The Design of Fast Type-V Discrete Cosine Transform Algorithms for Short-Length Input Sequences
Abstract
:1. Introduction
2. Materials and Methods
- is an order N identity matrix;
- is a 2 × 2 Hadamard matrix;
- is a N × M matrix of ones (a matrix where every entry is equal to one);
- ⊗ is the Kronecker product of two matrices;
- ⊕ is the direct sum of two matrices.
3. Discussion of Computational Complexity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bi, G.; Zeng, Y. Transforms and Fast Algorithms for Signal Analysis and Representations, 1st ed.; Birkhäuser: Boston, MA, USA, 2004. [Google Scholar]
- Britanak, V.; Yip, P.; Rao, K. Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximations, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Ramamohan Rao, K.; Yip, P. Discrete Cosine Transform: Algorithms, Advantages, Applications, 1st ed.; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Abramova, V.V.; Lukin, V.V.; Abramov, S.K.; Kryvenko, S.S.; Lech, P.; Okarma, K. A fast and accurate prediction of distortions in DCT-based lossy image compression. Electronics 2023, 12, 2347. [Google Scholar] [CrossRef]
- Hnativ, L.O. Discrete cosine-sine type VII transform and fast integer transforms for intra prediction of images and video coding. Cybern. Syst. Anal. 2021, 57, 827–835. [Google Scholar] [CrossRef]
- Lukin, V.V.; Abramova, V.V.; Abramov, S.K.; Grigelionis, K. A terahertz imaging system using adaptive DCT-based image denoising. In Proceedings of the IEEE 2nd Ukrainian Microwave Week Conference (UkrMW), Kharkiv, Ukraine, 14–18 November 2022. [Google Scholar]
- Pogrebnyak, O.B.; Lukin, V.V. Wiener discrete cosine transform based image filtering. J. Electron. Imaging 2012, 21, 043020. [Google Scholar] [CrossRef]
- Sugimoto, K.; Kamata, S. Fast Gaussian filter with second-order shift property of DCT-5. In Proceedings of the IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 September 2013. [Google Scholar]
- Yamamoto, K.; Toyoda, K.; Ohtsuki, T. Non-contact heartbeat detection by MUSIC with discrete cosine transform-based parameter adjustment. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018. [Google Scholar]
- Park, J.; Ham, J.-W.; Park, S.; Kim, D.-H.; Park, S.-J.; Kang, H.; Park, S.-O. Polyphase-basis discrete cosine transform for real-time measurement of heart rate with CW Doppler radar. IEEE Trans. Microw. Theory Tech. 2017, 66, 1644–1659. [Google Scholar] [CrossRef]
- Tauhid, A.; Tasnim, M.; Noor, S.A.; Faruqui, N.; Yousuf, M.A. A secure image steganography using advanced encryption standard and discrete cosine transform. J. Inf. Secur. 2019, 10, 117–129. [Google Scholar] [CrossRef]
- Krikor, L.; Baba, S.; Alnasiri, T.; Shaaban, Z. Image encryption using DCT and stream cipher. Eur. J. Sci. Res. 2009, 32, 48–58. [Google Scholar]
- Lipinski, P.; Puchala, D. Digital image watermarking using fast parametric transforms. Bull. Pol. Acad. Sci. Tech. Sci. 2019, 67, 463–477. [Google Scholar] [CrossRef]
- Armas Vega, E.A.; Sandoval Orozco, A.L.; García Villalba, L.J.; Hernandez-Castro, J. Digital images authentication technique based on DWT, DCT and local binary patterns. Sensors 2018, 18, 3372. [Google Scholar] [CrossRef]
- Boukhechba, K.; Wu, H.; Bazine, R. DCT-based preprocessing approach for ICA in hyperspectral data analysis. Sensors 2018, 18, 1138. [Google Scholar] [CrossRef]
- Ramaputra, M.G.; Irianto, S.Y.; Karnila, S. Content based image retrieval method with discrete cosine feature extraction in natural images. J. Technol. Accept. Model 2021, 12, 171. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, X.; Li, X.; Li, L.; Luo, Y.; Liu, S.; Li, Z. Fast DST-VII/DCT-VIII with dual implementation support for versatile video coding. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 355–371. [Google Scholar] [CrossRef]
- Koizumi, Y.; Harada, N.; Haneda, Y.; Hioka, Y.; Kobayashi, K. End-to-end sound source enhancement using deep neural network in the modified discrete cosine transform domain. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018. [Google Scholar]
- Chiper, D.F.; Dobrea, D.M. A novel low-complexity and parallel algorithm for DCT IV transform and its GPU implementation. Appl. Sci. 2024, 14, 7491. [Google Scholar] [CrossRef]
- Cariow, A.; Lesiecki, Ł. Small-size algorithms for type-IV discrete cosine transform with reduced multiplicative complexity. Radioelectron. Commun. Syst. 2020, 63, 465–487. [Google Scholar] [CrossRef]
- Kolenderski, M.; Cariow, A. Small-size algorithms for the type-I discrete cosine transform with reduced complexity. Electronics 2022, 11, 2411. [Google Scholar] [CrossRef]
- Chivukula, R.K.; Reznik, Y.A. Fast computing of discrete cosine and sine transforms of types VI and VII. In Proceedings of the SPIE 8135, Applications of Digital Image Processing XXXIV, San Diego, CA, USA, 19 September 2011. [Google Scholar]
