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Abstract: Fast algorithms for type-five discrete cosine transform (DCT-V) for sequences of input data
of short length in the range of two to eight are elaborated in the paper. A matrix–vector product
representation of the DCT-V is the starting point for designing the algorithms. In each specific
case, the DCT-V matrices have remarkable structural properties that follow from the localization of
identical entries within the matrices. Each matrix of the DCT-V has only a few distinct entries that are
repeated at different positions in its structure. Using simple transformations such as permutations
of the rows and/or columns of this matrix or its favorable decomposition into two or more matrix
components, it is possible to obtain efficient matrix structures that lead to useful factorization schemes.
Based on the suitable factorization schemes we obtained, we developed fast algorithms that reduce
the number of arithmetic operations when calculating the DCT-V. The correctness of the obtained
algorithmic solutions was justified theoretically using a strict mathematical background of each of
them. The developed algorithms were then further tested using MATLAB R2023b software to finally
confirm their correctness. Finally, an evaluation of the computational complexity for each obtained
solution is presented. The evaluation results were compared with the computational complexity of
the direct calculation of matrix–vector products. The resulting factorizations of the matrices of the
DCT-V reduce the average number of multiplications by 57% but increase the number of additions
by 29%.

Keywords: discrete cosine transform; matrix factorization; fast algorithms; computational complexity;
digital signal processing

1. Introduction

Discrete cosine transform (DCT) [1–3] is widely applied in image compression [4,5], im-
age denoising [6–8], healthcare systems [9,10], steganography and image encryption [11,12],
image watermarking and image authentication [13,14], data analysis [15], image
retrieval [16], video coding [17], audio signal enhancement [18]. The advantages of this
transform are real-valued processing of data compared with discrete Fourier transform.
This reduces the number of calculations required and simplifies further analysis of the
transform results. In the literature, eight types of DCT have been proposed [1–3]. The
most popular and researched transform is still DCT types I-IV [19–21]. DCT variant types
V-VIII seem to be rarely used in practice [17,22,23]. One reason, perhaps, is that corre-
sponding algorithms are generally more complicated than algorithms for DCT types I-IV.
There are, however, several works concerning the efficient implementation of DCT types
I-IV [24–26]. This paper is devoted to designing computationally efficient algorithms for
small-size DCT-V.
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The publication review shows that two approaches to the elaboration of fast algorithms
for DCT can be found in the literature, specifically, structural and analytical ones. The first
approach is structural [27–30]. It is usually employed to develop fast algorithms for small-
size discrete orthogonal transforms. It is based on a deep analysis of the structures of
base transform matrices, identifying individual features of the arrangement of identical
entries and, if necessary, changing the matrix structures for subsequent use of certain matrix
identities that lead to the suitable factorization of these matrices.

The structural approach does not limit the length of the original data sequence, for
example, to a power of two or three. However, as the size of data sets increases, fast
algorithms become more cumbersome and difficult to implement. The second approach
is analytical and is based on the use of the most general patterns of factorization of the
basic transformation matrices of arbitrary order [31–33]. It allows the development of
efficient algorithms for long-length input sequences. However, in the case of short-length
sequences, this approach does not always give good results. The effectiveness of this
method in constructing a fast algorithm usually depends on the availability of an analytical
representation of the transform’s coefficients. For the same reason, the length of the input
data sequence is often limited to a power of two. Since short-length input sequences are
considered in our research, the structural approach is selected to design computationally
efficient algorithms. So, the aim of the article is the elaboration of reduced-complexity
algorithms for DCT-V for short-length input sequences of length N = 2, 3, 4, 5, 6, 7, 8.

2. Materials and Methods

The DCT is one of the orthogonal transforms used, among other things, to analyze
and process audio or other types of signals. DCT-V can be represented by the following
expression [2,34]:

yk =
2√

2(N−1)+1
∑N−1

n=0 xnϵnϵk cos
2nπk

2N−1
, k = 0, 1, . . . , N−1, (1)

where yk is the output sequence after the DCT-V transform is performed; xn is the sequence
of input data; and N is the number of signal samples,

ϵn, ϵk =

{
1√
2

, n, k = 0,
1, otherwise.

DCT-V can be represented in matrix notation as follows:

YN×1 = CNXN×1, (2)

where YN×1 = [y0, y1, . . . , yN−1]
T, XN×1 = [x0, x1, . . . , xN−1]

T, ckl = 2√
2(N−1)+1

ϵnϵk

cos 2nπk
2N−1 , k, l = 0, . . ., N − 1.

In this paper, we use the following markings and signs:

• IN is an order N identity matrix;
• H2 is a 2 × 2 Hadamard matrix;
• 1N×M is a N × M matrix of ones (a matrix where every entry is equal to one);
• ⊗ is the Kronecker product of two matrices;
• ⊕ is the direct sum of two matrices.

Voids in a matrix mean that the entries at those positions have a zero value. The
multipliers were marked as s(N)

m .
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DCT-V in matrix notation is as follows:
y0
y1
...

yN−1

 =


c0,0 c0,1
c1,0 c1,1

· · · c0,N−1
c1,N−1

...
. . .

...
cN−1, 0 cN−1, 1 · · · cN−1,N−1




x0
x1
...

xN−1

 (3)

For a two-point DCT-V, the corresponding expression in matrix notation is represented
as follows:

Y2×1 = C2X2×1, (4)

where Y2×1 = [y0, y1]
T, X2×1 = [x0, x1]

T, C2 =

[
a2 b2
b2 −a2

]
, a2 = 0.5774, b2 = 0.8165.

