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Abstract: Wave energy is a promising source of sustainable clean energy, yet its inherent intermittency
and irregularity pose challenges for stable grid integration. Accurate forecasting of wave energy
power is crucial for reliable grid management. This paper introduces a novel approach that utilizes a
Bidirectional Gated Recurrent Unit (BiGRU) network to fit the power matrix, effectively modeling the
relationship between wave characteristics and energy output. Leveraging this fitted power matrix,
the wave energy converter (WEC) output power is predicted using a model that incorporates a
Convolutional Neural Network (CNN), a Bidirectional Long Short-Term Memory (BiLSTM) network,
and deformable efficient local attention (DELA), thereby improving the accuracy and robustness of
wave energy power prediction. The proposed method employs BiGRU to transform wave parameters
into power outputs for various devices, which are subsequently processed by the CNN-BiLSTM-
DELA model to forecast future generation. The results indicate that the CNN-BiLSTM-DELA model
outperforms BiLSTM, CNN, BP, LSTM, CNN-BiLSTM, and GRU models, achieving the lowest mean
squared error (0.0396 W) and mean absolute percentage error (3.7361%), alongside the highest R2

(98.69%), underscoring its exceptional forecasting accuracy. By enhancing power forecasting, the
method facilitates effective power generation dispatch, thereby mitigating the adverse effects of
randomness on the power grid.

Keywords: attention mechanism; convolutional neural network; BiLSTM; power matrix; prediction;
wave energy converter

1. Introduction

The oceans cover 71% of the Earth’s surface, and wave energy is a major part of ocean
energy, with many advantages, including large reserves, high power density, and low
pollution. In the 20th century, the large-scale use of fossil fuels, such as coal and oil, has led
to global warming and the depletion of natural resources. Consequently, renewable energy,
such as wave power, has come into focus [1]. The global potential output of ocean wave
energy is calculated to be 337 gigawatts [2], with an energy density several times higher
than traditional green energies such as solar and wind power [3]. Against this backdrop,
interest in harnessing electricity from waves using wave energy converters has surged.
Wave energy has become a formidable contender among renewable energies, playing a
crucial role in the industrial development of coastal cities. However, weather, seasons, sea
surface temperature, and atmospheric pressure affect the output power of wave energy
devices, leading to instability. The resulting randomness and intermittency pose challenges
to the stable operation of the power grid [4,5]. Therefore, accurate power output prediction
is of great significance for ensuring the safe and stable operation of wave energy devices
once integrated into the grid.
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Currently, researchers have conducted extensive studies on the prediction of wave
energy converter, with the primary technical approaches categorized into three main types [6]:
physical modeling [7], statistical methods [1,8–10], and machine learning techniques [6,11–13].
Among them, physical modeling methods rely on validated physical models to establish
mathematical models without depending on extensive historical data, making them suitable
for large-scale wave energy predictions. For example, Zheng et al. [14] developed a wave
forecast product for Chinese seas based on the WAVEWATCH-III (WW3) physical model.
Similarly, Shao et al. [15] developed a hexagonal array wave energy converter product based
on wave power and predicted wave power generation efficiency using physical models.

Statistical methods use parameter estimation and historical data curve fitting to
establish predictive models, offering robust, versatile, and fast modeling techniques.
Wu et al. [16] employed an Auto Regressive Integrated Moving Average (ARIMA) model
to predict wave heights. However, the effectiveness of statistical methods is closely related
to the quality of historical data. During the actual sampling process, some of the historical
wave data may be missing or incorrect, resulting in significant degradation of the model
performance. For this purpose, Discrete Wavelet Transform (DWT) is combined with
ARMA to predict the true output power.

With advances in computer science and hardware, machine learning techniques are
increasingly recognized for their advantages in renewable energy prediction. Forms of
artificial intelligence and machine learning methods can be autonomous in learning the
association between input features and output results [17], Accurate predictions can be
achieved by using deep learning methods on target objects. Yan et al. [5,18] reduced net-
work energy consumption and minimized error through behavioral critique and deep
reinforcement learning. These methods possess strong resilience to interference and high
prediction accuracy and are now widely applied in solar [19] and wind energy [18,20]
forecasting. The development of ocean observation technology has led to the availability of
abundant datasets of sea waves and oceanic meteorological data, providing a foundation
for machine learning-based wave energy prediction. For instance, Elbisy et al. [21] used
a Support Vector Machine (SVM) optimized by the Licorne algorithm to predict wave
parameters, demonstrating strong generalization ability and minimal prediction error.
Feng et al. [16] compared the performance of Recurrent Neural Networks (RNNs), Gated
Recurrent Unit (GRU) networks, and Long Short-Term Memory (LSTM) networks in pre-
dicting wave parameters, finding that LSTM and GRU models significantly outperformed
traditional RNN models. Additionally, Yang et al. [22] applied a Convolutional Neural Net-
work (CNN) combined with Seasonal-Trend Decomposition (STL) and Positional Encoding
(PE) to predict significant wave heights. Building on these findings, this paper proposes a
short-term wave power prediction method that integrates CNN, BiLSTM, and Deformable
Efficient Local Attention (DELA) mechanisms, as well as a power-fitting matrix based on
BiGRU. The main contributions of this paper include the following:

