high-precision 3D positioning; CultureID [8], which can create a 3D map of
its surrounding environment and autonomously navigate and locate within the map; and
an obstacle avoidance robot [9] that builds an obstacle avoidance system by using automat-
ically tuned RFID tags on obstacles as near-field coupling detectors. These applications
demonstrate the vast potential for the integration of RFID and robotics technology.

In dynamic scenarios, the relative position between readers and tags, the number of
tags, and the identification medium are constantly changing. These factors directly affect
the efficiency and stability of the RFID system. Therefore, ensuring the efficient operation of
the system in dynamic scenarios depends on the real-time evaluation of the system’s status
and the corresponding dynamic adjustments to the parameters. Compared to traditional
static RFID deployment scenarios or applications involving tag movement [10,11], dynamic
scenarios where the reader is moving are more complex, posing greater demands on the
evaluation of the RFID system’s status. However, there is relatively little research on the
performance of RFID systems under the movement of readers in dynamic scenarios, which
also presents new challenges for system optimization.

In static scenarios, some scholars have already conducted research on the state of
RFID systems. For instance, K. M. Ramakrishnan [12] and ODIN [13] each carried out basic
evaluations of system state metrics and established foundational assessment benchmarks.
S. R. Aroor [14] studied the read range and recognition speed of tags in different medium
environments, while M. Periyasamy [15] delved into the changes in the read range and
read count of tags when placed near various media. Tianbao Li [16] introduced the concept
of a “set of metrics” and explored read speed, read range, and power attenuation in depth.
However, compared to static scenarios, the identification environment in dynamic scenarios
is more complex. The interaction environment between the reader and the tags changes
rapidly, with factors such as the identification environment, tag quantity, and medium
characteristics of the RFID system constantly in flux. For example, in mobile robotics
applications, as the reader moves, the system’s physical environment may experience issues
like reflection, interference, and occlusion, leading to unstable link quality. Simultaneously,
the relative motion between the reader and the tags requires the communication MAC
layer protocol to dynamically adapt to these changes. If key parameters of the RFID
system are not promptly adjusted according to changes in the system state, it can result
in decreased identification accuracy and efficiency, thereby affecting system reliability.
Therefore, establishing a real-time system state evaluation mechanism is not only central
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to ensuring the performance of dynamic RFID systems but also key to their ability to
meet future challenges in complex application scenarios and evolve toward a high level of
intelligence.

This paper primarily addresses the dynamic issue of reader movement and fixed tags.
It first explains the importance of real-time status evaluation of RFID systems in dynamic
scenarios and deeply analyzes the system’s status from both the physical layer and MAC
layer perspectives. It then constructs a physical layer link quality evaluation model and a
MAC layer system status evaluation model. Next, a real-time status evaluation method
suitable for dynamic scenarios in UHF passive RFID robot systems is proposed. Finally, the
aforementioned models are validated to ensure their effectiveness and reliability.

The remaining sections of this paper are arranged as follows: Section 2 introduces
the RFID system status in dynamic scenarios; Section 3 proposes a real-time evaluation
model and theoretical algorithms for the system status at the physical layer; Section 4
proposes a real-time evaluation model and theoretical algorithms for the system status at
the MAC layer; Section 5 combines the evaluation results of the physical and MAC layers to
propose a real-time evaluation model and theoretical algorithms for the RFID system status;
Section 6 conducts tests in dynamic scenarios and performs the calculation and analysis of
real-time status evaluations for the RFID robot system; and Section 7 concludes this paper.

2. Dynamic Scenario RFID System Status
2.1. RFID Dynamic Identification Scenarios

A typical application of RFID is usually static identification, where tags are identified
through fixed checkpoints, channels, or handheld devices. In a static RFID system, the
air interface parameter Q dynamically adjusts the frame length based on the collision
situation of the tags within the reader’s identification range, thereby improving the system’s
channel utilization.

In dynamic scenarios, RFID applications are no longer limited to fixed locations;
tags can be placed on conveyor belts and assembly lines or readers can be installed in
mobile robots, drones, AGVs (Automated Guided Vehicles), and other mobile equipment to
achieve mobile identification. With the development of technology and increased industrial
demand, RFID dynamic identification will gradually replace static identification to achieve
mobile identification and intelligent inventory.

In dynamic identification scenarios, the reader and tag are always in relative motion,
and the problem of random post-identification and missed reads of the tag can lead to
reduced efficiency of the RFID system. The complexity of dynamic identification scenar-
ios limits the ability of traditional Q-algorithms in improving performance and system
efficiency. In this paper, we take the RFID robot system as an example and use machine
learning methods to perform operations, such as real-time evaluation, clustering, and
prediction of the system status and physical link, to realize the intelligent perception of the
RFID system status and adaptive adjustment of the system parameters.

2.2. Real-Time Status Evaluation of RFID Systems

In RFID technology, the stability of the system status is critical to ensure efficient
identification. In static RFID systems, readers and tags are in a fixed position and use
preset parameters, and factors such as the reader recognition environment, number of
tags, and media remain unchanged, so the system status is relatively stable. However, in
dynamic scenarios, readers and tags are always in relative motion; the reader identification
environment, number of tags, tag space layout, link status, and other elements of real-time
changes result in the RFID system status being continually affected by dynamic factors,
showing dynamic changes in the characteristics.

As shown in Figure 1, this paper provides a comprehensive assessment of the RFID
system status from both the physical and MAC layer perspectives. The physical layer
analysis focuses on the fluctuation of the channel interference and link quality, which
are significantly reflected in the statistical characteristics of an RSSI (Received Signal



Electronics 2024, 13, 4162 4 of 27

Strength Indicator). The MAC layer analysis mainly focuses on the impact of the real-time
adjustment of air interface parameters on the system status, which are reflected in the key
performance indicators, such as time efficiency, identification efficiency, and throughput.
Through this multi-dimensional analysis, this paper aims to provide a theoretical basis for
the status evaluation and parameter optimization of RFID systems.
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Figure 1. System status evaluation plan.

3. Physical Layer System Status Evaluation

The physical layer in an RFID system is the basis for data transmission and is respon-
sible for signal modulation and demodulation, transmission rate control, and ensuring the
integrity and reliability of data transmission. Therefore, the quality of the communication
link is crucial to the normal operation of the physical layer. A high-quality link not only
improves the data transmission efficiency but also ensures the accuracy and reliability of
the data, indirectly affecting the overall performance of the RFID system.