Now, let us take into account the structural properties of the matrix C2 [18,27]. Then,
the expression for DCT-V for N = 2 can be presented as follows:

Y2×1 = W2×3D3W3×2X2×1, (5)

where D3 = diag
(

s(2)0 , s(2)1 , s(2)2

)
, s(2)0 = a2 − b2, s(2)1 = −(a 2 + b2), s(2)2 = b2,

W2×3 =

[
1 1

1 1

]
, W3×2 =

1
1

1 1

.

Figure 1 shows a data flow graph of the synthesized algorithm for the two-point
DCT-V. As can be seen, the number of multiplication operations may be reduced from 4 to
3, but the number of addition operations is increased from 2 to 3.
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Figure 1. The data flow graph of the proposed algorithm for computation of two-point DCT-V.

Consider the elaboration of the algorithm for three-point DCT-V. The expression for
three-point DCT-V is as follows:

Y3×1 = C3X3×1, (6)

where Y3×1 = [y0, y1, y2]
T, X3×1 = [x0, x1, x2]

T, C3 =

b3 c3 c3
c3 a3 −d3
c3 −d3 a3

 with a3 = 0.2764,

b3 = 0.4472, c3 = 0.6325, d3 = 0.7236.
The matrix C3 is decomposed into two components:

C3 = C(a)
3 + C(b)

3 , (7)

where C(a)
3 =

b3 c3 c3
c3
c3

, C(b)
3 =

 a3 −d3
−d3 a3

.

Taken into account properties of structural matrices [27,28], the computational proce-
dure for the three-point DCT-V is represented by expression

Y3×1 = W3×5W5D5W5W5×6W6×3X3×1, (8)
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where D5 = diag
(

s(3)0 , s(3)1 , s(3)2 , s(3)3 , s(3)3

)
, s(3)0 = b3, s(3)1 = (a3 − d3)/2, s(3)1 = (a3 + d3)/2,

s(3)3 = c3, W5 = 1H2I2,

W3×5 =

1 1
1 1

1 1

, W6×3 =



1
1

1
1

1
1

, W5×6 =


1

1
1

1 1
1 1

.

A data flow graph of the proposed algorithm for the three-point DCT-V is shown in
Figure 2. The number of multiplication operations can be reduced from 9 to 5, but the
number of addition operations is increased from 6 to 8.
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Figure 2. The data flow graph of the algorithm for computation of three-point DCT-V.

Let us design the algorithm for four-point DCT-V. The four-point DCT-V is expressed
as follows:

Y4×1 = C4X4×1, (9)

where Y4×1 = [y0, y1, y2, y3]
T, X4×1 = [x0, x1, x2, x3]

T, C4 =


b4 d4 d4 d4
d4 c4 −a4 −e4
d4 −a4 −e4 c4
d4 −e4 c4 −a4


with a4 = 0.1682, b4 = 0.3780,c4 = 0.4713, d4 = 0.5345, e4 = 0.6811.

To change the order of columns of C4, the permutation

π4 =

(
1 2
1 2

3 4
4 3

)
is defined. After permutation of the columns of C4 according to π4, we obtain the matrix

C(a)
4 =


b4 d4 d4 d4
d4 c4 −e4 −a4
d4 −a4 c4 −e4
d4 −e4 a4 −c4

 with permutation matrix P4 =


1

1
1

1

.

The matrix C(a)
4 is decomposed into two components:

C(a)
4 = C(b)

4 + C(c)
4 , (10)

where C(b)
4 =


b4 d4 d4 d4
d4 c4 −e4 −a4
d4 −a4 c4 −e4
d4 −e4 a4 −c4

, C(c)
4 =


b4 d4 d4 d4
d4 c4 −e4 −a4
d4 −a4 c4 −e4
d4 −e4 a4 −c4

.
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To process the matrix C(a)
4 , we use the expressions for calculating the entries of a

circular convolution matrix H3 =

h0 h2 h1
h1 h0 h2
h2 h1 h0

 for N = 3 [28,29]:

H3 = T(1)
3 T3×4diag(s0, s1, s2, s3)T4×3T(0)

3 , (11)

where s0 = (h 0 + h1 + h2)/3, s1 = h0 − h2, s2 = h1 − h2, s3 = (h 0 + h1 − 2h2)/3;

T(1)
3 =

1 1
1 −1 −1
1 1

, T3×4 =

1
1 −1

1 −1

, T4×3 =


1

1
1

1 1

, T(0)
3 =

1 1 1
1 −1

1 −1

.

Taking into account the properties of structural matrices [28,29], the computational
procedure for the four-point DCT-V is represented by the formula

Y4×1 = W4×6W(1)
6 W6×7D7W7×6W(0)

6 W6×8W8×4P4X4×1, (12)

where W(1)
6 = 1T(1)

3 I2, W6×7 = 1T3×4I2, D7 = diag(s(4)0 , s(4)1 , s(4)2 , s(4)3 , s(4)4 , s(4)5 , s(4)5 ),

s(4)0 = b4, s(4)1 = (c4 − a4 − e4)/3, s(4)2 = c4 + e4, s(4)3 = −a4 + e4, s(4)4 = (c4 − a4 +

2e4)/3,s(4)5 = d4, W7×6 = 1T4×3I2, W(0)
6 = 1T(0)

3 I2, W6×8 = I4P2×4,

W4×6 =


1 1

1 1
1 1

1 1

, P2×4 =

[
1 1 1

1

]
, W8×4 =



1
1

1
1

1
1

1
1


. A data

flow graph of the proposed algorithm for the four-point DCT-V is presented in Figure 3. In
particularly, the number of multiplication operations may be reduced from 16 to 7, although
the number of addition operations is increased from 12 to 17.
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Figure 3. The data flow graph of the algorithm for computation of four-point DCT-V.