- Park, W.; Lee, B.; Kim, M. Fast computation of integer DCT-V, DCT-VIII, and DST-VII for video coding. IEEE Trans. Image Process. 2019, 28, 5839–5851. [Google Scholar] [CrossRef] [PubMed]
- Chiper, D.F.; Cotorobai, L.T. A new approach for a unified architecture for type IV DCT/DST with an efficient incorporation of obfuscation technique. Electronics 2021, 10, 1656. [Google Scholar] [CrossRef]
- Chiper, D.F.; Cotorobai, L.T. A novel VLSI algorithm for a low complexity VLSI implementation of DCT based on pseudo circular correlation structures. In Proceedings of the International Symposium on Electronics and Telecommunications (ISETC), Timisoara, Romania, 5–6 November 2020. [Google Scholar]
- Chiper, D.F.; Cracan, A. An area-efficient unified VLSI architecture for type IV DCT/DST having an efficient hardware security with low overheads. Electronics 2023, 12, 4471. [Google Scholar] [CrossRef]
- Cariow, A. Strategies for the synthesis of fast algorithms for the computation of the matrix-vector product. J. Signal Process. Theory Appl. 2014, 3, 1–19. [Google Scholar] [CrossRef]
- Bielak, K.; Cariow, A.; Raciborski, M. The development of fast DST-II algorithms for short-length input sequences. Electronics 2024, 13, 2301. [Google Scholar] [CrossRef]
- Cariow, A.; Paplinski, J. Algorithmic structures for realizing short-length circular convolutions with reduced complexity. Electronics 2021, 10, 2800. [Google Scholar] [CrossRef]
- Cariow, A.; Makowska, M.; Strzelec, P. Small-size FDCT/IDCT algorithms with reduced multiplicative complexity. Radioelectron. Commun. Syst. 2019, 62, 559–576. [Google Scholar] [CrossRef]
- Chen, X.; Dai, O.; Li, C. A fast algorithm for computing multidimensional DCT on certain small sizes. IEEE Trans. Signal Process. 2023, 51, 213–220. [Google Scholar] [CrossRef]
- Plonka, G.; Potts, D.; Steifdl, G.; Tasche, M. Chebyshev methods and fast DCT algorithms. In Book Numerical Fourier Analysis. Applied and Numerical Harmonic Analysis, 1st ed.; Plonka, G., Potts, D., Steidl, G., Tasche, M., Eds.; Birkhäuser: Boston, MA, USA, 2018; pp. 339–411. [Google Scholar]
- Radunz, A.P.; Portella, L.; Oliveira, R.S.; Bayer, F.M.; Cintra, R.J. Extensions on low-complexity DCT approximations for larger blocklengths based on minimal angle similarity. J. Signal Process. Syst. 2023, 95, 495–516. [Google Scholar] [CrossRef]
- Korohoda, R.; Dąbrowski, A. Generalized convolution as a tool for multi-dimensional filtering tasks. Multidimens. Syst. Signal Process. 2008, 19, 361–377. [Google Scholar] [CrossRef]
- Brysin, P.; Lukin, V. DCT-based denoising of speech signals. Her. Khmelnytskyi Natl. Univ. 2024, 4, 301–309. [Google Scholar]
- Chen, Y.; Elliot, M.J.; Sakshaug, J.W. A genetic algorithm approach to synthetic data production. In Proceedings of the 1st International Workshop on AI for Privacy and Security, Hague, The Netherlands, 29–30 August 2016. [Google Scholar]
- Průša, Z.; Holighaus, N.; Balazs, P. Fast matching pursuit with multi-Gabor dictionaries. ACM Trans. Math. Softw. (TOMS) 2022, 47, 24. [Google Scholar] [CrossRef]
- Průša, Z.; Holighaus, N.; Balazs, P. Accelerating matching pursuit for multiple time-frequency dictionaries. In Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, 8–12 September 2020. [Google Scholar]
- Polyakova, M.; Ishchenko, A.; Volkova, N.; Pavlov, O. Combined method for scanned documents images segmentation using sequential extraction of regions. East. Eur. J. Enterp. Technol. 2018, 5, 6–15. [Google Scholar] [CrossRef]
- Ishchenko, A.; Polyakova, M.; Nesteryuk, A. The technique of extraction text areas on scanned document image using linear filtration. Appl. Asp. Inf. Technol. 2019, 2, 206–215. [Google Scholar]
N | Direct Method | Proposed Algorithms | ||
---|---|---|---|---|
Additions | Multiplications | Additions | Multiplications | |
2 | 2 | 4 | 3 (+33%) | 3 (−25%) |
3 | 6 | 9 | 8 (+33%) | 5 (−44%) |
4 | 12 | 16 | 17 (+42%) | 7 (−56%) |
5 | 20 | 25 | 23 (+15%) | 10 (−60%) |
6 | 30 | 36 | 41 (+37%) | 13 (−64%) |
7 | 42 | 49 | 55 (+31%) | 11 (−78%) |
8 | 56 | 64 | 61 (+9%) | 19 (70%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polyakova, M.; Witenberg, A.; Cariow, A. The Design of Fast Type-V Discrete Cosine Transform Algorithms for Short-Length Input Sequences. Electronics 2024, 13, 4165. https://doi.org/10.3390/electronics13214165
Polyakova M, Witenberg A, Cariow A. The Design of Fast Type-V Discrete Cosine Transform Algorithms for Short-Length Input Sequences. Electronics. 2024; 13(21):4165. https://doi.org/10.3390/electronics13214165
Chicago/Turabian StylePolyakova, Marina, Anna Witenberg, and Aleksandr Cariow. 2024. "The Design of Fast Type-V Discrete Cosine Transform Algorithms for Short-Length Input Sequences" Electronics 13, no. 21: 4165. https://doi.org/10.3390/electronics13214165
APA StylePolyakova, M., Witenberg, A., & Cariow, A. (2024). The Design of Fast Type-V Discrete Cosine Transform Algorithms for Short-Length Input Sequences. Electronics, 13(21), 4165. https://doi.org/10.3390/electronics13214165