To ensure the optimal performance of the physical layer, this paper proposes a real-
time evaluation method based on link quality. By monitoring and analyzing the link quality,
the physical layer system status changes are captured in time, providing an accurate basis
for system optimization and adjustment. The evaluation not only reflects the current link
status but also predicts potential communication problems to guarantee the stable operation
of the RFID system.

3.1. Performance Indicators

Link quality is an important metric used to describe the reliability and stability of
signal transmission in communication systems, and it can be evaluated from multiple
perspectives. Depending on the method of acquisition, link quality can be classified into
hard metrics and soft metrics. Based on the characteristics of the RFID system, this paper
evaluates link quality through the rate of identification, the number of inventory cycles, the
bit error rate, and the RSSI.

3.1.1. Rate of Identification

In dynamic scenarios, RFID systems can be piggybacked on mobile robots for identi-
fication. As the robot moves, the identification range of the reader is constantly moving.
As shown in Figure 2, the archive shelf evenly distributes a number of RFID tags that are
attached to the file. The reader at speed v is in front of the archive shelf mobile scanning,
with the movement of the reader constantly having the old tag leaving the identification
area and the new tag moving into the identification area.
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Figure 2. Reader identification process, where the red circle indicates the identification range of
the reader.

The relationship between the reader transmit power and signal propagation distance
in UHF passive RFID systems can be derived from the Friis equation:

Pr =
PtGrGtλ

2K
(4πd)2 (1)

d ≤ λ2

4π

√
PtGrGtτ

Pth
η (2)

where Pr is the tag backscattered power received by the reader; Pt is the transmitter power
of the reader; Pth is the tag activation sensitivity; Gr and Gt are the antenna gain of the
reader and tag, respectively; λ is the signal wavelength; d is the distance from the reader
to the tag; K is the antenna loading impedance matching coefficient; τ is the tag power
transfer coefficient; and η is the conversion efficiency, and in the practical environment, it is
generally taken as τ = 0.25 and η = 0.25.

According to Equation (2), the distance between the reader and the farthest tag within
the identification range is denoted as d. The identification range varies depending on the
horizontal distance r between the reader and the tag during the identification process, as
shown in Figure 2. Based on the calculations, the diameter of the identification range is
2
√

d2 − r2, and the area of the identification range is S = π(d2 − r2).
The effective scanning area of the reader can be categorized into primary and sec-

ondary detection regions. In the primary detection region, the probability that most tags
can be detected is close to 100%, while in the secondary detection region, the probability
that tags are detected is negligible [17]. Therefore, in this paper, the reader identification
range is specified as the rectangular region formed by the two dashed lines in Figure 3,
i.e., the primary detection region, ignoring the identification of tags on both sides.

There are mtotal tags evenly distributed on a shelf with a length of l and c layers, and
each layer has a height of h. The number of tags per unit length on each layer is mtotal

cl . A
robot moves at a constant speed of v m/s, and the reading range diameter of the reader is
2
√

d2 − r2.
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Figure 3. Reader identification range optimization, where different colors indicate different identifica-
tion ranges.

When
2
√

d2 − r2

h
< c, if c is odd, the number of layers of the shelf within the reading

range of the antenna is a = round

(
2
√

d2 − r2

h

)
, and if c is even, the number of layers of

the shelf within the reading range of the antenna is a =
⌊

2
√

d2−r2

h

⌋
. The number of tags

entering the reader’s detection range per unit time is n = a · mtotal
cl · v.

When
2
√

d2 − r2

h
≥ c, the number of tags entering the reader’s detection range per

unit time is n = mtotal
l · v, which represents the number of newly detected tags in theory.

Therefore, the number of tags successfully identified by the reader at second t is as follows:

mt = n · t (3)

The actual number of tags successfully identified by the RFID system is msuccess and
then the rate of identification for the system at second t is as follows:

RoI =
msuccess

mt
=

msuccess

n · t
(4)

3.1.2. RSSI

In RFID systems, the RSSI is sensitive to environmental changes and easy to obtain. A
high RSSI usually indicates good communication quality, so using the RSSI as a performance
metric helps accurately evaluate the link quality.

In dynamic scenarios, factors such as reader identification of the scenario, varying
distances between the reader and tags, and other continuously changing conditions affect
the RSSI. Therefore, this study comprehensively considers both the average level and the
degree of volatility of the RSSI to evaluate the impact of environmental factors.

(1) Average level of RSSI
Define RSSI as the average RSSI within a unit of time, reflecting the overall level of

the RSSI during that time.

RSSI =
1
n

n

∑
i=1

RSSIi (5)
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where RSSIi denotes the RSSI at time i and n denotes the number of RSSI samples per
unit time.

(2) Degree of volatility of RSSI
Define σ2

RSSI as the variance of the RSSI per unit time, reflecting the stability of the
RSSI per unit time.

σ2
RSSI =

1
n

n

∑
i=1

(
RSSI − RSSIi

)2 (6)

Define Skewness and Kurtosis as the standard third-order central moment and stan-
dard fourth-order central moment of the RSSI per unit time, describing the asymmetry and
steepness of the distribution of the RSSI per unit time, which facilitates the identification of
anomalies, such as sudden signal attenuation or enhancement reflecting rapid changes in
the environment.

A skewness value of zero indicates a symmetric data distribution; a positive value
indicates that the tail extends to the right and there are periods of extremely good link
quality; and a negative value indicates that the tail extends to the left and there are periods
of extremely poor link quality.

High kurtosis means that extreme values lead to increased variance and is often used
to characterize the link quality distribution. High kurtosis indicates that the data have
sharp peaks and thick tails, and the link quality fluctuates between extremely good or
extremely poor; low kurtosis indicates that the data distribution is flat and the link quality
is more stable.

Skewness =
n

(n − 1)(n − 2)

n

∑
i=1

[
RSSIi − RSSI

σRSSI

]3

(7)

Kurtosis =
n(n + 1)

(n − 1)(n − 2)(n − 3)

n

∑
i=1

[
RSSIi − RSSI

σRSSI

]4

− 3(n − 1)2

(n − 2)(n − 3)
− 3 (8)

Define the Link Quality Volatility Indicator (LQVI) with the following equation:

LQVI = w1 · σ2
RSSI + w2 · Skewness + w3 · Kurtosis (9)

where w1, w2, and w3 are the indicator weights of the σ2
RSSI , Skewness, and Kurtosis deter-

mined using the entropy weighting method.