Let us obtain the algorithm for five-point DCT-V. The five-point DCT-V is expressed
as follows:

Y5×1 = C5X5×1, (13)
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where Y5×1 = [y0, y1, y2, y3, y4]
T, X5×1 = [x0, x1, x2, x3, x4]

T, a5 = 0.1158, b5= 0.3333,

c5 = 0.4714, d5 = 0.5107, e5 = 0.6265, f5 = 0.6667, C5 =


b5 c5 c5 c5 c5
c5 d5 a5 −b5 −e5
c5 a5 −e5 −b5 d5
c5 −b5 −b5 f5 −b5
c5 −e5 d5 −b5 a5

.

To change the order of columns and rows of C5, the permutations π5 and π6 are
defined in the following form:

π5 =

(
1 2
1 4

3 4 5
2 5 3

)
, π6 =

(
1 2
1 4

3 4 5
2 3 5

)
.

The columns of C5 are permutated according to π5, and the rows of C5 are permutated
according to π6. After permutations, the matrix acquires the following structure:

C(a)
5 =


b5 c5 c5 c5 c5
c5 f5 −b5 −b5 −b5
c5 −b5 d5 −e5 a5
c5 −b5 a5 d5 −e5
c5 −b5 −e5 a5 d5


Then, the matrix C(a)

5 is decomposed into two components:

C(a)
5 = C(b)

5 + C(c)
5 , (14)

where C(b)
5 =


b5 c5 c5 c5 c5
c5 f5 −b5 −b5 −b5
c5 −b5
c5 −b5
c5 −b5

 and C(c)
5 =

 d5 −e5 a5
a5 d5 −e5
−e5 a5 d5

.

Matrix C(b)
5 has the same entries except on the main diagonal in the first column and

first row, and the second column and second row, which allows reducing the number of
operations without the need for further transformations. After eliminating the rows and
columns containing only zero entries in matrix C(c)

5 , we obtain matrix C(d)
3 :

C(d)
3 =

 d5 −e5 a5
a5 d5 −e5
−e5 a5 d5

.

To process the matrix C(d)
3 we use the expressions for calculating the entries of a

circular convolution matrix H3 for N = 3 (Equation (11)) [28,29]. Taking into account the
properties of structural matrices [28,29], the computational procedure for the five-point
DCT-V is represented by the matrix–vector procedure

Y5×1 = P(1)
5 W5×9W(1)

9 W9×10D10W10×9W(0)
9 W9×10W10×5P(0)

5 X5×1, (15)

where
W9×10 = I5P(3)

2×5, W(1)
9 = I2T(1)

3 I4, W9×10 = I2T3×4I4,

W10×9 = I2T4×3I4, W(0)
9×9 = I2T(1)

3 I4,

D10 = diag
(

s(5)0 , s(5)1 , s(5)2 , s(5)3 , s(5)4 , s(5)5 , s(5)6 , s(5)7 , s(5)8 , s(5)9

)
,
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s(5)0 = b5, s(5)1 = f5, s(5)2 =
(

d5 + a5 − e5)/3, s(5)3 = d5 + e5, s(5)4 = a5 + e5, s(5)5 = (d5 + a5 + 2e5)/3,

s(5)6 = c5, s(5)7 = c5, s(5)8 = −b5, s(5)9 = −b5,

P(3)
2×5 =


1 1 1 1

1
1 1 1

1

, P(0)
5 =


1

1
1

1
1

, P(1)
5 =


1

1
1

1
1

,

W5×9 =


1 1

1 1 1
1 1 1

1 1 1
1 1 1

, W10×5 =



1
1

1
1

1
1

1
1

1
1


.

A data-flow graph of the proposed algorithm for the five-point DCT-V is presented in
Figure 4. In particularly, the number of multiplication operations may be reduced from 25
to 10, but the number of addition operations is increased from 20 to 23.
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Figure 4. The data-flow graph of the algorithm for computation of five-point DCT-V.

Let us now synthesize an algorithm for a six-point DCT-V, which is expressed as follows:

Y6×1 = C6X6×1, (16)

where Y6×1 = [y0 , y1 , y2 , y3 , y4 , y5 ]
T, X6×1 = [x0 , x1 , x2 , x3 , x4 , x5 ]

T, a6 = 0.0858,
b6= 0.2505, c6 = 0.3015, d6 = 0.3949, e6 = 0.4264, f6 = 0.5073, g6 = 0.5786,

C6 =



c6 e6 e6 e6 e6 e6
e6 f6 b6 −a6 −d6 −g6
e6 b6 −d6 −g6 −a6 f6
e6 −a6 −g6 b6 f6 −d6
e6 −d6 −a6 f6 −g6 b6
e6 −g6 f6 −d6 b6 −a6

.
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To change the order of columns and rows of C6, the permutations π7 and π8 are
defined in the following form:

π7 =

(
1 2
1 2

3 4 5 6
6 4 5 3

)
, π8 =

(
1 2
1 2

3 4 5 6
3 5 4 6

)
.

The columns of C6 are permutated according to π7, and the rows of C6 are permutated
according to π8. After permutations, the matrix acquires the following structure:

C(a)
6 =



c6 e6 e6 e6 e6 e6
e6 f6 −g6 −a6 −d6 b6
e6 b6 f6 −g6 −a6 −d6
e6 −d6 b6 f6 −g6 −a6
e6 −a6 −d6 b6 f6 −g6
e6 −g6 −a6 −d6 b6 f6


Then, the matrix C(a)

6 is decomposed into two components:

C(a)
6 = C(b)

6 + C(c)
6 , (17)

where

C(b)
6 =



c6 e6 e6 e6 e6 e6
e6
e6
e6
e6
e6

, C(c)
6 =


f6 −g6 −a6 −d6 b6
b6 f6 −g6 −a6 −d6
−d6 b6 f6 −g6 −a6
−a6 −d6 b6 f6 −g6
−g6 −a6 −d6 b6 f6

.