1. Designing a BiGRU power fitting matrix that can convert wave parameters into
wave energy power output using the wave power generation matrix obtained from
simulation software when wave information is input.

2. Utilizing CNN and BiLSTM to extract feature maps from multidimensional inputs,
which are derived from time series data.

3. Designing a new attention mechanism to enhance the feature extraction capability of
BiLSTM, and comparing it with seven mainstream attention mechanisms, with results
showing that the DELA attention mechanism has strong feature extraction capabilities.

4. Comparing the proposed CNN-BiLSTM-DELA model with other established wave
prediction models and generalization experiments using January–June 2024 data, and
the results show that the model proposed in this paper outperforms the benchmark
model in wave power prediction.
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2. Power Conversion Module

This chapter analyzes the relationship between significant wave height, wave period,
and power through simulation software, thereby constructing the power matrix for the
point absorber wave energy converter. The BiGRU model was used for fitting to achieve
high-accuracy power prediction.

2.1. Mathematical Model of Wave Energy Converter Device

This study utilizes a point absorber wave energy converter device, the structure of
which is shown in Figure 1. The floater is rigidly linked to a permanent magnet synchronous
motor, and both perform synchronous heaving motion, with the motor rotor cutting through
the magnetic field to generate electricity.

According to Newton’s second law, analyzing the vertical forces on the direct-drive
wave energy converter system allows for the derivation of the floater’s time-domain
hydrodynamic model:

mẍ(t) = Fd(t) + Fr (t) + Fs(t) + Fg(t). (1)

In the equation, m is the total mass of the system’s moving parts; ẍ is the heave
acceleration of the floater; Fd(t) is the wave excitation force; Fr(t) is the radiation force;
Fs(t) is the hydrostatic restoring force; and Fg(t) is the counter-electromotive force.

Incident wave

Float

Connecting rod

PMLG

Stator

Movers

Displacement 

X(t)

rd ( ) ( ) ( ) ( )s gF t F t F t F t

Anchor Point

Link Cable

Figure 1. Direct drive generator patterns in CNN-BILSTM-DELA based short-term prediction
model structure.

When the float is in an equilibrium position, it can be expressed as:

Fs = Kz(t) = ρgπr2x(t). (2)
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In the equation, r is the float radius; K is the hydrostatic spring coefficient of the float.
The radiation force can be expressed as:

Fr = ma ẍ(t) + Bẋ(t). (3)

In the equation, ma is the additional mass of the system in the infinite frequency
domain, and B is the damping coefficient caused by the radiation force. The wave excitation
force and radiation force can be expressed as:{

Fd = iωρ
∫∫

s(ϕI + ϕD)ndS.
Fr = iωρ

∫∫
s ϕRndS.

(4)

In the equation, ρ is the density of seawater; n is the unit vertical normal of the floater;
S is the wetted surface area of the floater; and ΦR,ΦI , and ΦD are the incident wave radia-
tion potential, incident wave velocity potential, and incident wave diffraction potential,
respectively. The wave excitation force Fd is the sum of the Froude–Krylov force and
diffraction force derived from the incident and diffraction potentials. The electromagnetic
damping force acting on the floater can be expressed as:

Fg(t) = Rg ẋ(t). (5)

In the equation, Rg is the electromagnetic damping coefficient.
By substituting (2) to (5) into (1), the motion equation of the entire system can be

expressed as:
Mẋ(t) + Bẋ(t) + Kx(t) + Fg(t) = Fd(t). (6)

In the equation, M = m + ma. The average electromagnetic power p̄ generated by
the direct driven point absorption wave energy converter system can be calculated by the
following formula:

P̄ =
1
T

T∫
0

(Rd ẋ2)dt. (7)

where T is the wave period.
The three power generation powers generated by the permanent magnet linear gener-

ator can be calculated using the following formula:

Pgen = uaia + ubib + ucic. (8)

In the equation, ua, ub, and uc are the three-phase output voltages generated by the
permanent magnet linear generator; ia, ib , and ic are the three-phase currents generated.