3.1.3. Bit Error Rate

The bit error rate (BER) is an important measure of link quality, reflecting the propor-
tion of erroneous bits in data transmission. In RFID systems, due to the nature of wireless
communication, evaluating the BER is critical to ensure data accuracy and system reliability.
However, the BER in RFID systems is usually difficult to measure directly, so this paper
determines the generation of the BER by analyzing the interaction process between the
reader and the tag.

BERs in RFID systems typically occur at two stages. The first is when the tag sends an
RN16 to the reader, and although the reader is able to detect a completely tampered RN16,
individual bit errors cannot be detected, which results in the reader sending an ACK with
an invalid RN16 that cannot be answered by the tag. Secondly, when the tag transmits its
ID number in response to the reader’s ACK command, the error will be detected by the
CRC (Cyclic Redundancy Check).

Based on the analysis of the interaction commands between the reader and the tag
in Section 4.1, this paper considers the reader’s successful reading to occur when it sends
a QueryRepeat command after sending the ACK command; otherwise, the time slot is
regarded as an error slot.
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The BER is defined as the ratio of the number of bit error slots to the total number of
slots within a unit of time.

BER =
nerror

n
(10)

where n is the total number of slots within a unit time, and nerror is the number of slots in
which bit errors occur within a unit time.

3.2. A Physical Layer System Status Evaluation Model Based on UMAP and K-Means

In wireless sensor networks (WSNs), traditional link quality evaluation is typically
based on dividing the link into different levels according to its packet reception rate (PRR).
Data with the same link quality level exhibit certain similarities, while data samples of
different levels demonstrate distinct patterns. Based on the regularity of data similarity,
this paper adopts the UMAP and K-Means algorithms to evaluate link quality through the
performance metrics discussed in Section 3.1.

This section’s evaluation model construction is divided into two parts: UMAP-based
link feature extraction and a K-Means-based link quality evaluation model.

3.2.1. Link Feature Extraction Based on UMAP

UMAP (Uniform Manifold Approximation and Projection) is a nonlinear technique
used for dimensionality reduction and visualization. It works by constructing a graph
of neighboring points in high-dimensional space and optimizing the low-dimensional
embedding while preserving both local and global structures of the data [18]. UMAP is
computationally efficient, scalable, and flexible in terms of parameters, making it widely
used in the field of machine learning. Its algorithmic process is as follows:

Step 1: Data preprocessing. Standardize the original data so that each feature has a
mean of 0 and a variance of 1, eliminating the scale differences between different features.

Step 2: Build high-dimensional neighborhood graph. Use the KNN (k-nearest neigh-
bors) algorithm to find the k-nearest neighbors for each data point. Utilize a Gaussian
kernel function to calculate the edge weights in the high-dimensional neighborhood graph,
representing the similarity between the data. The weight calculation is as follows:

wij = exp

(
−

d2
ij − ρi

σi

)
(11)

where dij is the distance between data i and j, ρi is the distance threshold used to control
the local density, and σi is the local scale parameter.

Step 3: Initialize the low-dimensional embedding. Use random initialization or other
dimensionality reduction algorithms to generate the initial points of the low-dimensional
embedding. The weights in the low dimensional space are calculated as follows:

w′
ij =

1
1 + a · (d′ij)2b (12)

where d′ij denotes the distance between data points i and j in the low-dimensional space,
and a is a hyperparameter to adjust the distance distribution in the low-dimensional space.

Step 4: Optimize the low-dimensional embedding. Use gradient descent to compute
the gradient of the objective function, and update the positions of the low-dimensional
embeddings based on the gradient. The objective function typically used is cross-entropy,
which measures the difference in neighborhood similarity between the high-dimensional
and low-dimensional spaces. The function is as follows:

C = ∑
(i,j)

wij log

(
wij

w′
ij

)
+ (1 − wij) log

(
1 − wij

1 − w′
ij

)
(13)
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Step 5: Repeat the above steps until the objective function converges or the predefined
number of iterations is reached.

3.2.2. Link Quality Evaluation Based on K-Means

K-Means is a commonly used clustering algorithm that divides data points into K
clusters, maximizing the similarity of data points within the same cluster while minimizing
the similarity between data points in different clusters [19]. The K-Means algorithm has
low time complexity, making it suitable for handling large datasets, and its implementation
and results are easy to interpret. The clustering method is shown in Algorithm 1.

Algorithm 1 K-Means clustering algorithm

1: Input: sample set X = {x1, x2, · · · , xm}, number of clusters k
2: Output: Cluster partition C = {C1, C2, · · · , Ck}
3: Randomly select k samples from X as the initial cluster centers {µ1, µ2, · · · , µk}
4: repeat
5: for i = 1, 2, · · · , k do
6: Let Ci = ∅ (1 ≤ i ≤ k)
7: end for
8: for j = 1, 2, · · · , m do
9: Calculate the distance between sample xj and each cluster center µi: dij =

∥xj − µi∥2
10: Determine the cluster label of xj based on the nearest cluster center: λj =

arg mini∈{1,2,...,k} dij
11: Assign sample xj to the corresponding cluster: Cλj = Cλj ∪ {xj}
12: end for
13: for i = 1, 2, · · · , k do
14: Calculate new cluster centers: µ′

i =
1

|Ci | ∑x∈Ci
x

15: end for
16: for i = 1, 2, · · · , k do
17: if µ′

i ̸= µi then
18: Update the current cluster center µi to µ′

i
19: else
20: Keep the current cluster centers unchanged
21: end if
22: end for
23: until The current cluster centers have not been updated

Furthermore, based on the clustering results, record the upper and lower limits of
each parameter in each cluster, determine the parameter range for each level, and establish
the relationship between the link level and score as shown in Table 1.

Table 1. Relationship between link level and score.

Link Level Level Scoring (%)

Class I 100∼81
Class II 80∼61
Class III 60∼41
Class IV 40∼21
Class V 20∼1

The silhouette coefficient is an important metric for evaluating the quality of clus-
tering [20]. It reflects the effectiveness of clustering by evaluating how well a sample is
positioned within its assigned cluster. The silhouette coefficient has a range of [−1, 1],
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where a higher value indicates that the sample is better positioned within its cluster and
the clustering performance is better. The calculation formula is as follows:

Si =
bi − ai

max(ai, bi)
(14)

where ai is the average distance between the i-th sample and all the other samples in the
same cluster, and bi is the average distance between the i-th sample and all the samples in
its nearest neighbor cluster.