Matrix C(b)
6 has the same entries except on the main diagonal in the first column and

first row, which allows reducing the number of operations without the need for further
transformations. After eliminating the rows and columns containing only zero entries in
matrix C(c)

6 , we obtain matrix C(d)
5 :

C(d)
5 =


f6 −g6 −a6 −d6 b6
b6 f6 −g6 −a6 −d6
−d6 b6 f6 −g6 −a6
−a6 −d6 b6 f6 −g6
−g6 −a6 −d6 b6 f6

.

To process the matrix C(d)
5 , we use the expressions for calculating the entries of a

circular convolution matrix H5 =


h0 h4 h3 h2 h1
h1 h0 h4 h3 h2
h2 h1 h0 h4 h3
h3 h2 h1 h0 h4
h4 h3 h2 h1 h0

 for N = 5 [29]. Then,

h0 = f6, h1 = b6, h2 = −d6, h3 = −a6, h4 = −g6,

and the computational procedure for the six-point DCT-V is expressed by formula

Y6×1 = P(1)
6 W6×8W(0)

8 W8×10W10×13D13×13W13×10W10×8W(0)
8 W(1)

8 W8×12W12×6P(0)
6 X6×1, (18)
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where

P(0)
6 =



1
1

1
1

1
1

, P(1)
6 =



1
1

1
1

1
1

,

W8×10 =



1
1

1 1
1 1

1 1
1 1

1
1


,

W10×8 =



1
1

1
1

1
1

1 1
1 1

1
1


, W(0)

8 =



1
1 1 1 1 1
1 −1
1 −1
1 −1
1 −1

1
1


,

W(1)
8 =



1
1

1
1

1
1

1
1


,

W12×6 =



1
1

1
1

1
1

1
1

1
1

1
1



, W6×8 =



1 1
1 1

1 1
1 1

1 1
1 1

,

W10×13 = I2T2×3T2×3T2×3I2, W13×10 = I2T3×2T3×2T3×2I2, T2×3 =

[
1 1

1 1

]
,

T3×2 =

1
1

1 1

, W8×12 = I6P(2)
2×6, P(2)

2×6 =

[
1 1 1 1 1

1

]
,
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D13 = diag
(

s(6)0 , s(6)1 , s(6)2 , s(6)3 , s(6)4 , s(6)5 , s(6)6 , s(6)7 , s(6)8 , s(6)9 , s(6)10 , s(6)11 , s(6)11

)
,

s(6)0 = c6, s(6)1 = (h 0 + h1 + h2 + h3 + h4)/5,s(6)2 = h2 − h4 + h0 − h3, s(6)3 = −h1 + h4 + h0 − h3, s(6)4 = h3 − h0,

s(6)5 = h1 − h4 + h0 − h2, s(6)6 = h3 − h1 + h0 − h2, s(6)7 = h2 − h0, s(6)8 = h4 − h0, s(6)9 = h1 − h0, s(6)10 = h0 − s(6)0 ,

s(6)11 = e6.

A data-flow graph of the proposed algorithm of the six-point DCT-V is presented in
Figure 5. We are able to reduce the number of multiplication operations from 36 to 13, but
the number of addition operations is increased from 30 to 41.
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Figure 5. The data-flow graph of the algorithm for computation of six-point DCT-V.

The seven-point DCT-V transform in matrix notation can be represented by the follow-
ing expression:

Y7×1 = C7X7×1, (19)

where Y7×1 = [y0, y1, y2, y3, y4, y5, y6]
T, X7×1 = [x0, x1, x2, x3, x4, x5, x6]

T, a7 = 0.0669,
b7 = 0.1967, c7 = 0.2774, d7 = 0.3151, e7 = 0.3922, f7 = 0.4152, g7 = 0.4912, h7 = 0.5386,

C7 =



c7 e7 e7 e7 e7 e7 e7
e7 g7 d7 a7 −b7 − f7 −h7
e7 d7 −b7 −h7 − f7 a7 g7
e7 a7 −h7 −b7 g7 d7 − f7
e7 −b7 − f7 g7 a7 −h7 d7
e7 − f7 a7 d7 −h7 g7 −b7
e7 −h7 g7 − f7 d7 −b7 a7


.

Now, we need to change the order of columns and rows. Let us define the permutations
π9,π10 in the following form:

π9 =

(
1 2
1 2

3 4 5 6 7
7 4 6 5 3

)
, π10 =

(
1 2 3 4 5 6 7
1 2 3 5 6 4 7

)
.
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Permute columns and rows of C7 according to π9,π10. After permutations, the matrix
acquires the following structure:

C(a)
7 =



c7 e7 e7 e7 e7 e7 e7
e7 g7 −h7 a7 − f7 −b7 d7
e7 d7 g7 −h7 a7 − f7 −b7
e7 −b7 d7 g7 −h7 a7 − f7
e7 − f7 −b7 d7 g7 −h7 a7
e7 a7 − f7 −b7 d7 g7 −h7
e7 −h7 a7 − f7 −b7 d7 g7


.

Then, the matrix C(a)
7 is decomposed into two components:

C(a)
7 = C(b)

7 + C(c)
7 , (20)

where

C(b)
7 =



c7 e7 e7 e7 e7 e7 e7
e7
e7
e7
e7
e7
e7


, C(c)

7 =



g7 −h7 a7 − f7 −b7 d7
d7 g7 −h7 a7 − f7 −b7
−b7 d7 g7 −h7 a7 − f7
− f7 −b7 d7 g7 −h7 a7
a7 − f7 −b7 d7 g7 −h7
−h7 a7 − f7 −b7 d7 g7


.