The average power generation can be calculated using the following formula:

P̄ =
1
T

T∫
0

Pgendt. (9)

2.2. Pearson Correlation Analysis of Factors Affecting Wave Energy Converter

Factors affecting power generation include significant wave heights, seawater temper-
atures, sea surface temperatures, wind speeds, atmospheric pressure, and wave periods. To
determine the input variables for the model, the Pearson correlation coefficient is used to
establish the correlation between the power generation of the wave energy converter and
other factors. The formula is:

rx,y =
1
n ∑n

i=1(xi − x)(yi − y)√
1
n ∑n

i=1(xi − x)2
√

1
n ∑n

i=1(yi − y)2
. (10)
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In the equation, xi and yi are the variables for correlation analysis, x and y are the
means of these variables, n is the sample size, x is wave height, and y represents other
factors besides wave height.

A heatmap of the wave feature correlations is shown in Figure 2. Power generation
(power) has the highest correlation with significant wave height (swh) and mean wave
period (mwp). It also has a correlation greater than 0.4 with the wave drag coefficient
(cdww), air density above the ocean (p140209), and mean sea level pressure (msl), while
other factors are negatively correlated. Therefore, swh and mwp are selected as input
features for the prediction model.

Figure 2. Wave feature correlation analysis heatmap.

2.3. Simulation Model Establishment

Wave energy converter devices generally consist of three energy conversion parts: the
wave energy capture system, the mechanical transmission system, and the generator [23].
However, as this study uses a direct-drive wave energy generator, it eliminates the energy
loss associated with the intermediate mechanical transmission part. To obtain the power
conversion matrix for the direct-drive point absorber wave energy converter device, a
simulation approach combining ANSYS AQWA and COMSOL was used, with the floater
simulation model established first, as shown in Figure 3a. The capture device has an outer
diameter of 6 m, a height of 1.6 m, a draft of 0.68 m in a stationary state, and a model weight
of 17 tons.

Figure 3. Floating body: (a) Floating body size. (b) Simulation network diagram.
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In the modeling process, the X-Y plane of the global coordinate system was aligned
with the still water surface, defining the waterline height as 0.68 m below and 0.92 m above
the waterline. The ANSYS AQWA simulation mesh tool was subsequently employed to
generate separate grid elements for regions below and above the waterline. Given that
AQWA calculations predominantly occur beneath the waterline, the maximum mesh size
was set to 0.4 m above the waterline and 0.2 m below it, leading to a total of 3015 grid
elements, as illustrated in Figure 3b. The wave conditions were defined as regular waves,
with Figure 4a depicting the response curves of the floater subjected to waves of varying
amplitudes and periods. Subsequently, a direct-drive generator model was developed in
COMSOL, utilizing the response curves as input for the generator rotor. Finite element
simulations were then conducted to derive the three-phase voltages. Figure 4b displays the
three-phase voltage waveforms generated by COMSOL, and the power output within a
cycle was calculated using (9), as detailed in Table 1.

Figure 4. (a) The three−phase voltage output generated by COMSOL for a wave amplitude of 1 m
and a period of 4 s. (b) The vertical displacement amplitude of the floater calculated by ANSYS
AQWA for a wave period of 4 s and an amplitude of 1 m.

Table 1. Power conversion matrix of the wave energy converter system (W).

Wave Height (m)
Wave Period (s)

4 5 6 7 8 9 10 11 12 13 14 15 16

1.0 1.2 1.3 1.2 1.2 1.1 1.0 0.9 0.8 0.7 1.7 0.7 1.6 1.7

1.5 2.6 2.5 2.3 2.2 2.3 2.0 1.9 1.7 1.4 1.5 1.2 1.2 1.2

2.0 4.4 4.0 3.7 3.6 3.5 3.1 2.8 2.5 2.3 2.2 2.0 1.8 1.7

2.5 4.0 5.2 4.5 4.6 4.3 3.9 3.6 3.0 2.8 2.5 2.7 2.6

3.0 7.4 6.7 6.2 5.7 5.4 4.7 4.1 4.1 3.7 3.3 3.3 3.2

3.5 8.4 7.3 6.9 5.8 5.4 4.9 4.4 4.2 3.7 3.4 3.6

4.0 8.9 8.6 7.6 6.8 6.2 5.6 5.0 4.6 4.5 4.3 3.6
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Table 1. Cont.