In this paper, the mean silhouette coefficient (MSC) is used to evaluate the overall
clustering performance. The higher the MSC value, the better the clustering result. The
calculation formula is as follows:

MSC =
1
n

n

∑
i=1

Si (15)

where n is the total number of samples, and Si is the silhouette coefficient of the i-th sample.
Further, based on the clustering results, determine the link level of the samples and

calculate the proximity of the sample parameters to the upper and lower limits of the link
level parameters, thereby accurately mapping the link level score.

The calculation formula for the closeness degree di of the i-th index is as follows:

di =
min(|xi − l1

ij|, |xi − l2
ij|)

|l2
ij − l1

ij|
(16)

where xi is the i-th metric of the link, and l1
ij and l2

ij are the lower and upper limits of the
metric’s range at the j-th level, respectively.

The composite closeness C is as follows:

C =
1
n

n

∑
i=1

1
1 + d2

i
(17)

where n is the total number of indicators.
Then, the group of parameters corresponds to the score:

score =
C − Cmin

Cmax − Cmin
× (Smax − Smin) + Smin (18)

where Cmin is the minimum value of the composite closeness, which is usually 0; Cmax is
the maximum value of the composite closeness, which is usually 1; and [Smin, Smax] is the
range of the current grade rating.

4. MAC Layer System Status Evaluation

In an RFID system, the MAC layer plays a critical role in the system’s efficient operation
and stability and is closely related to the implementation of the tag anti-collision protocol.
It is responsible for coordinating communication between multiple tags and the reader,
ensuring orderly and efficient data transmission.

Existing tag anti-collision protocols are typically based on a core assumption: no
new tags will enter the reader’s identification area during the identification process. This
assumption allows the protocol to accurately estimate the number of tags to be identified in
the current stage based on the identification situation in the previous stage, thereby setting
optimal operating parameters. However, in dynamic scenarios, this assumption no longer
holds. The dynamic entry and exit of tags during the identification process renders existing
protocols unable to adapt to environmental changes, leading to decreased identification
performance and even severe tag miss-read issues.
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To address the above problems, this paper will focus on studying the performance of
readers in mobile multi-tag identification scenarios. By conducting an in-depth analysis
of the interaction process between the reader and tags, this paper establishes MAC layer
performance indicators based on three aspects, system communication capability, identifi-
cation capability, and communication efficiency, in order to thoroughly evaluate the system
state at the MAC layer.

4.1. Reader–Tag Interaction

The existing RFID anti-collision algorithms are primarily based on improvements to
the ALOHA algorithm and the binary tree algorithm. Among them, the EPC C1G2 protocol
employs an anti-collision algorithm based on Dynamic Frame-Slotted ALOHA (DFSA) [21].
This algorithm divides the reader’s identification process into several frames, with each
frame consisting of a number of slots. The number of slots in each frame (i.e., the frame
length) is determined by the reader, and the number of slots per frame can vary.

Figure 4 is a link sequence diagram that illustrates the interaction between the reader
and the tag. The reader and the tag communicate within the frame slots using commands,
such as Query, QueryAdjust, QueryRepeat, and ACK. Depending on the number of tags
interacting with the reader within a slot, the frame slots can be classified into three types,
idle slot (no tag responds within the slot), successful slot (one tag responds within the slot),
and collision slot (multiple tags respond within the slot), as shown in Figure 5.

No 
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No 

Reply

Collision Detected

Invalid EPC

Effective EPC

RN16

Figure 4. Link sequence diagram.
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Figure 5. Slotted ALOHA algorithm model diagram.
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The interaction process between the reader and the tag captured using a spectrum
analyzer is shown in Figure 6.

Select Query Ack

PC + EPC + CRC16RN16

CW CW CW

T4 T1 T2 T1 T2

Reader

Tag

No 

Reply

CW Query

T1 T3

QuerySelect Query Ack

PC + EPC + CRC16RN16

CW CW CW

T4 T1 T2 T1 T2

Reader

Tag

No 

Reply

CW Query

T1 T3

Query

Figure 6. Reader commands and tag responses.

4.2. Construction of MAC Layer Performance Metrics

As shown in Figure 2, the reader identification process is described. For ease of under-
standing, let us assume the reader is fixed, and the tag enters the reader’s identification
area from the opposite direction at a speed of v. The reader’s identification area has a
length of d, and the entire identification area is composed of g consecutive identification
frames Fi (where 1 ≤ i < g, and g is the total number of frames during the identification
process). Each frame Fi consists of Li slots, i.e., Fi = { fij | j = 1, . . . , Li}, where Li is the
frame length, and Li = Ei + Si + Ci, where Ei, Si, and Ci represent the expected values of
idle slots, successful slots, and collision slots, respectively, in frame Fi.

When there are n tags in frame Fi, the probability that k tags fall in the same slot
follows a binomial distribution, namely,

P(k) = Ck
n

(
1
Li

)k(
1 − 1

Li

)n−k
(19)

The probabilities of successful slots, idle slots, and collision slots are denoted as Ps, Pe,
and Pc, respectively:

Ps = P(1) = C1
n

(
1
Li

)1(
1 − 1

Li

)n−1
=

n
Li

(
1 − 1

Li

)n−1
(20)

Pe = P(0) = C0
n

(
1
Li

)0(
1 − 1

Li

)n
=

(
1 − 1

Li

)n
(21)

Pc = 1 − Ps − Pe = 1 − n
Li

(
1 − 1

Li

)n−1
−
(

1 − 1
Li

)n
(22)

The expected values of successful slots, idle slots, and collision slots in frame Fi,
respectively:

Si = Li ∗ Ps = n
(

1 − 1
Li

)n−1
(23)
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Ei = Li ∗ Pe = Li

(
1 − 1

Li

)n
(24)

Ci = Li ∗ Pc = Li

{
1 − n

Li

(
1 − 1

Li

)n−1
−
(

1 − 1
Li

)n
}

(25)

As shown in Figure 4, the duration of idle slots, successful slots, and collision slots are,
respectively, as follows:

te = Tcmd + T1 + T3 (26)

ts = Tcmd + 2(T1 + T2) + TRN16 + TACK + TPC+EPC+CRC (27)

tc = Tcmd + (T1 + T2) + TRN16 (28)

where Tcmd is the time taken by the reader to send the anti-collision commands such as
Query/QueryAdjust/QueryRepeat, T1 is the time measured from the tag antenna port
for the reader to transmit to the tag to respond, T2 is the time for the tag to demodulate
the signals sent by the reader, T3 is the time for the reader to wait before sending the next
command after T1, T4 is the minimum time interval between commands sent by the reader,
TRN16 is the time the tag replies to the reader RN16, TACK is the time the reader sends
the ACK command, and TPC+EPC+CRC is the time the tag replies to the reader PC, EPC,
and CRC16.