Matrix C(b)
7 has the same entries in the first column and first row, which allows us

to reduce the number of operations without the need for further transformations. After
eliminating the rows and columns containing only zero entries in matrix C(c)

7 , we obtain

matrix C(d)
7 :

C(d)
6 =



g7 −h7 a7 − f7 −b7 d7
d7 g7 −h7 a7 − f7 −b7
−b7 d7 g7 −h7 a7 − f7
− f7 −b7 d7 g7 −h7 a7
a7 − f7 −b7 d7 g7 −h7
−h7 a7 − f7 −b7 d7 g7

.

The obtained matrix acquires the structure of the expressions for calculating the entries

of a circular convolution matrix H6 =



h0 h5 h4 h3 h2 h1
h1 h0 h5 h4 h3 h2
h2 h1 h0 h5 h4 h3
h3 h2 h1 h0 h5 h4
h4 h3 h2 h1 h0 h5
h5 h4 h3 h2 h1 h0

 for N = 6 [29].

Then, denote

s(7)0 = c7; s(7)1 =
(

g7+b7− f 7 + h7)/6; s(7)2 = (d 7 + b7 + a7 + h7)/6;

s(7)3 =
(

d7+a7 − g7 + f7)/6; s(7)4 =
(

g7+b7 + f7 − h7)/6; s(7)5 = (d7 − b7 − a7 + h7)/6;

s(7)6 =
(

g7 + f7−a7 + d7)/6; s(7)7 =
(

g7 − d7 − b7 + f 7 + a7 + h7)/6; s(7)8 =
(

g7 + d7 − b7 − f 7 + a7 − h7)/6; s(7)9 = e7.

Based on properties of structural matrices [28,29], the computational procedure for
the seven-point DCT-V is represented by expression

Y7×1 = P(1)
7 W7×9W(1)

9×11W(0)
11 W(1)

11 D11W(1)
11×9W(0)

9×11W(0)
11×9W9×14W14×7P(0)

7 X7×1, (21)
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where
D11 = diag

(
s(7)0 , s(7)1 , s(7)2 , s(7)3 , s(7)4 , s(7)5 , s(7)6 , s(7)7 , s(7)8 , s(7)9 , s(7)9

)
,

W(0)
9×11 = 1T(0)

6×8I2, W(1)
9×11 = 1T(1)

6×8I2, W(0)
11×9 = 1T8×6I2, W(0)

11 = 1T(2)
3 T(2)

3 I4,

W(1)
11 = 1T(3)

3 T(4)
3 H2I2, W(1)

11×9 = 1T6×4I4, W9×14 = I7T2×7,

P(0)
7 =



1
1

1
1

1
1

1


, P(1)

7 =



1
1

1
1

1
1

1


,

T(0)
6×8 =



1 1
1 1

1 −1
1 −1

1 −1 1
1 1 1

,T8×6 =



1 1
1 1

1 −1
1 −1
1 1

1 −1
1 −1
1 1


,

T(1)
6×8 =



1 1 1
1 −1 −1

−1 −1 1
1 −1 −1

1 1 1
−1 1 −1

, T6×4 =



1
1

1 −1
1

1
1 1

,

T(2)
3 =

1 −1
1 1

1 1

, T(3)
3 =

1 −1
1 1

1 1

, T(4)
3 =

1 −1
1 −1

1 −1

,

T2×7 =

[
1 1 1 1 1 1

1

]
,

W14×7 =



1
1

1
1

1
1

1
1

1
1

1
1

1
1



, W7×9 =



1 1
1 1

1 1
1 1

1 1
1 1

1 1


.

Figure 6 shows a data flow graph of the synthesized algorithm for the seven-point
DCT-V. As can be seen, we were able to reduce the number of multiplications from 49 to 11,
although the number of additions increased from 42 to 55.
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Let us design the algorithm for eight-point DCT-V. The eight-point DCT-V is expressed
as follows:

Y8×1 = C8X8×1, (22)

where Y8×1 = [y0, y1, y2, y3, y4, y5, y6, y7]
T, X8×1 = [x0, x1, x2, x3, x4, x5, x6, x7]

T,

C8 =



c8 e8 e8 e8 e8 e8 e8 e8
e8 g8 d8 b8 −a8 −c8 − f8 −h8
e8 d8 −a8 − f8 −h8 −c8 b8 g8
e8 b8 − f8 − f8 b8 q8 b8 − f8
e8 −a8 −h8 b8 g8 −c8 − f8 d8
e8 −c8 −c8 q8 −c8 −c8 q8 −c8
e8 − f8 b8 b8 − f8 q8 − f8 b8
e8 −h8 g8 − f8 d8 −c8 b8 −a8


with a8 = 0.0540, b8 = 0.1596, c8 = 0.2582, d8 = 0.3455, e8 = 0.3651, f8 = 0.4178, g8 = 0.4718,
h8 = 0.5051, q8 = 0.5164.

Let us define the permutations

π11 =

(
1 2
1 6

3 4 5 6 7 8
4 7 2 8 5 3

)
, π12 =

(
1 2
1 6

3 4 5 6 7 8
7 4 2 3 5 8

)
to change the order of columns and rows, respectively. As a result of the permutations, the
matrix C(a)

8 is obtained:

C(a)
8 =



c8 e8 e8 e8 e8 e8 e8 e8
e8 −c8 q8 q8 −c8 −c8 −c8 −c8
e8 q8 b8 − f8 − f 8 b8 − f 8 b8
e8 q8 − f8 b8 b8 − f 8 b8 − f8
e8 −c8 b8 − f8 g8 −h8 −a8 d8
e8 −c8 − f8 b8 d8 g8 −h8 −a8
e8 −c8 b8 − f8 −a8 d8 g8 −h8
e8 −c8 − f8 b8 −h8 −a8 d8 g8


.