Wave Height (m)
Wave Period (s)

4 5 6 7 8 9 10 11 12 13 14 15 16

4.5 10.6 9.5 8.7 7.6 7.0 6.1 5.9 5.4 5.1 5.0 4.7

5.0 12.2 10.8 9.2 8.6 7.3 7.2 6.3 5.9 5.7 5.4 5.0

5.5 11.1 10.1 8.9 8.1 7.5 6.8 6.4 6.1 5.5 5.8

6.0 13.1 11.3 10.1 9.1 8.3 7.5 6.7 6.9 6.4 5.8

6.5 13.5 11.6 10.4 9.8 9.0 7.6 7.3 7.5 6.2 6.4

7.0 15.0 12.9 10.9 10.0 8.8 8.6 8.2 7.6 7.3 6.8

2.4. Power Conversion Matrix

The power conversion matrix can be obtained by performing simulation experiments
through the above steps, as shown in Table 1. The unit of power is watts (W). Table 1
illustrates the relationship between the wave energy conversion system, significant wave
height, wave period, and power generation, where the empty entry indicates that the wave
height exceeds the maximum value that can be calculated by the simulation software at
this period and cannot be calculated. The relationship between these three variables can be
observed more visually in Figure 5.

Figure 5. Mathematical relationship between wave period, significant wave height, and power.

As shown in Figure 5, the relationship between the three variables is discrete, and
when a polynomial is used for fitting, there are 146 discrete parameters in the table, which
are fitted with a large error and do not accurately reflect the actual power generated by
the current equipment. In this study, a deep learning method is used to fit the power
conversion matrix.
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2.5. Power Matrix Fitting Model

In this study, a Bidirectional Gated Recurrent Unit (BiGRU), a variant of Recurrent
Neural Networks (RNN), was employed to address issues such as gradient vanishing or
explosion when processing long sequence data. It also demonstrated superior performance
in scenarios with limited data. By introducing update and reset gates, the BiGRU effectively
enhanced accuracy under small data conditions. The core concept of the GRU is to use
update and reset gates at each time step to determine which information should be passed
to the next time step.

The equations for the BiGRU model are presented as follows [24]:
zt = σ

(
Wz · [ht−1, xt]

)
.

rt = σ
(
Wr · [ht−1, xt]

)
.

h̃t = tanh(W · [rt ∗ ht−1, xt]).
ht = (1− zt) ∗ ht−1 + zt ∗ h̃t.

(11)

In the equations, zt represents the update gate, rt denotes the reset gate, h̃t is the candi-
date activation value, and ht is the output, where σ denotes the sigmoid activation function.
The BiGRU further enhances GRU information processing capabilities by simultaneously
handling both forward and backward information. Compared to traditional RNN models,
it significantly improves prediction accuracy. The structure of the BiGRU is illustrated in
Figure 6.
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Figure 6. Structure of the Bidirectional Gated Recurrent Unit network.
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The calculation formulas are as follows [25]:
−→
ht = GRU(Xt,

−−→
ht−1).←−

ht = GRU(Xt,
←−−
ht−1).

ht = ωt
−→
ht + νt

←−
ht + bt.

(12)

In the equations,
−→
ht and

←−
ht represent the forward and backward outputs of the hidden

layer at time t, respectively; ωt and νt denote the weights for the forward and backward
state layers; and bt represents the bias term. Figure 7 illustrates the predictions obtained
from the BiGRU model when the relationships between significant wave height, wave
period, and the effective power of the wave energy conversion device are input. The blue
curve represents the actual values, while the red triangles indicate the predicted values for
each point.

Figure 7. Wave energy conversion matrix fitting.

3. Wave Energy Converter Power Prediction Model Based on CNN-BiLSTM-DELA

In the previous section, the BiGRU model was utilized to fit the power conversion
matrix of the point absorber wave energy device. This section further explored the opti-
mization of the power prediction method. A CNN-BiLSTM-DELA model incorporating a
deformable efficient local attention (DELA) was proposed. This model integrated CNN
and BiLSTM, enhancing the ability of BiLSTM to identify nonlinear local features through
the DELA attention mechanism. The model took time series as input. Since parameters
such as significant wave height and wave period were independent data sequences, the
fitted wave energy parameters were input into the power prediction module. The power at
each time step was represented by the associated wave factors.

In the CNN-BiLSTM-DELA prediction model, the CNN and BiLSTM-DELA modules
were configured in a parallel structure. Wave parameters were separately input into the
two frameworks. After a series of transformations, features from both modules were fused,
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and the final prediction for the wave energy converter device was obtained through a fully
connected layer. A structure diagram is shown in Figure 8.