The time efficiency ξ is defined as the statistical average of the ratio of the time
occupied by successful slots per frame to the total time within a unit time period, reflecting
the system’s effective communication capability over a given period:

ξ =
1
k

k

∑
i=1

ξi, 1 ≤ i ≤ k (29)

where ξk represents the time efficiency in frame Fk, and its formula is as follows:

ξk =
Skts

Tk
=

Skts

Skts + Cktc + Ekte
(30)

The identification efficiency η is defined as the total number of tags successfully
identified by the reader per unit of time, which directly reflects the system’s identification
capability:

η =
k

∑
i=1

Si, 1 ≤ i ≤ k (31)

where k denotes the number of frames per unit time and Sk denotes the number of successful
slots for the k-th frame.

The throughput thp is defined as the ratio of the number of successful slots to the total
number of slots within a unit of time, reflecting the overall communication efficiency of
the system:

thp =
∑k

i=1 Si

∑k
i=1(Ei + Si + Ci)

, 1 ≤ i ≤ k (32)

4.3. Frame Length Estimation

The EPC C1G2 protocol’s DFSA anti-collision mechanism stipulates that only the tags
selected by the reader through the Select command at the beginning of each frame can
participate in the identification process of the current frame [21]. Therefore, in a dynamic
environment, for newly arriving tags, the strategy adopted in this paper is that tags arriving
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during the current frame do not participate in the identification of that frame. Instead, they
will be identified in the next frame. Consequently, the tags to be identified in any frame
Fi+1 are composed of two parts: the tags that were not successfully identified in frame Fi
and the newly arrived tags during frame Fi. Thus, the number of tags to be identified in
the (i + 1)-th frame is as follows:

ri = βTi + ci (33)

where β is defined as the tag arrival rate, i.e., the average value of the number of tags newly
arriving in the identification area of the reader per unit of time in units of pcs/sec, and
when β = 0, it indicates that the reader is in a static environment with no tags arriving in
the tag identification process. Ti is the duration of the frame Fi, and ci is the number of
conflicting tags in the i-th frame. When the tags are uniformly distributed and the system
parameters are fixed, the number of tags entering the identification area of the reader in
unit time is constant, i.e., the tag arrival rate β is fixed.

The tag identification process is shown in Figure 7.

0r 1r 2r 1ir− ir 1ir+ 2gr − 1gr −

1F
2F iF 1iF+ 1gF − gF

iS 1iS +1S
2S 1gS − gS

β  β  β  β  β  β  β  

0r 1r 2r 1ir− ir 1ir+ 2gr − 1gr −

1F
2F iF 1iF+ 1gF − gF

iS 1iS +1S
2S 1gS − gS

β  β  β  β  β  β  β  

Figure 7. Tag identification process.

From Section 4.2, we know that the expected values of the successful slots, collision
slots, and idle slots in frame Fi are Si, Ci, and Ei, respectively; hence, we have the following:

Li = Si + Ci + Ei (34)

Ti = Sits + Citc + Eite (35)

According to Schoute’s method [22], it can be known that

ci = 2.39 × Ci (36)

Then,
ri = βTi + ci = β(Sits + Citc + Eite) + 2.39Ci (37)

According to the optimal frame length principle, the maximum channel utilization
can be achieved when the frame length is equal to the number of tags to be identified [23].
Therefore, in frame Fi+1, the frame length Li+1 is as follows:

Li+1 = ri = βTi + ci (38)
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According to Section 3.1.1, the number of tags entering the reader’s identification
range per unit of time, i.e., the tag arrival rate β, is as follows:

β =



round(
2
√

d2 − r2

h
) · mtotal

cl
· s, 2

√
d2−r2

h < c and c is odd⌊
2
√

d2 − r2

h

⌋
· mtotal

cl · s, 2
√

d2−r2

h < c and c is even

mtotal
l · s, 2

√
d2−r2

h ≥ c

(39)

4.4. MAC Layer System Status Evaluation Model Based on Combined Weighting-TOPSIS

Using a single method to determine indicator weights can lead to certain biases, result-
ing in a significant deviation between the calculated results and the actual situation [24].
Therefore, this paper proposes a system status evaluation model for the MAC layer based
on the AHP-EW-TOPSIS approach, which combines subjective judgment and objective
calculation. The process is shown in Figure 8.
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Figure 8. MAC layer system status evaluation model.
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4.4.1. Raw Data Processing

(1) Construct a Judgment Matrix
Assume that data from t time points are selected for evaluation, and each time point

corresponds to p evaluation criteria, forming a judgment matrix with t rows and p columns.

X =


x11 x12 · · · x1p
x21 x22 · · · x2p

...
...

. . .
...

xt1 xt2 · · · xtp

 (40)

(2) Standardization of Evaluation Metrics
Before evaluating performance indicators, they need to be standardized. Generally,

indicators are categorized into three types: positive, negative, and moderate. Different
types of indicators are processed using different range-based methods. The evaluation
indicators selected in this paper are all positive indicators.

For positive indicators, where larger values are better, the processing method is
as follows:

yij =
xij − xmin

j

xmax
j − xmin

j
(41)

4.4.2. AHP

The Analytic Hierarchy Process (AHP) is a subjective weighting evaluation method
that decomposes decision-making problems into more understandable sub-problems and
transforms subjective judgments into operable comparisons to achieve quantifiable in-
dicators. Decision-makers can systematically evaluate the interactions between various
elements to arrive at a reasonable comprehensive decision. In traditional evaluation
algorithms, the AHP is often used to establish a judgment matrix through pairwise com-
parisons [25]. The judgment matrix An×n is defined as follows:

An×n =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 (42)

where aij denotes the level of importance of the i-th evaluation indicator relative to the j-th
evaluation indicator. The degree of importance is shown in Table 2.

Table 2. Nine-point scale method and its meaning.