Further, the matrix C(a)
8 is decomposed into two components:

C(a)
8 = C(b)

8 + C(c)
8 , (23)
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where

C(b)
8 =



c8 e8 e8 e8 e8 e8 e8 e8
e8 −c8 q8 q8 −c8 −c8 −c8 −c8
e8 q8 b8 − f8 − f 8 b8 − f 8 b8
e8 q8 − f8 b8 b8 − f 8 b8 − f8
e8 −c8 b8 − f8
e8 −c8 − f8 b8
e8 −c8 b8 − f8
e8 −c8 − f8 b8


, C(c)

8 =


g8 −h8 −a8 d8
d8 g8 −h8 −a8
−a8 d8 g8 −h8
−h8 −a8 d8 g8


.

Matrix C(b)
8 has the repeated entries in the first, second, third, and fourth columns and

rows, which allows us to reduce the number of operations without the need for further
transformations. After eliminating the rows and columns containing only zero entries in
matrix C(c)

8 , we obtain matrix C(e)
4 :

C(e)
4 =


g8 −h8 −a8 d8
d8 g8 −h8 −a8
−a8 d8 g8 −h8
−h8 −a8 d8 g8

.

To process the matrix C(e)
4 , we use the expressions for calculating the entries of a

circular convolution matrix H4 =


h0 h3 h2 h1
h1 h0 h3 h2
h2 h1 h0 h3
h1 h2 h1 h0

 for N = 4 [29]:

H3 = T(1)
4 T4×5diag

(
s(0)0 , s(0)1 , s(0)2 , s(0)3 , s(0)4

)
T5×4T(0)

4 , (24)

where

s(0)0 = (g 8 + d8 − a8 − h8)/4, s(0)1 = (g 8 − d8 − a8 + h8)/4, s(0)2 = (g 8 + a8)/2, s(0)3 = (g 8 − d8 + a8 − h8)/2;

s(0)4 = (g 8 + d8 + a8 + h8)/2;

T(1)
4 =


1 1

1 1
1 −1

1 −1

, T(0)
4 =


1 1

1 1
1 −1

1 −1

, T4×5 =


1 1
1 −1

1 −1
1 −1

, T5×4 =


1 1
1 −1

1 1
1

1

.

Based on properties of structural matrices [29], the computational procedure for the eight-
point DCT-V is represented by expression

Y8×1 = P(1)
8 W8×18W(1)

18 W18×19D19W19×18W(0)
18 W18×16W16×8P(0)

8 X8×1, (25)

where

W18×16 = I8T10×8, W(1)
18 = I2H2T(1)

4 H2H2I6, W(0)
18 = I2H2T(0)

4 H2H2I6, W19×18 = I4T5×4I10, W18×19 = I4T4×5I10,

D19 = diag
(

s(8)0 , s(8)1 , s(8)2 , s(8)3 , s(8)4 , s(8)5 , s(8)6 , s(8)7 , s(8)8 , s(8)2 , s(8)9 , s(8)2 , s(8)3 , s(8)10 , s(8)10 , s(8)11 , s(8)11 , s(8)1 , s(8)1

)
,

s(8)0 = c8, s(8)1 = −c8, s(8)2 = (b 8 − f8)/2,s(8)3 = (b 8 + f8)/2,s(8)4 = s(0)0 ,

s(8)5 = s(0)1 , s(8)6 = s(0)2 , s(8)7 = s(0)3 , s(8)8 = s(0)4 , s(8)9 = −(b8 + f8)/2,s(8)10 = e8, s(8)11 = q8.
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P(0)
8 =



1
1

1
1

1
1

1
1


, P(1)

8 =



1
1

1
1

1
1

1
1


,

W8×18 =



1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1


,

T10×8 =



1 1
1 1

1
1

1 1 1 1 1 1 1
1

1 1
1

1 1 1 1
1


, W16×8 =



1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1



,

A data-flow graph of the proposed algorithm of the eight-point DCT-V is presented in
Figure 7. Based on this algorithm, the number of multiplications can be reduced from 64 to
19, but the number of additions is increased from 56 to 61.
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Figure 7. The data-flow graph of the algorithm for computation of eight-point DCT-V.

3. Discussion of Computational Complexity

The computational complexity of the proposed algorithms is evaluated in this section.
The proposed algorithms significantly reduce the number of multiplications in DCT-V
algorithms for a 1D signal with the number of samples in the range from two to eight. At
the same time, the number of additions was increased by an average of 29%. The number
of multiplications was reduced by an average of 57% in the range of number of samples
from two to eight. The results obtained based on the elaborated algorithms are shown in
Table 1. In parentheses, the percentage difference in the number of operations is indicated:
plus means that the number of operations has risen compared to the direct method, and
minus means that it has reduced.

The reduction in multiplications significantly contributes to speeding up the signal
processing since the multiplications are more expensive to use than additions. As a result,
the amount of resources used on the signal processor is significantly reduced, while allow-
ing for easier operation in real time. The correctness of each proposed algorithm is verified
by implementation in the MATLAB environment.

Analyzing the obtained results, we note the following. First, it is necessary to empha-
size that the number of arithmetic operations in proposed algorithms depends on how
successfully the transform matrix can be factorized. And success closely depends on the
structural properties of this matrix. That is why often, in such algorithms, the reduction
in the number of multiplications is achieved by increasing the number of additions. For
example, in the DCT-V algorithms proposed by the authors, the number of additions
increases, and not always delicately. However, if the structure of the transform matrix is
“suitable”, we obtain a reduction in both multiplications and additions. For example, this is
the case with the developed in [28] fast DST-II algorithms.
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Table 1. The number of additions and multiplications of the direct method against the
proposed algorithms.