Power 

Conversion 

Modules

FC

Power Generation Forecast

 

BiGRU

DEG_ATTENTION

＋＋

BiLSTM

Power Generation Prediction Module

CNN

Conv Layer

Pooling Layer

Dropout Layer
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ForWard

BackWard
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1x1x
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GRUGRU

GRUGRU

1y
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GRUGRU

GRUGRU
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1x1x

Figure 8. The overall operation process in the short-term prediction model structure based on CNN-
BILSTM-DELA.The red dot in the upper left corner is the selected position of the experimental target
data set, which is located at 116◦ E and 16◦ N.

3.1. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of feedforward neural network de-
signed to extract features from data. They primarily consist of an input layer, convolutional
layers, pooling layers, and dropout layers. The convolutional layers perform convolution
operations between the input and weights, and the formula for this operation is as follows:

y1 = σ(b1 + w ∗ x0). (13)

In the equation, y1 represents the output of the convolutional layer; b1 denotes the
bias; w stands for the CNN module weights; and x0 is the input to the convolutional layer.

The pooling layer optimizes the input from the convolutional layer by reducing its
dimensionality, enabling effective coupling with the features’ output by BiLSTM-DELA.
Dropout, on the other hand, involves randomly removing a portion of neurons during



Electronics 2024, 13, 4163 11 of 20

training. Through backpropagation, the weights of the removed neurons are updated and
retrained, helping to prevent overfitting in the model.

3.2. Bidirectional Long Short-Term Memory Networks

LSTMs are also a variant of Recurrent Neural Networks (RNNs), designed to address
the limitations of RNNs in predicting long sequences. RNNs are constrained by their
structure, which can lead to issues such as vanishing and exploding gradients during
backpropagation, and they can learn only short-term dependencies [26]. To overcome these
limitations, LSTMs introduce memory cells, which consist of a cell state ct, an input gate it,
an output gate ot, and a forget gate ft . The structure of the LSTM is illustrated in Figure 9.

In the figure, xt represents the input at time t, while ht and ht−1 denote the hidden
states at time t and t− 1, respectively. Here, ht is computed based on the output of the
previous hidden state and the current input. When xt is fed into the LSTM, it interacts with
the previous hidden state ht−1 through the forget gate, input gate, and output gate. The
formulas for the input gate, output gate, forget gate, and hidden state are as follows :

ft = σ(W f xt + U f ht−1 + b f ).
it = σ(W ixt + U iht−1 + bi).
ot = σ(W◦xt + U◦ht−1 + b◦).
ht = ot ⊗ tanh(Ct).

(14)

In the equations, W represents the weight matrix, U denotes the output matrix, and b
is the bias vector. The subscripts f , i, and o correspond to the forget gate, input gate, and
output gate, respectively. The symbol ⊗ indicates element-wise multiplication.

The cell state ct is the core component of the LSTM, represented by the horizontal line
at the top of Figure 9. It features a minimal branch conveyor belt structure design, allowing
the input information to flow through the cell with minimal alterations, and is regulated by
the input, output, and forget gates. The formulas for the candidate cell state and cell state
are as follows:

1x

2x

3x

nx

1w

2w

3w

nw

Σ f

Activation

Input Weight

Y

Output

Full Connect

x t

Tanh

128 3

FcFc FcFc FcFc FcFc

Bitwise 

Multiplication

Bitwise 

Addition

1th − th
As the input 

for the next 

moment

Long-term memory 

information flow

Output

Iutput

1tc −

th

Tanh 

Function:

Interval (-1,1) 

representing activation and 

outputs new candidate values

Interval(0,1)

representing the weight

Sigmoid 

Function:
Forget 

Gate

Input Gate

Output 

Gate

σσ

Aggregation

××＋＋

××
××

××

＋＋

σσ σσ σσ

FcFc

TanhTanhTanhTanh

tc

Figure 9. Structure of the Long Short Term Memory network.

C̃t = tanh(Wcxt + Ucht−1 + bc).

Ct = ft ⊗ Ct−1 + it ⊗ C̃t.
(15)

To enhance the nonlinearity of the network, the sigmoid and tanh functions are chosen
as activation functions. Their formulas are as follows:
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σ(x) =
1

1 + exp(−x)
. (16)

tanh(x) =
exp(x)− exp(−x)
exp(x) + exp(−x)

. (17)

In time series prediction tasks, it is essential to fully consider both forward and back-
ward temporal information patterns to significantly enhance prediction accuracy. The CNN-
BiLSTM-DELA model primarily consists of three forward LSTMs and three backward LSTMs.
Unlike standard LSTM, which transmit states unidirectionally from past to future, the
BiLSTM framework incorporates both forward and backward data patterns, demonstrating
significantly enhanced performance.