Scale Meaning

1 Both factors are equally important
3 The former is slightly more important than the latter

5 The former is significantly more important than the latter when comparing the
two factors

7 Comparing two factors, the former is more strongly important than the latter

9 The former is extremely more important than the latter when compared to both
factors

2, 4, 6, 8 The median of the above neighboring judgments

Reciprocal
If the ratio of the importance of factor i to factor j is aij, then the ratio of the

importance of factor j to factor i is aji =
1
aij

After constructing the judgment matrix An×n, its eigenvalues and eigenvectors are
calculated and the largest eigenvalue λmax as well as the eigenvector T = [t1, t2, . . . , tn]
corresponding to λmax are found.
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It is worth noting that when using the AHP to calculate weights, a consistency check
of the judgment matrix is required, which is defined as follows:

CR =
CI
RI

(43)

where CI =
λmax−n

n−1 , RI is the average random consistency index, and its values are shown
in Table 3.

Table 3. Random consistency index table.

n 1 2 3 4 5 6 7 8 9

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45

Only when CR < 0.1 is the consistency test passed, at which point the set of weight
vectors is W = {w1, w2, . . . , wn}, where wi =

ti
∑n

i=1 ti
.

4.4.3. EW

The entropy weighting (EW) method is an objective evaluation approach [26]. Unlike
the AHP, the EW method assigns weights based on the attributes of the data themselves.
It evaluates the importance and contribution of each indicator by calculating its entropy
value, thereby avoiding the biases introduced by subjective weighting and enhancing the
scientific and objective nature of decision-making.

(1) Calculate the entropy ej

ej = − 1
ln m

m

∑
i=1

(
Qij × ln Qij

)
(44)

Qij =
xij

∑m
i=1 xij

(45)

In the above formula, Qij represents the weight of the i-th evaluated object under the
j-th evaluation criterion. To avoid calculation errors caused by zero elements in Qij, the
normalized minimum value can be set to 0.002. If the information entropy ej of a certain
criterion is smaller, it indicates that the fluctuations of the criterion’s values are larger,
meaning that it provides more information. Therefore, this criterion will have a greater
weight in the comprehensive evaluation.

(2) Calculate weight w

w =
1 − ej

∑n
j=1(1 − ej)

(46)

For the indicator set X = {X1, X2, . . . , Xp}, the corresponding weight set is
W = {w1, w2, . . . , wp}.

4.4.4. AHP-EW Combined Weighting Method

The AHP method and the EW method yield k weight variables W1, W2, . . . , Wk, with
each weight having n observed indicator weight values, meaning that each variable is
n-dimensional. Kendall’s coefficient of concordance is used to test these weights. If the test
passes, it indicates that the weights exhibit concordance; if the test fails, it implies a lack of
concordance, suggesting significant differences between the weights.

Let Rij be the rank of Wij in Wj (i.e., the order), and Ri = ∑k
j=1 Rij. The hypothesis

testing problem is as follows:
H0: the K variables are uncorrelated; H1: the K variables are correlated.
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Under the null hypothesis, the ranks in each row do not differ significantly, while
under the alternative hypothesis, the ranks differ greatly across the rows. A test statistic
can be constructed as follows:

T =
n

∑
i=1

(
Ri −

1
n

n

∑
i=1

Ri

)2

(47)

The Kendall’s coefficient of concordance is expressed as follows:

We =
∑n

i=1

(
Ri − 1

n ∑n
i=1 Ri

)
k2(n3 − n)

=
1
n ∑n

i=1 R2
i − k2n(n + 1)/4

k2(n3 − n)/12
(48)

One can look up the null distribution table at n fixed

k(n − 1)We > χ2
n−1 (49)

If the test result supports H1, then H1 is accepted; otherwise, H0 is accepted.
If the test is passed, indicating that the weight differences calculated by the AHP

method and the EW method are not significant, then the combined weight is as follows:

Wc =
W1 + W2 + · · ·+ Wk

k
(50)

If the test fails, it indicates that there is a significant difference between the weights
calculated by the AHP method and the EW method. In this case, the CRITIC method
is used to calculate the weights for them, where sij represents the correlation coefficient
between weight i and weight j, and σj represents the standard deviation of weight j:

Cj = σj

m

∑
i=1

(1 − sij) (51)

θj =
Cj

∑n
j=1 Cj

(52)

Wc = θ1W1 + θ2W2 + · · ·+ θkWk (53)

4.4.5. TOPSIS

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is a
comprehensive evaluation method that assesses by comparing the proximity of sample
data to ideal standard values [27]. This method establishes two extreme reference points
in the evaluation space, representing the best and worst states, respectively. The relative
closeness of each evaluation object to these reference points is used to characterize its
distance. The closer an object is to the optimal point or the farther it is from the worst point,
the better its overall characteristics.

The comprehensive weight Wc of the indicators is obtained, and after positive stan-
dardization, the data are represented as x

′
ij. From this, the weighted decision matrix

R = (rij)m×n can be derived, where rij = Wcx
′
ij.

The maximum value and the minimum value of each indicator (i.e., each column) are
defined as r+j and r−j , respectively:{

r+j = max(r1j, r2j, . . . , rnj)

r−j = min(r1j, r2j, . . . , rnj)
(54)
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The distances between the i-th evaluation object and the maximum and minimum
values are defined as d+j and d−j , respectively:

d+i =

√
∑n

j=1

(
r+j − rij

)2

d−i =

√
∑n

j=1

(
r−j − rij

)2
(55)

The comprehensive evaluation index of each evaluation object is calculated:

Scorei =
d−i

d+i + d−i
(56)

5. Real-Time Evaluation Model for RFID System Status
5.1. Evaluation Model

Based on the physical layer system status score SPhy and the MAC layer system status
score SMAC, this paper classifies the RFID system status into four categories and proposes
an RFID system status evaluation model based on CART. The classification method is
shown in Figure 9, where the Level I system status is the best, and the Level IV system
status is the worst.

Input SPhy  SMAC

SPhy<60 60≤SPhy<80 SPhy≥90

SMAC≥90SMAC<90SMAC≥80SMAC<60

System Status=Ⅳ System Status=Ⅱ System Status=Ⅰ

80≤SPhy<90

SMAC<80

System Status=Ⅲ

SMAC≥60

Input SPhy  SMAC

SPhy<60 60≤SPhy<80 SPhy≥90
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System Status=Ⅳ System Status=Ⅱ System Status=Ⅰ

80≤SPhy<90

SMAC<80

System Status=Ⅲ

SMAC≥60

Figure 9. RFID system status classification.