N Direct Method Proposed Algorithms

Additions Multiplications Additions Multiplications

2 2 4 3 (+33%) 3 (−25%)

3 6 9 8 (+33%) 5 (−44%)

4 12 16 17 (+42%) 7 (−56%)

5 20 25 23 (+15%) 10 (−60%)

6 30 36 41 (+37%) 13 (−64%)

7 42 49 55 (+31%) 11 (−78%)

8 56 64 61 (+9%) 19 (70%)

Secondly, designers usually try to reduce the number of multiplications as much as
possible, even at the expense of a small increase in the number of additions. The problem
of reducing the number of multiplications is especially relevant when designing parallel
VLSI processors. This is because, compared to a hardware adder, a hardware multiplier
occupies a significantly larger area in VLSI, consumes more energy, emits more heat, and
creates a very large delay.

Thirdly, this paper considers DCT-V algorithms for short-length input sequences.
Processing short-length blocks of signals requires less memory to save temporary data,
which is critical for mobile phones and other resource-constrained devices [35]. Fast DCT
algorithms for short-length block handling allow detailed signal processing and reduce
overall system complexity and delay, which is especially useful for real-time applications
such as voice control systems and video conferencing [35].

The development of fast algorithms based on structural properties of transform ma-
trices may be extended to larger input sequences processing in two ways. The first one
is applying fast algorithms for short-length sequences as typical modules in synthesizing
more complex algorithms [1]. Once constructed, the fast algorithms for short-length se-
quences can be successfully applied in various projects to unify the process of developing
the final algorithm. The second way is designing the intelligent system to obtain the
“suitable” matrix structure, for example, with a genetic algorithm applied [36].

4. Conclusions

In this paper, fast type-V DCT algorithms designed for processing short input data
sequences were developed and investigated. Fast algorithms for short input data sequences
are of particular interest because they are subsequently used as building blocks for devel-
oping fast algorithms of large-sized discrete transforms.

As a result of the literature review, two main approaches were identified for designing
fast algorithms for DCT. The structural approach analyzes and considers the compositions
of identical entries, using heuristic tricks to find successful transformation base matrix
factorization schemes [27]. The search for successful factorization schemes largely depends
on the intuition and experience of the designer of such algorithms. The analytical approach
is based on searching and identifying general principles for factorizing the base transform
matrix for arbitrary lengths of the input data sequences. To obtain the fast algorithms for
short-length data processing, we use a structural approach. With its help, we analyzed
the structural properties of the type-V DCT coefficient matrix and found algorithmic
solutions that allow us to reduce the computational complexity of implementing the DCT-V
transform. The calculations we carried out, as well as the comparison of the obtained
solutions with naive calculation methods, prove the usefulness and cost-effectiveness of
the developed algorithms. The resulting factorizations of the DCT-V matrix reduce the
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number of multiplications by 57% but increase the number of additions by 29% on average
in the range of signal sample numbers from two to eight.

As the future development of the research might be the implementation of the de-
signed algorithms to elaboration of time–frequency dictionaries of functions [37,38]. Such
dictionaries allow obtaining a compact representation of signals and images to increase the
performance of their processing [39,40].

Author Contributions: Conceptualization, A.C.; methodology, A.C. and M.P.; software, M.P.; valida-
tion, A.C., M.P. and A.W.; formal analysis, A.C., M.P. and A.W.; investigation, M.P.; writing—original
draft preparation, M.P. and A.C.; writing—review and editing, A.C. and M.P.; supervision, A.C. All
authors have read and agreed to the published version of the manuscript.All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Bi, G.; Zeng, Y. Transforms and Fast Algorithms for Signal Analysis and Representations, 1st ed.; Birkhäuser: Boston, MA, USA, 2004.
2. Britanak, V.; Yip, P.; Rao, K. Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximations,

1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2007.
3. Ramamohan Rao, K.; Yip, P. Discrete Cosine Transform: Algorithms, Advantages, Applications, 1st ed.; Academic Press: Cambridge,

MA, USA, 2014.
4. Abramova, V.V.; Lukin, V.V.; Abramov, S.K.; Kryvenko, S.S.; Lech, P.; Okarma, K. A fast and accurate prediction of distortions in

DCT-based lossy image compression. Electronics 2023, 12, 2347. [CrossRef]
5. Hnativ, L.O. Discrete cosine-sine type VII transform and fast integer transforms for intra prediction of images and video coding.

Cybern. Syst. Anal. 2021, 57, 827–835. [CrossRef]
6. Lukin, V.V.; Abramova, V.V.; Abramov, S.K.; Grigelionis, K. A terahertz imaging system using adaptive DCT-based image denois-

ing. In Proceedings of the IEEE 2nd Ukrainian Microwave Week Conference (UkrMW), Kharkiv, Ukraine, 14–18 November 2022.
7. Pogrebnyak, O.B.; Lukin, V.V. Wiener discrete cosine transform based image filtering. J. Electron. Imaging 2012, 21, 043020.

[CrossRef]
8. Sugimoto, K.; Kamata, S. Fast Gaussian filter with second-order shift property of DCT-5. In Proceedings of the IEEE International

Conference on Image Processing, Melbourne, Australia, 15–18 September 2013.
9. Yamamoto, K.; Toyoda, K.; Ohtsuki, T. Non-contact heartbeat detection by MUSIC with discrete cosine transform-based parameter

adjustment. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates,
9–13 December 2018.