As illustrated in Figure 9, the BiLSTM model comprises both forward and backward
computations. The orange horizontal arrows represent the forward flow of time series
information within the model, while the light blue arrows denote the backward flow of the
same information. Additionally, the data information flows unidirectionally through the
input layer, hidden layer, and output layer.

3.3. Attention Mechanism

The attention mechanism mimics the human brain’s focus on specific regions at partic-
ular moments, allowing for the selective acquisition of more pertinent information while
disregarding irrelevant data [27]. It achieves this by assigning different probabilistic weights
to the hidden layer units of the neural network, thereby emphasizing the impact of critical
information and improving the accuracy of the model’s predictions. To address this issue,
this paper proposes a novel Deformable Efficient Local Attention (DELA) mechanism to
tackle model overfitting caused by extended input sequences, which impedes the accurate
learning of appropriate weights. DELA is a three-channel attention mechanism comprising
spatial attention modules, channel attention modules, and local attention modules, as
depicted in Figure 10.
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Figure 10. Attention Mechanism in the Structure of Short-term Prediction Model Based on CNN-
BILSTM-DELA.

3.3.1. Spatial Attention Module

Given that the wave energy parameters involve long temporal sequences, identifying
relevant features within these sequences is challenging when relying solely on LSTM. Con-
sequently, a spatial attention module is introduced, which primarily focuses on weighting
features across extended time steps. It also determines the contribution of different features
at each time step to the power output of the generator. Through average pooling, all feature
values across the time dimension are averaged to obtain global information about each
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feature across the entire time series. This step outputs a vector of size sizesizesize, represent-
ing the average value of each feature in the time series. Subsequently, a one-dimensional
convolutional layer (Conv1D) generates a temporal attention map of the same size as the
input features. This map is used to weight each time step according to the importance
of different features at that step. Finally, a sigmoid function is applied to normalize the
generated temporal attention map. The module’s formula is as follows:

ySi = xi + σ(Gn(W1(xi))). (18)

In the equation, Gn denotes the GroupNorm operation, while W1 represents the
Conv1D convolution operation. The spatial attention features are derived from the equa-
tion. The spatial attention mechanism identifies which features at specific time steps hold
higher priority, thereby enhancing the ability of the model to capture temporal sequences
more effectively.

3.3.2. Channel Attention Module

Predicting wave energy power involves handling various parameters such as wave
period and significant wave height. To enhance the ability of the model to extract the relative
importance of different features, this study introduces a channel attention mechanism. The
mechanism determines the contribution of each parameter to the overall model and applies
appropriate weighting to these parameters. Initially, global pooling is applied to obtain the
global average of each feature channel, providing an overall representation of each feature
across the entire time series. The input is first reduced by a factor of 1/8 through two linear
layers and then restored. This dimensionality reduction and expansion process effectively
captures the nonlinear relationships between feature channels. Finally, a sigmoid function
is employed to generate the weights for each feature channel. The formula is as follows:

yDi = xi + σ(W2LN(W1xi)). (19)

In the equation, LN denotes the LayerNorm operation, while W1 and W2 represent
two linear layers, with W1 performing dimensionality reduction and W2 performing dimen-
sionality expansion. The channel attention mechanism highlights the most critical features
in the prediction task while reducing the influence of irrelevant features. This approach
enhances the ability of the model to accurately capture valuable information when dealing
with complex temporal data, thereby improving prediction accuracy and robustness.

3.3.3. Local Attention Module

In the processing of temporal data, recognizing the importance of long sequences
is crucial; however, fine-grained attention to the combinations of specific time steps and
features is equally important. Therefore, a local attention module is proposed to capture
the interrelationships among significant wave height, wave period, and power generation
across different time steps. Initially, an offset generation network is used to predict the
offsets in convolution along both the time and feature dimensions, enabling dynamic
capture of significant changes and anomalies at specific time steps. These offsets are
generated through Conv2D, followed by a deformable convolution operation.As shown by
the arrow in Figure 10.