5.2. RFID System Status Evaluation Model Based on CART

Decision tree is a supervised learning technique and a classification algorithm based on
a tree structure that classifies data through a series of rules [28]. The CART (Classification
and Regression Tree) algorithm used in this paper is one of the classic algorithms of decision
trees. Compared to other decision tree algorithms, CART splits the data recursively using a
binary tree. The core idea of CART is to select the optimal split point at each step, dividing
the dataset into two subsets to maximize the purity of the subsets. The decision tree
generated by CART has high interpretability, can effectively capture nonlinear relationships
in the data, and is fast to train, making it particularly suitable for large-scale datasets. The
algorithm flow is as follows:

Step 1: Selecting the Best Split Point. The CART decision tree uses the Gini index as
the measure for splitting nodes and selects the feature with the smallest Gini index as the
best splitting feature.

For a specific value a of a feature A, after splitting the dataset D into two subsets D1
and D2, the formula for calculating the Gini index is as follows:

gini_index =
|D1|
|D| gini(D1) +

|D2|
|D| gini(D2) (57)

gini(ai) = 1 − ∑
i
(p2

i ) (58)
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where pi denotes the proportion of the number of samples in a category to the total number
of samples. The smaller the gini, the more evenly distributed the samples.

Step 2: Recursively Build the Decision Tree. Apply the splitting method at each node
recursively until a stopping criterion is met (for example, the number of samples in a node
is below a threshold or the Gini index is below a threshold).

Step 3: Pruning. After building the complete tree, pruning is used to remove parts of
the tree that may lead to overfitting. CART typically uses cost-complexity pruning, which
minimizes a cost-complexity function.

Step 4: Classification and Prediction. For a new sample, the CART algorithm starts
from the root of the tree and moves down through the splits based on the sample’s feature
values until reaching a leaf node. The class of the leaf node is the predicted result for
that sample.

6. Calculation and Analysis of Real-Time Status Evaluation
6.1. Test Scenario

The test scenario is set up in a spacious indoor environment. The archive shelf has
five levels, with a length of 2.5 m, a height of 2 m, and a shelf height of 0.4 m. A total
of 100 archive boxes, each randomly placed on the shelf, are affixed with 900 MHz UHF
passive RFID tags on their sides. The choice of these tags and the reader is based on their
common use and performance in industrial applications. A mobile robot (Water robot)
equipped with an Impinj SpeedWay Reader and a 9 dBi circularly polarized antenna moves
parallel to the archive shelf at different speeds to perform tag identification tests.

The spectrum analyzer (Keysight N9010B) used in the tests is employed to capture the
interaction process between the reader and the tag in order to analyze time slot information.
All the test data are collected under the same environmental conditions to ensure data
consistency and comparability.

The test scenario is illustrated in Figure 10, and the test equipment is detailed in
Table 4.

Impinj SpeedWayRFID Robot

Antenna

Tag

Impinj SpeedWayRFID Robot

Antenna

Tag

(a)

Keysight N9010BKeysight N9010B

(b)
Figure 10. Test scenario. (a) Archive shelf test scenario. (b) Spectrum analyzer test scenario.

In the process of mobile identification, an orthogonal table based on the number and
levels of the RFID system parameters from Table 5 is designed. Then, the RFID system
parameters according to the combination forms in the orthogonal table are tested. For each
parameter combination, 50 tests are conducted, and the average is taken. A comprehensive
analysis of the impact of different parameter combinations on the system’s performance
is conducted.
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Table 4. System equipment selection and performance specifications.

Equipment Equipment Parameters

RFID Tags UHF 900 MHz electronic tag
Reader Impinj SpeedWay Reader

Antenna 9 dBi circular polarization reader antenna
RFID Robot Water robot

Spectrum Analyzer Keysight N9010B

Table 5. RFID system parameters.

Parameters Parameter Value Parameter Unit

Reader–Tag Distance 0.5, 1, 1.5, 2 m
Reader Power 20–30 dBm

Reader Frequency 920.625 MHz
Robot Speed 0.1–0.7 m/s

6.2. Verification of the RFID System Status Evaluation Model
6.2.1. Verification of the MAC Layer System Status Evaluation Model

(1) Indicator Preprocessing
The performance indicators selected in this paper are the throughput per unit time

X1, identification efficiency X2, and time efficiency X3, which are obtained by analyzing
the time slot information collected by a spectrum analyzer during the movement of the
RFID robot. All three are positive indicators, and the positive indicator processing method
is used.

(2) Determination of Index Weights
Using subjective weights to assign scores to the importance of different performance

indicators, the judgment matrix is constructed as follows:

H1 =

1 3 5
1
3 1 2
1
5

1
2 1

, H2 =

1 2 3
1
2 1 2
1
3

1
2 1

, H3 =

1 1 3
1 1 3
1
3

1
3 1

 (59)

An approximate solution method is used to calculate the eigenvector of the judgment
matrix, and a consistency check is performed to obtain the subjective weights:

Ws = (W1, W2, . . . , W3) (60)
W1 = (0.6483, 0.2297, 0.1220)
W2 = (0.5396, 0.2970, 0.1634)
W3 = (0.4286, 0.4286, 0.1429)

(61)

The indicator data of each set of parameters are input into the EW method to calculate
the objective weights Wo of each indicator:

Wo = (0.4427, 0.4455, 0.1118) (62)

The comprehensive weight Wc is as follows:

Wc = (0.4908, 0.3819, 0.1273) (63)

Based on Equation (63), throughput is the most critical metric for evaluating the system
status of the MAC layer in RFID systems.

(3) Combined Weighting-TOPSIS Comprehensive Evaluation
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Based on the weighted decision matrix R = (rm×n
ij ), using Equation (54), the best

solution matrix f ∗(+) and the worst solution matrix f ∗(−) for the model are obtained,
respectively, as follows:{

f ∗(+) = (0.0011, 0.0008, 0.0003)
f ∗(−) = (0.8688 × 10−3, 0.6769 × 10−3, 0.2389 × 10−3)

(64)

Figure 11 illustrates the comparison between the real-time throughput and MAC
layer system status during the 60 s movement of the RFID robot. It can be observed that
the throughput fluctuations of the RFID robot remain relatively stable during movement,
making it difficult to intuitively reflect the instantaneous changes in the system status. In
contrast, the multi-indicator integrated system status sensing model can provide a finer
granularity, clearly revealing the dynamic changes in the MAC layer system status. This
indicates that the multi-indicator system status sensing model is more aligned with the
actual evaluation and decision-making process, offering more accurate evaluation results.

Figure 11. MAC layer system status scoring.