10. Park, J.; Ham, J.-W.; Park, S.; Kim, D.-H.; Park, S.-J.; Kang, H.; Park, S.-O. Polyphase-basis discrete cosine transform for real-time
measurement of heart rate with CW Doppler radar. IEEE Trans. Microw. Theory Tech. 2017, 66, 1644–1659. [CrossRef]

11. Tauhid, A.; Tasnim, M.; Noor, S.A.; Faruqui, N.; Yousuf, M.A. A secure image steganography using advanced encryption standard
and discrete cosine transform. J. Inf. Secur. 2019, 10, 117–129. [CrossRef]

12. Krikor, L.; Baba, S.; Alnasiri, T.; Shaaban, Z. Image encryption using DCT and stream cipher. Eur. J. Sci. Res. 2009, 32, 48–58.
13. Lipinski, P.; Puchala, D. Digital image watermarking using fast parametric transforms. Bull. Pol. Acad. Sci. Tech. Sci. 2019,

67, 463–477. [CrossRef]
14. Armas Vega, E.A.; Sandoval Orozco, A.L.; García Villalba, L.J.; Hernandez-Castro, J. Digital images authentication technique

based on DWT, DCT and local binary patterns. Sensors 2018, 18, 3372. [CrossRef]
15. Boukhechba, K.; Wu, H.; Bazine, R. DCT-based preprocessing approach for ICA in hyperspectral data analysis. Sensors 2018,

18, 1138. [CrossRef]
16. Ramaputra, M.G.; Irianto, S.Y.; Karnila, S. Content based image retrieval method with discrete cosine feature extraction in natural

images. J. Technol. Accept. Model 2021, 12, 171. [CrossRef]
17. Zhang, Z.; Zhao, X.; Li, X.; Li, L.; Luo, Y.; Liu, S.; Li, Z. Fast DST-VII/DCT-VIII with dual implementation support for versatile

video coding. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 355–371. [CrossRef]
18. Koizumi, Y.; Harada, N.; Haneda, Y.; Hioka, Y.; Kobayashi, K. End-to-end sound source enhancement using deep neural network

in the modified discrete cosine transform domain. In Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018.

19. Chiper, D.F.; Dobrea, D.M. A novel low-complexity and parallel algorithm for DCT IV transform and its GPU implementation.
Appl. Sci. 2024, 14, 7491. [CrossRef]

https://doi.org/10.3390/electronics12112347
https://doi.org/10.1007/s10559-021-00408-z
https://doi.org/10.1117/1.JEI.21.4.043020
https://doi.org/10.1109/TMTT.2017.2772782
https://doi.org/10.4236/jis.2019.103007
https://doi.org/10.24425/bpasts.2019.129646
https://doi.org/10.3390/s18103372
https://doi.org/10.3390/s18041138
https://doi.org/10.56327/jurnaltam.v12i2.1092
https://doi.org/10.1109/TCSVT.2020.2977118
https://doi.org/10.3390/app14177491


Electronics 2024, 13, 4165 19 of 19

20. Cariow, A.; Lesiecki, Ł. Small-size algorithms for type-IV discrete cosine transform with reduced multiplicative complexity.
Radioelectron. Commun. Syst. 2020, 63, 465–487. [CrossRef]

21. Kolenderski, M.; Cariow, A. Small-size algorithms for the type-I discrete cosine transform with reduced complexity. Electronics
2022, 11, 2411. [CrossRef]

22. Chivukula, R.K.; Reznik, Y.A. Fast computing of discrete cosine and sine transforms of types VI and VII. In Proceedings of the
SPIE 8135, Applications of Digital Image Processing XXXIV, San Diego, CA, USA, 19 September 2011.

23. Park, W.; Lee, B.; Kim, M. Fast computation of integer DCT-V, DCT-VIII, and DST-VII for video coding. IEEE Trans. Image Process.
2019, 28, 5839–5851. [CrossRef] [PubMed]

24. Chiper, D.F.; Cotorobai, L.T. A new approach for a unified architecture for type IV DCT/DST with an efficient incorporation of
obfuscation technique. Electronics 2021, 10, 1656. [CrossRef]

25. Chiper, D.F.; Cotorobai, L.T. A novel VLSI algorithm for a low complexity VLSI implementation of DCT based on pseudo circular
correlation structures. In Proceedings of the International Symposium on Electronics and Telecommunications (ISETC), Timisoara,
Romania, 5–6 November 2020.

26. Chiper, D.F.; Cracan, A. An area-efficient unified VLSI architecture for type IV DCT/DST having an efficient hardware security
with low overheads. Electronics 2023, 12, 4471. [CrossRef]

27. Cariow, A. Strategies for the synthesis of fast algorithms for the computation of the matrix-vector product. J. Signal Process. Theory
Appl. 2014, 3, 1–19. [CrossRef]

28. Bielak, K.; Cariow, A.; Raciborski, M. The development of fast DST-II algorithms for short-length input sequences. Electronics
2024, 13, 2301. [CrossRef]

29. Cariow, A.; Paplinski, J. Algorithmic structures for realizing short-length circular convolutions with reduced complexity.
Electronics 2021, 10, 2800. [CrossRef]

30. Cariow, A.; Makowska, M.; Strzelec, P. Small-size FDCT/IDCT algorithms with reduced multiplicative complexity. Radioelectron.
Commun. Syst. 2019, 62, 559–576. [CrossRef]

31. Chen, X.; Dai, O.; Li, C. A fast algorithm for computing multidimensional DCT on certain small sizes. IEEE Trans. Signal Process.
2023, 51, 213–220. [CrossRef]

32. Plonka, G.; Potts, D.; Steifdl, G.; Tasche, M. Chebyshev methods and fast DCT algorithms. In Book Numerical Fourier Analysis.
Applied and Numerical Harmonic Analysis, 1st ed.; Plonka, G., Potts, D., Steidl, G., Tasche, M., Eds.; Birkhäuser: Boston, MA, USA,
2018; pp. 339–411.

33. Radunz, A.P.; Portella, L.; Oliveira, R.S.; Bayer, F.M.; Cintra, R.J. Extensions on low-complexity DCT approximations for larger
blocklengths based on minimal angle similarity. J. Signal Process. Syst. 2023, 95, 495–516. [CrossRef]
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