Unlike standard convolution, deformable convolution allows the kernel to dynami-
cally adjust sampling locations along both the time and feature axes, thus capturing finer
temporal features. When combinations of significant wave height and wave period at
specific time steps significantly impact power generation, the local attention mechanism
can focus specifically on these combinations, thereby enhancing the capture of critical time
steps and features. Finally, a standard convolution layer integrates the local features to
generate the final output feature, as illustrated by the following formula:

yLi = xi + W3(xi ⊗ (W2DW1DW2(W1xi))). (20)
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In the equation, DW denotes DeformConv, with subscripts indicating the first and second
dimensions. The equation highlights the importance of weighting features to emphasize
critical information regarding time steps and feature combinations, especially in the context of
extreme weather conditions affecting wave height and period on power generation.

The DELA module integrates spatial, channel, and local attention mechanisms, as
described by the following formula:

Y = yLi + ySi + yDi. (21)

In the equation, yLi, ySi, and yDi represent the outputs of the spatial, channel, and local
attention modules, respectively. These outputs enhance the model’s ability to handle and
predict complex temporal data, thereby improving the overall prediction performance of
the module.

4. Simulation Results Analysis
4.1. Data Sources

The wave height and wave period data are from the European meteorological dataset
ERA5 located at the latitudes of 116◦ E and 16.5◦ N. Its geographical location is shown
in Figure 11. Details of the three stations are listed. Figure 12 shows the raw significant
wave height and wave period size, and Figure 1 shows the characteristic distribution of
raw significant wave heights and wave periods. The dataset covers 8593 wave observations
for the period from 1 January to 24 December 2023. The dataset includes significant wave
heights and wave periods, and the data were sampled at one-hour intervals, with the first
80% selected as the training set, the last 168 pieces of data as the test set, and the remaining
data as the validation set.

Figure 11. Original effective wave height and wavelength data for longitude 116◦ E, latitude 16.5◦ N.
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Figure 12. Distribution of significant wave heights and wave periods corresponding to longitude
116◦ E and latitude 16.5◦ N.

4.2. Model Evaluation Metrics

This study employed standard evaluation metrics in wave energy prediction, including
Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), Mean Absolute
Error (MAE), and the Coefficient of Determination (R2), to assess the accuracy of the
prediction results.

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣. (22)

MSE=
1
n

n

∑
i=1

(
yi −

∧
yi

)2

. (23)

MAE =
1
n

n

∑
i=1
| ŷi − yi | . (24)

R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − yi)

2 . (25)

In the equation, ŷi, yi, and ȳi represent the predicted values, true values, and mean
values, respectively. n denotes the number of samples.

4.3. Attention Comparison Experiment

In order to assess the efficacy of both the attention mechanism and the model, compar-
ative simulation experiments were designed and executed with a focus on validating their
performance. The detailed parameter configurations for these experiments are outlined in
Table 2. The tests were performed in a Windows 11 environment, leveraging an NVIDIA
4070ti graphics card for enhanced computational capabilities.
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Table 2. Power conversion module comparison experiment parameter settings.

Parameter Name Parameter Settings

Prediction Time 168
Batch Size 128

Input Length 24
Output Length 1

Epochs 200
Learning Rate 0.01
Weight Decay 0.0032

Optimizer Adam
Scheduler Cosine

To evaluate the effectiveness of the proposed attention mechanism in this model, this
study compared six different attention mechanisms. The baseline model, CNN-BiLSTM-
DELA, had the DELA component replaced with Efficient Local Attention (ELA) [28],
Efficient Multiscale Attention (EMA) [29], Global Context (GC) [30], Squeeze Excitation
Attention (SE) [31], Simple Attention Module (SimAM) [32], Convolutional Block Attention
Module (CBAM) [33], and Deformable Large Kernel Attention (DLKA) [34]. The results are
illustrated in Figure 13, and the error metric calculations are provided in Table 3.

Figure 13. Short-term prediction model structure based on CNN-BILSTM-DELA.

Table 3. Error results for Deformable Efficient Local Attention and six attention mechanisms.

Attention Models MSE (W) MAPE (%) MAE (W) R² (%)

DELA 0.0396 3.7361 0.1809 98.69
ELA 0.1305 6.3364 0.3148 95.70
EMA 0.0977 6.1926 0.2813 96.78
GC 0.1172 5.9948 0.2973 96.14
SE 0.1321 5.3625 0.2902 95.65

SimAM 0.1081 6.0582 0.2906 96.44
CBAM 0.0831 5.5292 0.2578 97.27
DLKA 0.0997 5.0635 0.2614 96.72
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4.4. Model Comparison Experiment

To validate the effectiveness of the CNN-BiLSTM-DELA improved model, comparative
experiments were conducted with BiLSTM, CNN, BP, LSTM, CNN-BiLSTM, and GRU. The
model prediction curves are illustrated in Figure 14, and the results of the comparative
error analysis are presented in Table 4.