6.2.2. Validation of the Physical Layer Link Quality Evaluation Model

The dataset used for evaluating the physical layer link quality consists of nonlinear,
high-dimensional data. To improve the efficiency of the data analysis and the accuracy of
its structure, this paper adopts the nonlinear dimensionality reduction algorithm UMAP to
perform dimensionality reduction, extracting three link feature parameters. Furthermore,
the K-Means algorithm is used to cluster these link feature parameters, and the entropy
weight method is applied to calculate the weights of various indicators. The clusters are
then weighted and ranked, dividing the link quality into five levels, ranging from Level I
(best) to Level V (worst). The weightings of the various indicators are shown in Table 6,
while the weight distribution of variance, kurtosis, and skewness in the signal strength
under the LQVI is shown in Table 7. The clustering results are depicted in Figure 12. The
average silhouette coefficient is 0.70184, indicating high cohesion and separation, with clear
cluster boundaries and good clustering performance.

According to the K-Means algorithm, the value range of the link parameters at different
link levels is shown in Table 8.
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Table 6. Indicator weighting.

Indicator Weighting

RSSI 0.2746
LQVI 0.1353
BER 0.1996
RoI 0.1902

Number of Inventory 0.2003

Table 7. Weightings of each indicator in LQVI.

Indicator Weighting

σ2
RSSI 0.3161

Skewness 0.3048
Kurtosis 0.3791

Figure 12. Link quality evaluation results.

Table 8. Link levels and parameter ranges.

Link Level RSSI LQVI Number of
Inventory BER RoI

Class I −56.36∼46.54 0.009∼0.312 77∼176 0.001∼0.046 0.226∼0.985
Class II −65.23∼48.97 0.069∼0.286 12∼152 0.001∼0.031 0.381∼0.973
Class III −65.74∼51.30 0.015∼0.164 17∼128 0.001∼0.037 0.500∼0.988
Class IV −66.15∼50.55 0.114∼0.361 15∼80 0.001∼0.043 0.108∼0.988
Class V −66.02∼48.48 0.016∼0.287 12∼58 0.001∼0.047 0.111∼0.985
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6.2.3. Verification of the RFID System Status Evaluation Model

The system status scores of the physical layer and MAC layer are integrated into a
new dataset as input for the CART algorithm to classify the RFID system status. The input
data are split into a training set and a test set in a 7:3 ratio, and the CART algorithm is
used for evaluation. The results are shown in Table 9. The sample distribution is shown in
Figure 13, where red markings indicate misclassified samples.

Table 9. Evaluation of classification algorithms.

System Status Class Accuracy ACU Recall F1-Score

Class I 100.0% 0.930 0.964
Class II 95.8% 0.986 0.971
Class III 98.3% 0.991 0.987
Class IV 99.1% 0.991 0.991

Total 98.3% - -

Figure 13. Classification results of RFID system status, where red markings indicate misclassified
samples.

To evaluate the performance of the CART-based RFID system status evaluation method
with different numbers of tags, test scenarios were set up with 50 and 150 tags, respectively,
and RFID system status evaluations were conducted. The CART classification results are
shown in Table 10.

Table 10. Classification accuracy under different numbers of tags.

Tag Density Accuracy

Low 98.7%
Medium 98.3%

High 92.1%

This paper selects the Support Vector Machine (SVM), Random Forest (RF), Gaussian
Naive Bayes (GNB), and Multilayer Perceptron (MLP) algorithms to compare with the
status evaluation method of an RFID system based on CART. Classification accuracy and
algorithm running time are used as performance evaluation criteria. The same dataset is
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used to train the aforementioned algorithm models, and 1000 test set samples are used for
classification. The performance comparison of different algorithms is shown in Figure 14,
and the classification accuracy and running time are presented in Table 11. The results
show that the RFID system status evaluation method based on CART has a shorter running
time and higher classification accuracy.

Figure 14. Comparison of classification algorithm performance.

Table 11. Comparison of different algorithms.

Algorithm Running Time (s) Test Set Accuracy

GNB 0.003 96.2%
RF 0.147 98.8%

SVM 0.015 96.8%
MLP 0.364 81.6%

CART 0.003 98.3%

6.3. Practical Applications and Engineering Contributions

This paper proposes a system for the real-time status evaluation of UHF passive RFID
robots in dynamic scenarios, providing an effective tool for evaluating and optimizing
the performance of RFID systems in such environments. By monitoring and analyzing
the RFID system’s behavior in real time within dynamic settings, engineers can promptly
adjust system parameters and optimize resource allocation, thereby enhancing the system’s
robustness and adaptability. This method not only reduces misreads and missed reads,
improving recognition accuracy, but also supports intelligent decision-making by auto-
matically adjusting the system to accommodate environmental changes, such as reader
movement or changes in the number of tags. Moreover, this study promotes the integra-
tion of RFID technology with emerging technologies, offering technical support for the
development of new application scenarios and the enhancement of performance in existing
applications. This helps reduce operational costs, improve user experience, and drive
the establishment of relevant industry standards. In summary, this research lays a solid
theoretical and practical foundation for the widespread application of RFID technology in
various fields, such as logistics, retail, and smart manufacturing, injecting new momentum
into the digital transformation and intelligent upgrading of industries.

7. Conclusions

This paper first elaborates on the theoretical foundation of the real-time evaluation of
the RFID system status in dynamic scenarios and highlights its critical role in improving the
efficiency of RFID robot systems. It proposes different perspectives for evaluating the status
of the RFID system. Then, it presents a real-time evaluation method for the MAC layer
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status of UHF passive RFID robot systems in dynamic scenarios, based on a combination
weighting-TOPSIS approach. Additionally, it introduces a real-time evaluation method for
physical layer link quality based on UMAP and K-Means, and by integrating the results
of both evaluations, it proposes a real-time RFID system status evaluation method using
CART. Finally, through comparison with other algorithms, the results demonstrate that the
method proposed in this paper achieves an accuracy of 98.3% and an algorithm runtime of
0.003 s, outperforming other algorithms. This method is highly suitable for the real-time
evaluation of the RFID robot system status in dynamic scenarios.

Considering the requirements for RFID system status evaluation in dynamic scenarios,
future research will focus on the following two aspects:

1. The generalization ability of existing models is limited, especially when applied to
more complex or diverse dynamic scenarios, where the model’s performance may degrade.
Future research will emphasize training with more diverse scenarios, using a broader
range of scene data to train models. This will enhance their generalization ability, ensuring
stability in complex environments.

2. The focus will be on designing adaptive recognition algorithms and adjustment
strategies based on system status evaluation results. This will optimize the RFID system
status in dynamic scenarios, ultimately achieving intelligent awareness of the system status
in these environments.
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