Figure 14. Short-term prediction model structure based on CNN-BILSTM-DELA.

Table 4. Error results for CNN-BiLSTM-DELA and six common models.

Attention Models MSE (W) MAPE (%) MAE (W) R² (%)

CNN-BiLSTM-DELA 0.0396 3.7361 0.1809 98.69
BiLSTM 0.2533 5.6679 0.2957 91.66

CNN 0.1699 6.6819 0.3566 94.01
BP 0.1799 6.3790 0.3737 94.08

LSTM 0.2290 7.2830 0.3908 92.47
CNN-BiLSTM 0.1054 6.2621 0.2920 96.53

GRU 0.2345 6.8091 0.3787 92.28

As shown in Table 4, the CNN-BiLSTM-DELA model outperformed all seven com-
parative models. It achieved a significantly lower Mean Squared Error (MSE) of 0.0396 W,
representing reductions of 84.3%, 76.7%, 77.9%, 82.8%, 62.5%, and 83.1% compared to BiL-
STM, CNN, BP, LSTM, CNN-BiLSTM, and GRU, respectively. In terms of Mean Absolute
Percentage Error (MAPE), the CNN-BiLSTM-DELA model also demonstrated superior
performance, with a value of 3.7361%, which was 1.6802%, 2.9458%, 2.6429%, 3.5469%,
2.5250%, and 3.0730% lower than BiLSTM, CNN, BP, LSTM, CNN-BiLSTM, and GRU,
respectively. Additionally, the CNN-BiLSTM-DELA model achieved the highest Coefficient
of Determination (R2) at 98.69%, indicating the strongest fit for wave energy power predic-
tion. In summary, the CNN-BiLSTM-DELA model demonstrated superior accuracy and
fitting capability compared to the other models, showcasing the highest precision and best
fitting performance in wave energy power prediction.
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4.5. Generalization Experiments

In order to verify the generalizability of the CNN-BiLSTM-DELA improved model,
we conducted comparative generalization experiments using BiLSTM, CNN, LSTM, CNN-
BiLSTM, and GRU. The dataset from January to June 2024 is used for the experiments, the
model prediction curves are shown in Figure 15, and the results of the comparative error
analysis are shown in Table 5.

Figure 15. Error results for CNN-BiLSTM-DELA with common models for January–June 2024
wave data.

Table 5. Error results for CNN-BiLSTM-DELA with common models for January–June 2024
wave data.

Attention Models MSE (W) MAPE (%) MAE (W) R² (%)

CNN-BiLSTM-DELA 0.0223 5.3593 0.1026 97.12
BiLSTM 0.0361 7.7835 0.1540 95.34

CNN 0.0816 10.8808 0.2217 89.49
LSTM 0.0591 8.8645 0.1781 92.38

CNN-BiLSTM 0.0474 8.5832 0.1689 93.90
GRU 0.0765 10.0181 0.2051 90.14

5. Conclusions

To mitigate the intermittency and stochastic nature of wave energy, which poses
challenges to grid stability, a novel short-term wave energy forecasting model is proposed,
integrating CNN, BiLSTM, and an innovative DELA mechanism. This model can accurately
predict short-term wave power generation and support decision-makers in optimizing
power dispatch, thereby enhancing the efficiency of wave energy conversion. This study
achieved the following results:

1. The relationship between wave height, wave period, and power output of point
absorber wave energy converters was simulated. A power matrix was developed and
optimized using a BiGRU model, allowing for the rapid estimation of power outputs
across various marine environments.
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2. DELA is a three-channel attention mechanism that processes BiLSTM outputs through
spatial, channel, and local attention mechanisms, merging their outputs. This mecha-
nism outperformed seven established attention mechanisms in a comparative analysis.

3. Outputs from the BiGRU model, derived from direct-drive wave energy converters
and buoy-based wave parameters in the South China Sea, are fed into the CNN-
BiLSTM-DELA model. Operating in parallel, the CNN component primarily identifies
extreme wave conditions, while the BiLSTM-DELA component forecasts wave energy
based on temporal data.

4. Through comparative studies, the CNN-BiLSTM-DELA model showed the highest ac-
curacy and goodness of fit, surpassing alternative models and demonstrating superior
predictive performance.

In summary, the short-term wave energy forecasting model offers enhanced accu-
racy and adaptability, supporting decision-makers in optimizing scheduling strategies to
maintain power system stability and economic efficiency.
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